Browse Source

fix requested changes

tags/v0.0.1
Leon Botros 5 years ago
parent
commit
9dd4a4b5da
36 changed files with 541 additions and 529 deletions
  1. +20
    -26
      crypto_kem/ledakemlt12/leaktime/H_Q_matrices_generation.c
  2. +24
    -21
      crypto_kem/ledakemlt12/leaktime/bf_decoding.c
  3. +19
    -17
      crypto_kem/ledakemlt12/leaktime/dfr_test.c
  4. +1
    -1
      crypto_kem/ledakemlt12/leaktime/gf2x_arith.c
  5. +56
    -56
      crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.c
  6. +8
    -8
      crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.h
  7. +8
    -7
      crypto_kem/ledakemlt12/leaktime/kem.c
  8. +25
    -23
      crypto_kem/ledakemlt12/leaktime/niederreiter.c
  9. +6
    -6
      crypto_kem/ledakemlt12/leaktime/rng.c
  10. +11
    -0
      crypto_kem/ledakemlt12/leaktime/sort.c
  11. +0
    -11
      crypto_kem/ledakemlt12/leaktime/sort.h
  12. +20
    -26
      crypto_kem/ledakemlt32/leaktime/H_Q_matrices_generation.c
  13. +24
    -21
      crypto_kem/ledakemlt32/leaktime/bf_decoding.c
  14. +19
    -17
      crypto_kem/ledakemlt32/leaktime/dfr_test.c
  15. +1
    -1
      crypto_kem/ledakemlt32/leaktime/gf2x_arith.c
  16. +57
    -55
      crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.c
  17. +8
    -8
      crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.h
  18. +8
    -7
      crypto_kem/ledakemlt32/leaktime/kem.c
  19. +25
    -23
      crypto_kem/ledakemlt32/leaktime/niederreiter.c
  20. +6
    -6
      crypto_kem/ledakemlt32/leaktime/rng.c
  21. +11
    -0
      crypto_kem/ledakemlt32/leaktime/sort.c
  22. +0
    -11
      crypto_kem/ledakemlt32/leaktime/sort.h
  23. +20
    -26
      crypto_kem/ledakemlt52/leaktime/H_Q_matrices_generation.c
  24. +24
    -21
      crypto_kem/ledakemlt52/leaktime/bf_decoding.c
  25. +19
    -17
      crypto_kem/ledakemlt52/leaktime/dfr_test.c
  26. +1
    -1
      crypto_kem/ledakemlt52/leaktime/gf2x_arith.c
  27. +57
    -55
      crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.c
  28. +8
    -8
      crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.h
  29. +8
    -7
      crypto_kem/ledakemlt52/leaktime/kem.c
  30. +25
    -23
      crypto_kem/ledakemlt52/leaktime/niederreiter.c
  31. +6
    -6
      crypto_kem/ledakemlt52/leaktime/rng.c
  32. +11
    -0
      crypto_kem/ledakemlt52/leaktime/sort.c
  33. +0
    -11
      crypto_kem/ledakemlt52/leaktime/sort.h
  34. +2
    -1
      test/duplicate_consistency/ledakemlt12_leaktime.yml
  35. +2
    -1
      test/duplicate_consistency/ledakemlt32_leaktime.yml
  36. +1
    -1
      test/duplicate_consistency/ledakemlt52_leaktime.yml

+ 20
- 26
crypto_kem/ledakemlt12/leaktime/H_Q_matrices_generation.c View File

@@ -1,23 +1,19 @@
#include "H_Q_matrices_generation.h"
#include "gf2x_arith_mod_xPplusOne.h"

void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV],
AES_XOF_struct *keys_expander) {

for (int i = 0; i < N0; i++) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander) {
for (size_t i = 0; i < N0; i++) {
/* Generate a random block of Htr */
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0],
DV,
keys_expander);
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0], DV, keys_expander);
}
}

void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
AES_XOF_struct *keys_expander) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander) {
size_t placed_ones;

for (int i = 0; i < N0; i++) {
int placed_ones = 0;
for (int j = 0; j < N0; j++) {
for (size_t i = 0; i < N0; i++) {
placed_ones = 0;
for (size_t j = 0; j < N0; j++) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&QPosOnes[i][placed_ones],
qBlockWeights[i][j],
keys_expander);
@@ -26,29 +22,27 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
}
}

void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], /* output*/
POSITION_T HPosOnes[N0][DV]) {

for (int i = 0; i < N0; i++) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]) {
for (size_t i = 0; i < N0; i++) {
/* Obtain directly the sparse representation of the block of H */
for (int k = 0; k < DV; k++) {
for (size_t k = 0; k < DV; k++) {
HtrPosOnes[i][k] = (P - HPosOnes[i][k]) % P; /* transposes indexes */
}// end for k
}
}
}

void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], /* output*/
POSITION_T QPosOnes[N0][M]) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]) {
POSITION_T transposed_ones_idx[N0] = {0x00};
size_t currQoneIdx, endQblockIdx;

unsigned transposed_ones_idx[N0] = {0x00};
for (unsigned source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
int endQblockIdx = 0;
for (size_t source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
endQblockIdx = 0;
for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
endQblockIdx += qBlockWeights[source_row_idx][blockIdx];
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = (P -
QPosOnes[source_row_idx][currQoneIdx]) % P;
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] =
(P - QPosOnes[source_row_idx][currQoneIdx]) % P;
transposed_ones_idx[blockIdx]++;
}
}


+ 24
- 21
crypto_kem/ledakemlt12/leaktime/bf_decoding.c View File

@@ -7,22 +7,26 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[],
const POSITION_T HtrPosOnes[N0][DV],
const POSITION_T QtrPosOnes[N0][M],
DIGIT privateSyndrome[],
uint8_t threshold) {
uint8_t secondIterThreshold) {

DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
uint8_t unsatParityChecks[N0 * P];
POSITION_T currQBlkPos[M], currQBitPos[M];
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
POSITION_T syndromePosToFlip, tmp;
unsigned int correlation, corrt_syndrome_based;
size_t currQoneIdx, endQblockIdx, currblockoffset;
int check;
int iteration = 0;
unsigned int corrt_syndrome_based;

do {
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
for (int i = 0; i < N0; i++) {
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
for (size_t i = 0; i < N0; i++) {
for (size_t valueIdx = 0; valueIdx < P; valueIdx++) {
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ?
(HtrPosOnes[i][HtrOneIdx] + valueIdx) - P :
(HtrPosOnes[i][HtrOneIdx] + valueIdx);
if (PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
unsatParityChecks[i * P + valueIdx]++;
}
@@ -31,33 +35,32 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[],
}

/* iteration based threshold determination*/
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0;
corrt_syndrome_based = iteration * secondIterThreshold + (1 - iteration) * B0;

//Computation of correlation with a full Q matrix
for (int i = 0; i < N0; i++) {
for (int j = 0; j < P; j++) {
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
int endQblockIdx = 0;
unsigned int correlation = 0;
// Computation of correlation with a full Q matrix
for (size_t i = 0; i < N0; i++) {
for (size_t j = 0; j < P; j++) {
currQoneIdx = endQblockIdx = 0;
correlation = 0;

for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
for (size_t blockIdx = 0; blockIdx < N0; blockIdx++) {
endQblockIdx += qBlockWeights[blockIdx][i];
int currblockoffset = blockIdx * P;
currblockoffset = blockIdx * P;
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j;
tmp = QtrPosOnes[i][currQoneIdx] + j;
tmp = tmp >= P ? tmp - P : tmp;
currQBitPos[currQoneIdx] = tmp;
currQBlkPos[currQoneIdx] = blockIdx;
correlation += unsatParityChecks[tmp + currblockoffset];
}
}

/* Correlation based flipping */
if (correlation >= corrt_syndrome_based) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
for (int v = 0; v < M; v++) {
POSITION_T syndromePosToFlip;
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
for (size_t v = 0; v < M; v++) {
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v]);
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
}


+ 19
- 17
crypto_kem/ledakemlt12/leaktime/dfr_test.c View File

@@ -14,47 +14,49 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
unsigned int maxMut[N0], maxMutMinusOne[N0];
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
unsigned int toAdd;
size_t histIdx;

for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
for (size_t i = 0; i < N0; i++) {
for (size_t j = 0; j < DV * M; j++) {
if (LSparse[i][j] != 0) {
LSparse_loc[i][j] = (P - LSparse[i][j]) ;
LSparse_loc[i][j] = (P - LSparse[i][j]);
}
}
PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(LSparse_loc[i], DV * M);
}


for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (int k = 0; k < (DV * M); k++) {
for (int l = 0; l < (DV * M); l++) {
gamma[i][j][ (P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P ]++;
for (size_t i = 0; i < N0; i++ ) {
for (size_t j = 0; j < N0; j++) {
for (size_t k = 0; k < (DV * M); k++) {
for (size_t l = 0; l < (DV * M); l++) {
gamma[i][j][(P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P]++;
}
}
}
}

for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (size_t i = 0; i < N0; i++ ) {
for (size_t j = 0; j < N0; j++ ) {
gamma[i][j][0] = 0;
}
}

/* build histogram of values in gamma */
for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (int k = 0; k < P; k++) {
for (size_t i = 0; i < N0; i++ ) {
for (size_t j = 0; j < N0; j++ ) {
for (size_t k = 0; k < P; k++) {
gammaHist[i][gamma[i][j][k]]++;
}
}
}


for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
unsigned int toAdd = T_BAR - 1;
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
maxMutMinusOne[gammaBlockRowIdx] = 0;
unsigned int histIdx = DV * M;
histIdx = DV * M;
toAdd = T_BAR - 1;
while ( (histIdx > 0) && (toAdd > 0)) {
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) {
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd;
@@ -71,7 +73,7 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
/*seek max values across all gamma blocks */
allBlockMaxSumst = maxMut[0];
allBlockMaxSumstMinusOne = maxMutMinusOne[0];
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ?
maxMut[gammaBlockRowIdx] :
allBlockMaxSumst;


+ 1
- 1
crypto_kem/ledakemlt12/leaktime/gf2x_arith.c View File

@@ -52,7 +52,7 @@ static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) {

R[0] = 0;
R[1] = (A & 1) * B;
for (unsigned i = 1; i < DIGIT_SIZE_b; i++) {
for (uint8_t i = 1; i < DIGIT_SIZE_b; i++) {
tmp = ((A >> i) & 1) * B;
R[1] ^= tmp << i;
R[0] ^= tmp >> (DIGIT_SIZE_b - i);


+ 56
- 56
crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.c View File

@@ -5,39 +5,39 @@
#include <string.h> // memcpy(...), memset(...)

void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
dest[i] = in[i];
}
}

/* returns the coefficient of the x^exponent term as the LSB of a digit */
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ;
}

/* sets the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;

/* clear given coefficient */
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] & mask;
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
}

/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;

/* clear given coefficient */
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] ^ mask;
}

@@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
}

/* population count for a single polynomial */
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly) {
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(const DIGIT *poly) {
int ret = 0;
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
ret += popcount_uint64t(poly[i]);
@@ -74,10 +74,9 @@ static void gf2x_mod(DIGIT out[], const DIGIT in[]) {
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1;
}

static void right_bit_shift(unsigned int length, DIGIT in[]) {

unsigned int j;
for (j = length - 1; j > 0 ; j--) {
static void right_bit_shift(size_t length, DIGIT in[]) {
size_t j;
for (j = length - 1; j > 0; j--) {
in[j] >>= 1;
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1);
}
@@ -86,8 +85,8 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) {


/* shifts by whole digits */
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) {
unsigned int j;
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) {
size_t j;
for (j = 0; (j + amount) < length; j++) {
in[j] = in[j + amount];
}
@@ -97,7 +96,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
}

/* may shift by an arbitrary amount*/
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) {
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
}
@@ -123,19 +122,21 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {

DIGIT mask = (DIGIT)0x1;
DIGIT rev1, rev2, a00;
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;

a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask;
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A);

for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
rev1 = reverse_digit(A[i]);
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]);
A[i] = rev2;
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1;
}

A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);
if (NUM_DIGITS_GF2X_ELEMENT % 2 == 1) {
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);
}

if (slack_bits_amount) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
@@ -153,10 +154,9 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */
}

/* cond swap: swaps digits A and B if swap_mask == -1 */
static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
int i;
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) {
DIGIT t;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
t = swap_mask & (a[i] ^ b[i]);
a[i] ^= t;
b[i] ^= t;
@@ -164,18 +164,18 @@ static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
}

/* returns -1 mask if x != 0, otherwise 0 */
static inline int nonzero(DIGIT x) {
static inline int32_t nonzero(DIGIT x) {
DIGIT t = x;
t = (~t) + 1;
t >>= DIGIT_SIZE_b - 1;
return -((int)t);
return -((int32_t)t);
}

/* returns -1 mask if x < 0 else 0 */
static inline int negative(int x) {
static inline int32_t negative(int x) {
uint32_t u = x;
u >>= 31;
return -((int)u);
return -((int32_t)u);
}

/* return f(0) as digit */
@@ -193,7 +193,7 @@ static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) {

/* constant-time inverse, source: gcd.cr.yp.to */
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
int i, loop, swap, delta = 1;
int32_t swap, delta = 1;
DIGIT g0_mask;

DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1
@@ -204,17 +204,17 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[])
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1;
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS);

for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
g[i] = in[i];
}

for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
v[i] = 0;
}

r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1;

for (loop = 0; loop < 2 * P - 1; ++loop) {
for (int loop = 0; loop < 2 * P - 1; ++loop) {

swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap
@@ -249,7 +249,7 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], con
/*PRE: the representation of the sparse coefficients is sorted in increasing
order of the coefficients themselves */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[],
POSITION_T sparse[], unsigned int nPos) {
POSITION_T sparse[], size_t nPos) {

DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
@@ -260,7 +260,7 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]);
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]);

for (unsigned int i = 1; i < nPos; i++) {
for (size_t i = 1; i < nPos; i++) {
if (sparse[i] != INVALID_POS_VALUE) {
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
@@ -272,10 +272,9 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons

}

void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {

void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) {
POSITION_T t;
int i = 0, j;
size_t i = 0, j;

if (A[i] == 0) {
i = 1;
@@ -299,6 +298,9 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
size_t sizeB, const POSITION_T B[]) {

POSITION_T prod;
POSITION_T lastReadPos;
size_t duplicateCount;
size_t write_idx, read_idx;

/* compute all the coefficients, filling invalid positions with P*/
size_t lastFilledPos = 0;
@@ -319,12 +321,11 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
Res[lastFilledPos] = INVALID_POS_VALUE;
lastFilledPos++;
}

PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(Res, sizeR);

/* eliminate duplicates */
POSITION_T lastReadPos = Res[0];
size_t duplicateCount;
size_t write_idx = 0;
size_t read_idx = 0;
write_idx = read_idx = 0;
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) {
lastReadPos = Res[read_idx];
read_idx++;
@@ -346,13 +347,12 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R

/* the implementation is safe even in case A or B alias with the result
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(
int sizeR, POSITION_T Res[],
int sizeA, const POSITION_T A[],
int sizeB, const POSITION_T B[]) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[],
size_t sizeA, const POSITION_T A[],
size_t sizeB, const POSITION_T B[]) {

POSITION_T tmpRes[DV * M];
int idxA = 0, idxB = 0, idxR = 0;
size_t idxA = 0, idxB = 0, idxR = 0;
while ( idxA < sizeA &&
idxB < sizeB &&
A[idxA] != INVALID_POS_VALUE &&
@@ -421,18 +421,18 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
/* Obtains fresh randomness and seed-expands it until all the required positions
* for the '1's in the circulant block are obtained */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
int countOnes,
size_t countOnes,
AES_XOF_struct *seed_expander_ctx) {

int duplicated, placedOnes = 0;
uint32_t p;
size_t duplicated, placedOnes = 0;
POSITION_T p;

while (placedOnes < countOnes) {
p = rand_range(NUM_BITS_GF2X_ELEMENT,
P_BITS,
seed_expander_ctx);
duplicated = 0;
for (int j = 0; j < placedOnes; j++) {
for (size_t j = 0; j < placedOnes; j++) {
if (pos_ones[j] == p) {
duplicated = 1;
}


+ 8
- 8
crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.h View File

@@ -16,22 +16,22 @@
#define P_BITS (16) // log_2(p) = 15.6703

void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly);
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent);
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(const DIGIT *poly);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, size_t countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], const POSITION_T errorPos[NUM_ERRORS_T]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]);
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], size_t nPos);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);



+ 8
- 7
crypto_kem/ledakemlt12/leaktime/kem.c View File

@@ -107,18 +107,19 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
uint8_t hashed_decoded_seed[HASH_BYTE_LENGTH];
uint8_t hashedAndTruncated_decoded_seed[TRNG_BYTE_LENGTH] = {0};
uint8_t ss_input[2 * TRNG_BYTE_LENGTH], tail[TRNG_BYTE_LENGTH] = {0};
int decode_ok, decrypt_ok, equal;

unpack_ct(syndrome, ct);

int decode_ok = PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
(const privateKeyNiederreiter_t *)sk, syndrome);
decode_ok = PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
(const privateKeyNiederreiter_t *)sk, syndrome);

pack_error(decoded_error_bytes, decoded_error_vector);
HASH_FUNCTION(hashedErrorVector, decoded_error_bytes, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);

memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH);

for (int i = 0; i < TRNG_BYTE_LENGTH; ++i) {
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) {
decoded_seed[i] = ct[(NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + i] ^
hashedAndTruncatedErrorVector[i];
}
@@ -135,11 +136,11 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,

PQCLEAN_LEDAKEMLT12_LEAKTIME_expand_error(reconstructed_error_vector, reconstructed_errorPos);

int equal = PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_verify(decoded_error_vector,
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT);
equal = PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_verify(decoded_error_vector,
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT);
// equal == 0, if the reconstructed error vector match !!!

int decryptOk = (decode_ok == 1 && equal == 0);
decrypt_ok = (decode_ok == 1 && equal == 0);

memcpy(ss_input, decoded_seed, TRNG_BYTE_LENGTH);
memcpy(ss_input + sizeof(decoded_seed), tail, TRNG_BYTE_LENGTH);
@@ -148,7 +149,7 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
PQCLEAN_LEDAKEMLT12_LEAKTIME_cmov(ss_input + sizeof(decoded_seed),
((const privateKeyNiederreiter_t *) sk)->decryption_failure_secret,
TRNG_BYTE_LENGTH,
!decryptOk);
!decrypt_ok);

HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH);



+ 25
- 23
crypto_kem/ledakemlt12/leaktime/niederreiter.c View File

@@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
}
}
is_L_full = 1;
for (int i = 0; i < N0; i++) {
for (size_t i = 0; i < N0; i++) {
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE);
}
sk->rejections = sk->rejections + 1;
@@ -63,21 +63,21 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
sk->decryption_failure_secret,
(unsigned long)TRNG_BYTE_LENGTH);

for (int j = 0; j < DV * M; j++) {
for (size_t j = 0; j < DV * M; j++) {
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
}
}

PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
for (int i = 0; i < N0 - 1; i++) {
for (size_t i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
Ln0Inv,
LPosOnes[i],
DV * M);
}

for (int i = 0; i < N0 - 1; i++) {
for (size_t i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
}
}
@@ -110,24 +110,27 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
POSITION_T auxSparse[DV * M];
POSITION_T Ln0trSparse[DV * M];
DIGIT err_computed[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B] = {0};
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT];
unsigned char processedQOnes[N0];
uint8_t processedQOnes[N0];
int rejections = sk->rejections;
int decrypt_ok = 0;
int err_weight;

PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
do {
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(HPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(QPosOnes, &niederreiter_decrypt_expander);

for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
for (size_t i = 0; i < N0; i++) {
for (size_t j = 0; j < DV * M; j++) {
LPosOnes[i][j] = INVALID_POS_VALUE;
}
}

memset(processedQOnes, 0x00, sizeof(processedQOnes));
for (int colQ = 0; colQ < N0; colQ++) {
for (int i = 0; i < N0; i++) {
for (size_t colQ = 0; colQ < N0; colQ++) {
for (size_t i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
DV, HPosOnes[i],
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
@@ -143,15 +146,15 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeHPosOnes(HtrPosOnes, HPosOnes);
PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeQPosOnes(QtrPosOnes, QPosOnes);

for (int i = 0; i < DV * M; i++) {
for (size_t i = 0; i < DV * M; i++) {
Ln0trSparse[i] = INVALID_POS_VALUE;
auxSparse[i] = INVALID_POS_VALUE;
}

for (int i = 0; i < N0; i++) {
for (size_t i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
DV, HPosOnes[i],
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1] ] );
qBlockWeights[i][N0 - 1], &QPosOnes[i][M - qBlockWeights[i][N0 - 1]]);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
DV * M, Ln0trSparse,
DV * M, auxSparse);
@@ -163,28 +166,27 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
Ln0trSparse,
DV * M);

int decryptOk = 0;
decryptOk = PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(err_computed,
(const POSITION_T (*)[DV]) HtrPosOnes,
(const POSITION_T (*)[M]) QtrPosOnes,
privateSyndrome, sk->secondIterThreshold);
decrypt_ok = PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(err_computed,
(const POSITION_T (*)[DV]) HtrPosOnes,
(const POSITION_T (*)[M]) QtrPosOnes,
privateSyndrome, sk->secondIterThreshold);

int err_weight = 0;
for (int i = 0 ; i < N0; i++) {
err_weight = 0;
for (size_t i = 0 ; i < N0; i++) {
err_weight += PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(err_computed + (NUM_DIGITS_GF2X_ELEMENT * i));
}
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);
decrypt_ok = decrypt_ok && (err_weight == NUM_ERRORS_T);

/* prepare mockup error vector in case a decoding failure occurs */
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
memcpy(err_mockup, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
memcpy(err_mockup + NUM_DIGITS_GF2X_ELEMENT, sk->decryption_failure_secret, TRNG_BYTE_LENGTH);
memset(((unsigned char *) err_mockup) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + TRNG_BYTE_LENGTH, 0x00,
(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B - TRNG_BYTE_LENGTH);

memcpy(err, err_computed, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);

// Overwrite on decryption failure
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decryptOk);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decrypt_ok);

return decryptOk;
return decrypt_ok;
}

+ 6
- 6
crypto_kem/ledakemlt12/leaktime/rng.c View File

@@ -13,8 +13,8 @@
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier
*/
static void seedexpander_init(AES_XOF_struct *ctx,
unsigned char *seed,
unsigned char *diversifier,
uint8_t *seed,
uint8_t *diversifier,
size_t maxlen) {

ctx->length_remaining = maxlen;
@@ -38,13 +38,13 @@ static void seedexpander_init(AES_XOF_struct *ctx,
}

void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
const unsigned char *trng_entropy
const uint8_t *trng_entropy
/* TRNG_BYTE_LENGTH wide buffer */) {

/*the NIST seedexpander will however access 32B from this buffer */
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH;
unsigned char prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = { 0x00 };
unsigned char diversifier[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = {0x00};
uint8_t diversifier[8] = {0};

memcpy(prng_buffer,
trng_entropy,
@@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
x - returns the XOF data
xlen - number of bytes to return
*/
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen) {
size_t offset;
aes256ctx ctx256;



+ 11
- 0
crypto_kem/ledakemlt12/leaktime/sort.c View File

@@ -5,6 +5,17 @@
Source: https://sorting.cr.yp.to
*/

#define int32_MINMAX(a,b) \
do { \
int32 ab = (b) ^ (a); \
int32 c = (b) - (a); \
c ^= ab & (c ^ (b)); \
c >>= 31; \
c &= ab; \
(a) ^= c; \
(b) ^= c; \
} while(0)

static void int32_sort(int32 *x, size_t n) {
size_t top, p, q, r, i, j;



+ 0
- 11
crypto_kem/ledakemlt12/leaktime/sort.h View File

@@ -6,17 +6,6 @@

#define int32 int32_t

#define int32_MINMAX(a,b) \
do { \
int32 ab = (b) ^ (a); \
int32 c = (b) - (a); \
c ^= ab & (c ^ (b)); \
c >>= 31; \
c &= ab; \
(a) ^= c; \
(b) ^= c; \
} while(0)

void PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(uint32_t *x, size_t n);

#endif

+ 20
- 26
crypto_kem/ledakemlt32/leaktime/H_Q_matrices_generation.c View File

@@ -1,23 +1,19 @@
#include "H_Q_matrices_generation.h"
#include "gf2x_arith_mod_xPplusOne.h"

void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV],
AES_XOF_struct *keys_expander) {

for (int i = 0; i < N0; i++) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander) {
for (size_t i = 0; i < N0; i++) {
/* Generate a random block of Htr */
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0],
DV,
keys_expander);
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0], DV, keys_expander);
}
}

void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
AES_XOF_struct *keys_expander) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander) {
size_t placed_ones;

for (int i = 0; i < N0; i++) {
int placed_ones = 0;
for (int j = 0; j < N0; j++) {
for (size_t i = 0; i < N0; i++) {
placed_ones = 0;
for (size_t j = 0; j < N0; j++) {
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&QPosOnes[i][placed_ones],
qBlockWeights[i][j],
keys_expander);
@@ -26,29 +22,27 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
}
}

void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], /* output*/
POSITION_T HPosOnes[N0][DV]) {

for (int i = 0; i < N0; i++) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]) {
for (size_t i = 0; i < N0; i++) {
/* Obtain directly the sparse representation of the block of H */
for (int k = 0; k < DV; k++) {
for (size_t k = 0; k < DV; k++) {
HtrPosOnes[i][k] = (P - HPosOnes[i][k]) % P; /* transposes indexes */
}// end for k
}
}
}

void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], /* output*/
POSITION_T QPosOnes[N0][M]) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]) {
POSITION_T transposed_ones_idx[N0] = {0x00};
size_t currQoneIdx, endQblockIdx;

unsigned transposed_ones_idx[N0] = {0x00};
for (unsigned source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
int endQblockIdx = 0;
for (size_t source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
endQblockIdx = 0;
for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
endQblockIdx += qBlockWeights[source_row_idx][blockIdx];
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = (P -
QPosOnes[source_row_idx][currQoneIdx]) % P;
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] =
(P - QPosOnes[source_row_idx][currQoneIdx]) % P;
transposed_ones_idx[blockIdx]++;
}
}


+ 24
- 21
crypto_kem/ledakemlt32/leaktime/bf_decoding.c View File

@@ -7,22 +7,26 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[],
const POSITION_T HtrPosOnes[N0][DV],
const POSITION_T QtrPosOnes[N0][M],
DIGIT privateSyndrome[],
uint8_t threshold) {
uint8_t secondIterThreshold) {

DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
uint8_t unsatParityChecks[N0 * P];
POSITION_T currQBlkPos[M], currQBitPos[M];
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
POSITION_T syndromePosToFlip, tmp;
unsigned int correlation, corrt_syndrome_based;
size_t currQoneIdx, endQblockIdx, currblockoffset;
int check;
int iteration = 0;
unsigned int corrt_syndrome_based;

do {
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
for (int i = 0; i < N0; i++) {
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
for (size_t i = 0; i < N0; i++) {
for (size_t valueIdx = 0; valueIdx < P; valueIdx++) {
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ?
(HtrPosOnes[i][HtrOneIdx] + valueIdx) - P :
(HtrPosOnes[i][HtrOneIdx] + valueIdx);
if (PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
unsatParityChecks[i * P + valueIdx]++;
}
@@ -31,33 +35,32 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[],
}

/* iteration based threshold determination*/
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0;
corrt_syndrome_based = iteration * secondIterThreshold + (1 - iteration) * B0;

//Computation of correlation with a full Q matrix
for (int i = 0; i < N0; i++) {
for (int j = 0; j < P; j++) {
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
int endQblockIdx = 0;
unsigned int correlation = 0;
// Computation of correlation with a full Q matrix
for (size_t i = 0; i < N0; i++) {
for (size_t j = 0; j < P; j++) {
currQoneIdx = endQblockIdx = 0;
correlation = 0;

for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
for (size_t blockIdx = 0; blockIdx < N0; blockIdx++) {
endQblockIdx += qBlockWeights[blockIdx][i];
int currblockoffset = blockIdx * P;
currblockoffset = blockIdx * P;
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j;
tmp = QtrPosOnes[i][currQoneIdx] + j;
tmp = tmp >= P ? tmp - P : tmp;
currQBitPos[currQoneIdx] = tmp;
currQBlkPos[currQoneIdx] = blockIdx;
correlation += unsatParityChecks[tmp + currblockoffset];
}
}

/* Correlation based flipping */
if (correlation >= corrt_syndrome_based) {
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
for (int v = 0; v < M; v++) {
POSITION_T syndromePosToFlip;
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
for (size_t v = 0; v < M; v++) {
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v]);
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
}


+ 19
- 17
crypto_kem/ledakemlt32/leaktime/dfr_test.c View File

@@ -14,47 +14,49 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
unsigned int maxMut[N0], maxMutMinusOne[N0];
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
unsigned int toAdd;
size_t histIdx;

for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
for (size_t i = 0; i < N0; i++) {
for (size_t j = 0; j < DV * M; j++) {
if (LSparse[i][j] != 0) {
LSparse_loc[i][j] = (P - LSparse[i][j]) ;
LSparse_loc[i][j] = (P - LSparse[i][j]);
}
}
PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(LSparse_loc[i], DV * M);
}


for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (int k = 0; k < (DV * M); k++) {
for (int l = 0; l < (DV * M); l++) {
gamma[i][j][ (P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P ]++;
for (size_t i = 0; i < N0; i++ ) {
for (size_t j = 0; j < N0; j++) {
for (size_t k = 0; k < (DV * M); k++) {
for (size_t l = 0; l < (DV * M); l++) {
gamma[i][j][(P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P]++;
}
}
}
}

for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (size_t i = 0; i < N0; i++ ) {
for (size_t j = 0; j < N0; j++ ) {
gamma[i][j][0] = 0;
}
}

/* build histogram of values in gamma */
for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (int k = 0; k < P; k++) {
for (size_t i = 0; i < N0; i++ ) {
for (size_t j = 0; j < N0; j++ ) {
for (size_t k = 0; k < P; k++) {
gammaHist[i][gamma[i][j][k]]++;
}
}
}


for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
unsigned int toAdd = T_BAR - 1;
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
maxMutMinusOne[gammaBlockRowIdx] = 0;
unsigned int histIdx = DV * M;
histIdx = DV * M;
toAdd = T_BAR - 1;
while ( (histIdx > 0) && (toAdd > 0)) {
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) {
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd;
@@ -71,7 +73,7 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
/*seek max values across all gamma blocks */
allBlockMaxSumst = maxMut[0];
allBlockMaxSumstMinusOne = maxMutMinusOne[0];
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ?
maxMut[gammaBlockRowIdx] :
allBlockMaxSumst;


+ 1
- 1
crypto_kem/ledakemlt32/leaktime/gf2x_arith.c View File

@@ -52,7 +52,7 @@ static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) {

R[0] = 0;
R[1] = (A & 1) * B;
for (unsigned i = 1; i < DIGIT_SIZE_b; i++) {
for (uint8_t i = 1; i < DIGIT_SIZE_b; i++) {
tmp = ((A >> i) & 1) * B;
R[1] ^= tmp << i;
R[0] ^= tmp >> (DIGIT_SIZE_b - i);


+ 57
- 55
crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.c View File

@@ -5,39 +5,39 @@
#include <string.h> // memcpy(...), memset(...)

void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
dest[i] = in[i];
}
}

/* returns the coefficient of the x^exponent term as the LSB of a digit */
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ;
}

/* sets the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;

/* clear given coefficient */
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] & mask;
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
}

/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;

/* clear given coefficient */
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] ^ mask;
}

@@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
}

/* population count for a single polynomial */
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly) {
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(const DIGIT *poly) {
int ret = 0;
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
ret += popcount_uint64t(poly[i]);
@@ -74,10 +74,9 @@ static void gf2x_mod(DIGIT out[], const DIGIT in[]) {
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1;
}

static void right_bit_shift(unsigned int length, DIGIT in[]) {

unsigned int j;
for (j = length - 1; j > 0 ; j--) {
static void right_bit_shift(size_t length, DIGIT in[]) {
size_t j;
for (j = length - 1; j > 0; j--) {
in[j] >>= 1;
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1);
}
@@ -86,8 +85,8 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) {


/* shifts by whole digits */
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) {
unsigned int j;
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) {
size_t j;
for (j = 0; (j + amount) < length; j++) {
in[j] = in[j + amount];
}
@@ -97,7 +96,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
}

/* may shift by an arbitrary amount*/
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) {
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
}
@@ -123,18 +122,22 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {

DIGIT mask = (DIGIT)0x1;
DIGIT rev1, rev2, a00;
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;

a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask;
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A);

for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
rev1 = reverse_digit(A[i]);
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]);
A[i] = rev2;
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1;
}

if (NUM_DIGITS_GF2X_ELEMENT % 2 == 1) {
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);
}

if (slack_bits_amount) {
PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
}
@@ -151,10 +154,9 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */
}

/* cond swap: swaps digits A and B if swap_mask == -1 */
static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
int i;
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) {
DIGIT t;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
t = swap_mask & (a[i] ^ b[i]);
a[i] ^= t;
b[i] ^= t;
@@ -162,18 +164,18 @@ static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
}

/* returns -1 mask if x != 0, otherwise 0 */
static inline int nonzero(DIGIT x) {
static inline int32_t nonzero(DIGIT x) {
DIGIT t = x;
t = (~t) + 1;
t >>= DIGIT_SIZE_b - 1;
return -((int)t);
return -((int32_t)t);
}

/* returns -1 mask if x < 0 else 0 */
static inline int negative(int x) {
static inline int32_t negative(int x) {
uint32_t u = x;
u >>= 31;
return -((int)u);
return -((int32_t)u);
}

/* return f(0) as digit */
@@ -191,7 +193,7 @@ static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) {

/* constant-time inverse, source: gcd.cr.yp.to */
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
int i, loop, swap, delta = 1;
int32_t swap, delta = 1;
DIGIT g0_mask;

DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1
@@ -202,17 +204,17 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[])
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1;
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS);

for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
g[i] = in[i];
}

for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
v[i] = 0;
}

r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1;

for (loop = 0; loop < 2 * P - 1; ++loop) {
for (int loop = 0; loop < 2 * P - 1; ++loop) {

swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap
@@ -247,7 +249,7 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], con
/*PRE: the representation of the sparse coefficients is sorted in increasing
order of the coefficients themselves */
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[],
POSITION_T sparse[], unsigned int nPos) {
POSITION_T sparse[], size_t nPos) {

DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
@@ -258,7 +260,7 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]);
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]);

for (unsigned int i = 1; i < nPos; i++) {
for (size_t i = 1; i < nPos; i++) {
if (sparse[i] != INVALID_POS_VALUE) {
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
@@ -270,10 +272,9 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons

}

void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {

void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) {
POSITION_T t;
int i = 0, j;
size_t i = 0, j;

if (A[i] == 0) {
i = 1;
@@ -297,6 +298,9 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
size_t sizeB, const POSITION_T B[]) {

POSITION_T prod;
POSITION_T lastReadPos;
size_t duplicateCount;
size_t write_idx, read_idx;

/* compute all the coefficients, filling invalid positions with P*/
size_t lastFilledPos = 0;
@@ -317,12 +321,11 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
Res[lastFilledPos] = INVALID_POS_VALUE;
lastFilledPos++;
}

PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(Res, sizeR);

/* eliminate duplicates */
POSITION_T lastReadPos = Res[0];
size_t duplicateCount;
size_t write_idx = 0;
size_t read_idx = 0;
write_idx = read_idx = 0;
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) {
lastReadPos = Res[read_idx];
read_idx++;
@@ -344,13 +347,12 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R

/* the implementation is safe even in case A or B alias with the result
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(
int sizeR, POSITION_T Res[],
int sizeA, const POSITION_T A[],
int sizeB, const POSITION_T B[]) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[],
size_t sizeA, const POSITION_T A[],
size_t sizeB, const POSITION_T B[]) {

POSITION_T tmpRes[DV * M];
int idxA = 0, idxB = 0, idxR = 0;
size_t idxA = 0, idxB = 0, idxR = 0;
while ( idxA < sizeA &&
idxB < sizeB &&
A[idxA] != INVALID_POS_VALUE &&
@@ -419,18 +421,18 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
/* Obtains fresh randomness and seed-expands it until all the required positions
* for the '1's in the circulant block are obtained */
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
int countOnes,
size_t countOnes,
AES_XOF_struct *seed_expander_ctx) {

int duplicated, placedOnes = 0;
uint32_t p;
size_t duplicated, placedOnes = 0;
POSITION_T p;

while (placedOnes < countOnes) {
p = rand_range(NUM_BITS_GF2X_ELEMENT,
P_BITS,
seed_expander_ctx);
duplicated = 0;
for (int j = 0; j < placedOnes; j++) {
for (size_t j = 0; j < placedOnes; j++) {
if (pos_ones[j] == p) {
duplicated = 1;
}


+ 8
- 8
crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.h View File

@@ -16,22 +16,22 @@
#define P_BITS (17)

void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly);
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent);
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(const DIGIT *poly);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, size_t countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], const POSITION_T errorPos[NUM_ERRORS_T]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]);
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], size_t nPos);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);



+ 8
- 7
crypto_kem/ledakemlt32/leaktime/kem.c View File

@@ -107,18 +107,19 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
uint8_t hashed_decoded_seed[HASH_BYTE_LENGTH];
uint8_t hashedAndTruncated_decoded_seed[TRNG_BYTE_LENGTH] = {0};
uint8_t ss_input[2 * TRNG_BYTE_LENGTH], tail[TRNG_BYTE_LENGTH] = {0};
int decode_ok, decrypt_ok, equal;

unpack_ct(syndrome, ct);

int decode_ok = PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
(const privateKeyNiederreiter_t *)sk, syndrome);
decode_ok = PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
(const privateKeyNiederreiter_t *)sk, syndrome);

pack_error(decoded_error_bytes, decoded_error_vector);
HASH_FUNCTION(hashedErrorVector, decoded_error_bytes, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);

memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH);

for (int i = 0; i < TRNG_BYTE_LENGTH; ++i) {
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) {
decoded_seed[i] = ct[(NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + i] ^
hashedAndTruncatedErrorVector[i];
}
@@ -135,11 +136,11 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,

PQCLEAN_LEDAKEMLT32_LEAKTIME_expand_error(reconstructed_error_vector, reconstructed_errorPos);

int equal = PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_verify(decoded_error_vector,
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT);
equal = PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_verify(decoded_error_vector,
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT);
// equal == 0, if the reconstructed error vector match !!!

int decryptOk = (decode_ok == 1 && equal == 0);
decrypt_ok = (decode_ok == 1 && equal == 0);

memcpy(ss_input, decoded_seed, TRNG_BYTE_LENGTH);
memcpy(ss_input + sizeof(decoded_seed), tail, TRNG_BYTE_LENGTH);
@@ -148,7 +149,7 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
PQCLEAN_LEDAKEMLT32_LEAKTIME_cmov(ss_input + sizeof(decoded_seed),
((const privateKeyNiederreiter_t *) sk)->decryption_failure_secret,
TRNG_BYTE_LENGTH,
!decryptOk);
!decrypt_ok);

HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH);



+ 25
- 23
crypto_kem/ledakemlt32/leaktime/niederreiter.c View File

@@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
}
}
is_L_full = 1;
for (int i = 0; i < N0; i++) {
for (size_t i = 0; i < N0; i++) {
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE);
}
sk->rejections = sk->rejections + 1;
@@ -63,21 +63,21 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
sk->decryption_failure_secret,
(unsigned long)TRNG_BYTE_LENGTH);

for (int j = 0; j < DV * M; j++) {
for (size_t j = 0; j < DV * M; j++) {
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
}
}

PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
for (int i = 0; i < N0 - 1; i++) {
for (size_t i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
Ln0Inv,
LPosOnes[i],
DV * M);
}

for (int i = 0; i < N0 - 1; i++) {
for (size_t i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
}
}
@@ -110,24 +110,27 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
POSITION_T auxSparse[DV * M];
POSITION_T Ln0trSparse[DV * M];
DIGIT err_computed[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B] = {0};
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT];
unsigned char processedQOnes[N0];
uint8_t processedQOnes[N0];
int rejections = sk->rejections;
int decrypt_ok = 0;
int err_weight;

PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
do {
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(HPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(QPosOnes, &niederreiter_decrypt_expander);

for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
for (size_t i = 0; i < N0; i++) {
for (size_t j = 0; j < DV * M; j++) {
LPosOnes[i][j] = INVALID_POS_VALUE;
}
}

memset(processedQOnes, 0x00, sizeof(processedQOnes));
for (int colQ = 0; colQ < N0; colQ++) {
for (int i = 0; i < N0; i++) {
for (size_t colQ = 0; colQ < N0; colQ++) {
for (size_t i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
DV, HPosOnes[i],
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
@@ -143,15 +146,15 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeHPosOnes(HtrPosOnes, HPosOnes);
PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeQPosOnes(QtrPosOnes, QPosOnes);

for (int i = 0; i < DV * M; i++) {
for (size_t i = 0; i < DV * M; i++) {
Ln0trSparse[i] = INVALID_POS_VALUE;
auxSparse[i] = INVALID_POS_VALUE;
}

for (int i = 0; i < N0; i++) {
for (size_t i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
DV, HPosOnes[i],
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1] ] );
qBlockWeights[i][N0 - 1], &QPosOnes[i][M - qBlockWeights[i][N0 - 1]]);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
DV * M, Ln0trSparse,
DV * M, auxSparse);
@@ -163,28 +166,27 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
Ln0trSparse,
DV * M);

int decryptOk = 0;
decryptOk = PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(err_computed,
(const POSITION_T (*)[DV]) HtrPosOnes,
(const POSITION_T (*)[M]) QtrPosOnes,
privateSyndrome, sk->secondIterThreshold);
decrypt_ok = PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(err_computed,
(const POSITION_T (*)[DV]) HtrPosOnes,
(const POSITION_T (*)[M]) QtrPosOnes,
privateSyndrome, sk->secondIterThreshold);

int err_weight = 0;
for (int i = 0 ; i < N0; i++) {
err_weight = 0;
for (size_t i = 0 ; i < N0; i++) {
err_weight += PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(err_computed + (NUM_DIGITS_GF2X_ELEMENT * i));
}
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);
decrypt_ok = decrypt_ok && (err_weight == NUM_ERRORS_T);

/* prepare mockup error vector in case a decoding failure occurs */
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
memcpy(err_mockup, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
memcpy(err_mockup + NUM_DIGITS_GF2X_ELEMENT, sk->decryption_failure_secret, TRNG_BYTE_LENGTH);
memset(((unsigned char *) err_mockup) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + TRNG_BYTE_LENGTH, 0x00,
(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B - TRNG_BYTE_LENGTH);

memcpy(err, err_computed, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);

// Overwrite on decryption failure
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decryptOk);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decrypt_ok);

return decryptOk;
return decrypt_ok;
}

+ 6
- 6
crypto_kem/ledakemlt32/leaktime/rng.c View File

@@ -13,8 +13,8 @@
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier
*/
static void seedexpander_init(AES_XOF_struct *ctx,
unsigned char *seed,
unsigned char *diversifier,
uint8_t *seed,
uint8_t *diversifier,
size_t maxlen) {

ctx->length_remaining = maxlen;
@@ -38,13 +38,13 @@ static void seedexpander_init(AES_XOF_struct *ctx,
}

void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
const unsigned char *trng_entropy
const uint8_t *trng_entropy
/* TRNG_BYTE_LENGTH wide buffer */) {

/*the NIST seedexpander will however access 32B from this buffer */
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH;
unsigned char prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = { 0x00 };
unsigned char diversifier[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = {0x00};
uint8_t diversifier[8] = {0};

memcpy(prng_buffer,
trng_entropy,
@@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
x - returns the XOF data
xlen - number of bytes to return
*/
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen) {
size_t offset;
aes256ctx ctx256;



+ 11
- 0
crypto_kem/ledakemlt32/leaktime/sort.c View File

@@ -5,6 +5,17 @@
Source: https://sorting.cr.yp.to
*/

#define int32_MINMAX(a,b) \
do { \
int32 ab = (b) ^ (a); \
int32 c = (b) - (a); \
c ^= ab & (c ^ (b)); \
c >>= 31; \
c &= ab; \
(a) ^= c; \
(b) ^= c; \
} while(0)

static void int32_sort(int32 *x, size_t n) {
size_t top, p, q, r, i, j;



+ 0
- 11
crypto_kem/ledakemlt32/leaktime/sort.h View File

@@ -6,17 +6,6 @@

#define int32 int32_t

#define int32_MINMAX(a,b) \
do { \
int32 ab = (b) ^ (a); \
int32 c = (b) - (a); \
c ^= ab & (c ^ (b)); \
c >>= 31; \
c &= ab; \
(a) ^= c; \
(b) ^= c; \
} while(0)

void PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(uint32_t *x, size_t n);

#endif

+ 20
- 26
crypto_kem/ledakemlt52/leaktime/H_Q_matrices_generation.c View File

@@ -1,23 +1,19 @@
#include "H_Q_matrices_generation.h"
#include "gf2x_arith_mod_xPplusOne.h"

void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV],
AES_XOF_struct *keys_expander) {

for (int i = 0; i < N0; i++) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander) {
for (size_t i = 0; i < N0; i++) {
/* Generate a random block of Htr */
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0],
DV,
keys_expander);
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0], DV, keys_expander);
}
}

void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
AES_XOF_struct *keys_expander) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander) {
size_t placed_ones;

for (int i = 0; i < N0; i++) {
int placed_ones = 0;
for (int j = 0; j < N0; j++) {
for (size_t i = 0; i < N0; i++) {
placed_ones = 0;
for (size_t j = 0; j < N0; j++) {
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&QPosOnes[i][placed_ones],
qBlockWeights[i][j],
keys_expander);
@@ -26,29 +22,27 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
}
}

void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], /* output*/
POSITION_T HPosOnes[N0][DV]) {

for (int i = 0; i < N0; i++) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]) {
for (size_t i = 0; i < N0; i++) {
/* Obtain directly the sparse representation of the block of H */
for (int k = 0; k < DV; k++) {
for (size_t k = 0; k < DV; k++) {
HtrPosOnes[i][k] = (P - HPosOnes[i][k]) % P; /* transposes indexes */
}// end for k
}
}
}

void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], /* output*/
POSITION_T QPosOnes[N0][M]) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]) {
POSITION_T transposed_ones_idx[N0] = {0x00};
size_t currQoneIdx, endQblockIdx;

unsigned transposed_ones_idx[N0] = {0x00};
for (unsigned source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
int endQblockIdx = 0;
for (size_t source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
endQblockIdx = 0;
for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
endQblockIdx += qBlockWeights[source_row_idx][blockIdx];
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = (P -
QPosOnes[source_row_idx][currQoneIdx]) % P;
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] =
(P - QPosOnes[source_row_idx][currQoneIdx]) % P;
transposed_ones_idx[blockIdx]++;
}
}


+ 24
- 21
crypto_kem/ledakemlt52/leaktime/bf_decoding.c View File

@@ -7,22 +7,26 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[],
const POSITION_T HtrPosOnes[N0][DV],
const POSITION_T QtrPosOnes[N0][M],
DIGIT privateSyndrome[],
uint8_t threshold) {
uint8_t secondIterThreshold) {

DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
uint8_t unsatParityChecks[N0 * P];
POSITION_T currQBlkPos[M], currQBitPos[M];
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
POSITION_T syndromePosToFlip, tmp;
unsigned int correlation, corrt_syndrome_based;
size_t currQoneIdx, endQblockIdx, currblockoffset;
int check;
int iteration = 0;
unsigned int corrt_syndrome_based;

do {
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
for (int i = 0; i < N0; i++) {
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
for (size_t i = 0; i < N0; i++) {
for (size_t valueIdx = 0; valueIdx < P; valueIdx++) {
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ?
(HtrPosOnes[i][HtrOneIdx] + valueIdx) - P :
(HtrPosOnes[i][HtrOneIdx] + valueIdx);
if (PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
unsatParityChecks[i * P + valueIdx]++;
}
@@ -31,33 +35,32 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[],
}

/* iteration based threshold determination*/
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0;
corrt_syndrome_based = iteration * secondIterThreshold + (1 - iteration) * B0;

//Computation of correlation with a full Q matrix
for (int i = 0; i < N0; i++) {
for (int j = 0; j < P; j++) {
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
int endQblockIdx = 0;
unsigned int correlation = 0;
// Computation of correlation with a full Q matrix
for (size_t i = 0; i < N0; i++) {
for (size_t j = 0; j < P; j++) {
currQoneIdx = endQblockIdx = 0;
correlation = 0;

for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
for (size_t blockIdx = 0; blockIdx < N0; blockIdx++) {
endQblockIdx += qBlockWeights[blockIdx][i];
int currblockoffset = blockIdx * P;
currblockoffset = blockIdx * P;
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j;
tmp = QtrPosOnes[i][currQoneIdx] + j;
tmp = tmp >= P ? tmp - P : tmp;
currQBitPos[currQoneIdx] = tmp;
currQBlkPos[currQoneIdx] = blockIdx;
correlation += unsatParityChecks[tmp + currblockoffset];
}
}

/* Correlation based flipping */
if (correlation >= corrt_syndrome_based) {
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
for (int v = 0; v < M; v++) {
POSITION_T syndromePosToFlip;
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
for (size_t v = 0; v < M; v++) {
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v]);
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
}


+ 19
- 17
crypto_kem/ledakemlt52/leaktime/dfr_test.c View File

@@ -14,47 +14,49 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
unsigned int maxMut[N0], maxMutMinusOne[N0];
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
unsigned int toAdd;
size_t histIdx;

for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
for (size_t i = 0; i < N0; i++) {
for (size_t j = 0; j < DV * M; j++) {
if (LSparse[i][j] != 0) {
LSparse_loc[i][j] = (P - LSparse[i][j]) ;
LSparse_loc[i][j] = (P - LSparse[i][j]);
}
}
PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(LSparse_loc[i], DV * M);
}


for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (int k = 0; k < (DV * M); k++) {
for (int l = 0; l < (DV * M); l++) {
gamma[i][j][ (P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P ]++;
for (size_t i = 0; i < N0; i++ ) {
for (size_t j = 0; j < N0; j++) {
for (size_t k = 0; k < (DV * M); k++) {
for (size_t l = 0; l < (DV * M); l++) {
gamma[i][j][(P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P]++;
}
}
}
}

for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (size_t i = 0; i < N0; i++ ) {
for (size_t j = 0; j < N0; j++ ) {
gamma[i][j][0] = 0;
}
}

/* build histogram of values in gamma */
for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (int k = 0; k < P; k++) {
for (size_t i = 0; i < N0; i++ ) {
for (size_t j = 0; j < N0; j++ ) {
for (size_t k = 0; k < P; k++) {
gammaHist[i][gamma[i][j][k]]++;
}
}
}


for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
unsigned int toAdd = T_BAR - 1;
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
maxMutMinusOne[gammaBlockRowIdx] = 0;
unsigned int histIdx = DV * M;
histIdx = DV * M;
toAdd = T_BAR - 1;
while ( (histIdx > 0) && (toAdd > 0)) {
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) {
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd;
@@ -71,7 +73,7 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
/*seek max values across all gamma blocks */
allBlockMaxSumst = maxMut[0];
allBlockMaxSumstMinusOne = maxMutMinusOne[0];
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ?
maxMut[gammaBlockRowIdx] :
allBlockMaxSumst;


+ 1
- 1
crypto_kem/ledakemlt52/leaktime/gf2x_arith.c View File

@@ -52,7 +52,7 @@ static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) {

R[0] = 0;
R[1] = (A & 1) * B;
for (unsigned i = 1; i < DIGIT_SIZE_b; i++) {
for (uint8_t i = 1; i < DIGIT_SIZE_b; i++) {
tmp = ((A >> i) & 1) * B;
R[1] ^= tmp << i;
R[0] ^= tmp >> (DIGIT_SIZE_b - i);


+ 57
- 55
crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.c View File

@@ -5,39 +5,39 @@
#include <string.h> // memcpy(...), memset(...)

void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
dest[i] = in[i];
}
}

/* returns the coefficient of the x^exponent term as the LSB of a digit */
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ;
}

/* sets the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;

/* clear given coefficient */
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] & mask;
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
}

/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;

/* clear given coefficient */
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] ^ mask;
}

@@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
}

/* population count for a single polynomial */
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly) {
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(const DIGIT *poly) {
int ret = 0;
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
ret += popcount_uint64t(poly[i]);
@@ -74,10 +74,9 @@ static void gf2x_mod(DIGIT out[], const DIGIT in[]) {
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1;
}

static void right_bit_shift(unsigned int length, DIGIT in[]) {

unsigned int j;
for (j = length - 1; j > 0 ; j--) {
static void right_bit_shift(size_t length, DIGIT in[]) {
size_t j;
for (j = length - 1; j > 0; j--) {
in[j] >>= 1;
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1);
}
@@ -86,8 +85,8 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) {


/* shifts by whole digits */
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) {
unsigned int j;
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) {
size_t j;
for (j = 0; (j + amount) < length; j++) {
in[j] = in[j + amount];
}
@@ -97,7 +96,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
}

/* may shift by an arbitrary amount*/
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) {
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
}
@@ -123,18 +122,22 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {

DIGIT mask = (DIGIT)0x1;
DIGIT rev1, rev2, a00;
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;

a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask;
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A);

for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
rev1 = reverse_digit(A[i]);
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]);
A[i] = rev2;
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1;
}

if (NUM_DIGITS_GF2X_ELEMENT % 2 == 1) {
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);
}

if (slack_bits_amount) {
PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
}
@@ -151,10 +154,9 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */
}

/* cond swap: swaps digits A and B if swap_mask == -1 */
static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
int i;
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) {
DIGIT t;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
t = swap_mask & (a[i] ^ b[i]);
a[i] ^= t;
b[i] ^= t;
@@ -162,18 +164,18 @@ static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
}

/* returns -1 mask if x != 0, otherwise 0 */
static inline int nonzero(DIGIT x) {
static inline int32_t nonzero(DIGIT x) {
DIGIT t = x;
t = (~t) + 1;
t >>= DIGIT_SIZE_b - 1;
return -((int)t);
return -((int32_t)t);
}

/* returns -1 mask if x < 0 else 0 */
static inline int negative(int x) {
static inline int32_t negative(int x) {
uint32_t u = x;
u >>= 31;
return -((int)u);
return -((int32_t)u);
}

/* return f(0) as digit */
@@ -191,7 +193,7 @@ static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) {

/* constant-time inverse, source: gcd.cr.yp.to */
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
int i, loop, swap, delta = 1;
int32_t swap, delta = 1;
DIGIT g0_mask;

DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1
@@ -202,17 +204,17 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[])
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1;
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS);

for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
g[i] = in[i];
}

for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
v[i] = 0;
}

r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1;

for (loop = 0; loop < 2 * P - 1; ++loop) {
for (int loop = 0; loop < 2 * P - 1; ++loop) {

swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap
@@ -247,7 +249,7 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], con
/*PRE: the representation of the sparse coefficients is sorted in increasing
order of the coefficients themselves */
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[],
POSITION_T sparse[], unsigned int nPos) {
POSITION_T sparse[], size_t nPos) {

DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
@@ -258,7 +260,7 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]);
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]);

for (unsigned int i = 1; i < nPos; i++) {
for (size_t i = 1; i < nPos; i++) {
if (sparse[i] != INVALID_POS_VALUE) {
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
@@ -270,10 +272,9 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons

}

void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {

void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) {
POSITION_T t;
int i = 0, j;
size_t i = 0, j;

if (A[i] == 0) {
i = 1;
@@ -297,6 +298,9 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
size_t sizeB, const POSITION_T B[]) {

POSITION_T prod;
POSITION_T lastReadPos;
size_t duplicateCount;
size_t write_idx, read_idx;

/* compute all the coefficients, filling invalid positions with P*/
size_t lastFilledPos = 0;
@@ -317,12 +321,11 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
Res[lastFilledPos] = INVALID_POS_VALUE;
lastFilledPos++;
}

PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(Res, sizeR);

/* eliminate duplicates */
POSITION_T lastReadPos = Res[0];
size_t duplicateCount;
size_t write_idx = 0;
size_t read_idx = 0;
write_idx = read_idx = 0;
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) {
lastReadPos = Res[read_idx];
read_idx++;
@@ -344,13 +347,12 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R

/* the implementation is safe even in case A or B alias with the result
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(
int sizeR, POSITION_T Res[],
int sizeA, const POSITION_T A[],
int sizeB, const POSITION_T B[]) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[],
size_t sizeA, const POSITION_T A[],
size_t sizeB, const POSITION_T B[]) {

POSITION_T tmpRes[DV * M];
int idxA = 0, idxB = 0, idxR = 0;
size_t idxA = 0, idxB = 0, idxR = 0;
while ( idxA < sizeA &&
idxB < sizeB &&
A[idxA] != INVALID_POS_VALUE &&
@@ -419,18 +421,18 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
/* Obtains fresh randomness and seed-expands it until all the required positions
* for the '1's in the circulant block are obtained */
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
int countOnes,
size_t countOnes,
AES_XOF_struct *seed_expander_ctx) {

int duplicated, placedOnes = 0;
uint32_t p;
size_t duplicated, placedOnes = 0;
POSITION_T p;

while (placedOnes < countOnes) {
p = rand_range(NUM_BITS_GF2X_ELEMENT,
P_BITS,
seed_expander_ctx);
duplicated = 0;
for (int j = 0; j < placedOnes; j++) {
for (size_t j = 0; j < placedOnes; j++) {
if (pos_ones[j] == p) {
duplicated = 1;
}


+ 8
- 8
crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.h View File

@@ -16,22 +16,22 @@
#define P_BITS (18)

void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly);
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent);
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(const DIGIT *poly);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, size_t countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], const POSITION_T errorPos[NUM_ERRORS_T]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]);
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], size_t nPos);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);



+ 8
- 7
crypto_kem/ledakemlt52/leaktime/kem.c View File

@@ -107,18 +107,19 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
uint8_t hashed_decoded_seed[HASH_BYTE_LENGTH];
uint8_t hashedAndTruncated_decoded_seed[TRNG_BYTE_LENGTH] = {0};
uint8_t ss_input[2 * TRNG_BYTE_LENGTH], tail[TRNG_BYTE_LENGTH] = {0};
int decode_ok, decrypt_ok, equal;

unpack_ct(syndrome, ct);

int decode_ok = PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
(const privateKeyNiederreiter_t *)sk, syndrome);
decode_ok = PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
(const privateKeyNiederreiter_t *)sk, syndrome);

pack_error(decoded_error_bytes, decoded_error_vector);
HASH_FUNCTION(hashedErrorVector, decoded_error_bytes, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);

memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH);

for (int i = 0; i < TRNG_BYTE_LENGTH; ++i) {
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) {
decoded_seed[i] = ct[(NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + i] ^
hashedAndTruncatedErrorVector[i];
}
@@ -135,11 +136,11 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,

PQCLEAN_LEDAKEMLT52_LEAKTIME_expand_error(reconstructed_error_vector, reconstructed_errorPos);

int equal = PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_verify(decoded_error_vector,
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT);
equal = PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_verify(decoded_error_vector,
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT);
// equal == 0, if the reconstructed error vector match !!!

int decryptOk = (decode_ok == 1 && equal == 0);
decrypt_ok = (decode_ok == 1 && equal == 0);

memcpy(ss_input, decoded_seed, TRNG_BYTE_LENGTH);
memcpy(ss_input + sizeof(decoded_seed), tail, TRNG_BYTE_LENGTH);
@@ -148,7 +149,7 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
PQCLEAN_LEDAKEMLT52_LEAKTIME_cmov(ss_input + sizeof(decoded_seed),
((const privateKeyNiederreiter_t *) sk)->decryption_failure_secret,
TRNG_BYTE_LENGTH,
!decryptOk);
!decrypt_ok);

HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH);



+ 25
- 23
crypto_kem/ledakemlt52/leaktime/niederreiter.c View File

@@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
}
}
is_L_full = 1;
for (int i = 0; i < N0; i++) {
for (size_t i = 0; i < N0; i++) {
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE);
}
sk->rejections = sk->rejections + 1;
@@ -63,21 +63,21 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
sk->decryption_failure_secret,
(unsigned long)TRNG_BYTE_LENGTH);

for (int j = 0; j < DV * M; j++) {
for (size_t j = 0; j < DV * M; j++) {
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
}
}

PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
for (int i = 0; i < N0 - 1; i++) {
for (size_t i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
Ln0Inv,
LPosOnes[i],
DV * M);
}

for (int i = 0; i < N0 - 1; i++) {
for (size_t i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
}
}
@@ -110,24 +110,27 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
POSITION_T auxSparse[DV * M];
POSITION_T Ln0trSparse[DV * M];
DIGIT err_computed[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B] = {0};
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT];
unsigned char processedQOnes[N0];
uint8_t processedQOnes[N0];
int rejections = sk->rejections;
int decrypt_ok = 0;
int err_weight;

PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
do {
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(HPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(QPosOnes, &niederreiter_decrypt_expander);

for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
for (size_t i = 0; i < N0; i++) {
for (size_t j = 0; j < DV * M; j++) {
LPosOnes[i][j] = INVALID_POS_VALUE;
}
}

memset(processedQOnes, 0x00, sizeof(processedQOnes));
for (int colQ = 0; colQ < N0; colQ++) {
for (int i = 0; i < N0; i++) {
for (size_t colQ = 0; colQ < N0; colQ++) {
for (size_t i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
DV, HPosOnes[i],
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
@@ -143,15 +146,15 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeHPosOnes(HtrPosOnes, HPosOnes);
PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeQPosOnes(QtrPosOnes, QPosOnes);

for (int i = 0; i < DV * M; i++) {
for (size_t i = 0; i < DV * M; i++) {
Ln0trSparse[i] = INVALID_POS_VALUE;
auxSparse[i] = INVALID_POS_VALUE;
}

for (int i = 0; i < N0; i++) {
for (size_t i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
DV, HPosOnes[i],
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1] ] );
qBlockWeights[i][N0 - 1], &QPosOnes[i][M - qBlockWeights[i][N0 - 1]]);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
DV * M, Ln0trSparse,
DV * M, auxSparse);
@@ -163,28 +166,27 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
Ln0trSparse,
DV * M);

int decryptOk = 0;
decryptOk = PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(err_computed,
(const POSITION_T (*)[DV]) HtrPosOnes,
(const POSITION_T (*)[M]) QtrPosOnes,
privateSyndrome, sk->secondIterThreshold);
decrypt_ok = PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(err_computed,
(const POSITION_T (*)[DV]) HtrPosOnes,
(const POSITION_T (*)[M]) QtrPosOnes,
privateSyndrome, sk->secondIterThreshold);

int err_weight = 0;
for (int i = 0 ; i < N0; i++) {
err_weight = 0;
for (size_t i = 0 ; i < N0; i++) {
err_weight += PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(err_computed + (NUM_DIGITS_GF2X_ELEMENT * i));
}
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);
decrypt_ok = decrypt_ok && (err_weight == NUM_ERRORS_T);

/* prepare mockup error vector in case a decoding failure occurs */
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
memcpy(err_mockup, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
memcpy(err_mockup + NUM_DIGITS_GF2X_ELEMENT, sk->decryption_failure_secret, TRNG_BYTE_LENGTH);
memset(((unsigned char *) err_mockup) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + TRNG_BYTE_LENGTH, 0x00,
(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B - TRNG_BYTE_LENGTH);

memcpy(err, err_computed, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);

// Overwrite on decryption failure
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decryptOk);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decrypt_ok);

return decryptOk;
return decrypt_ok;
}

+ 6
- 6
crypto_kem/ledakemlt52/leaktime/rng.c View File

@@ -13,8 +13,8 @@
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier
*/
static void seedexpander_init(AES_XOF_struct *ctx,
unsigned char *seed,
unsigned char *diversifier,
uint8_t *seed,
uint8_t *diversifier,
size_t maxlen) {

ctx->length_remaining = maxlen;
@@ -38,13 +38,13 @@ static void seedexpander_init(AES_XOF_struct *ctx,
}

void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
const unsigned char *trng_entropy
const uint8_t *trng_entropy
/* TRNG_BYTE_LENGTH wide buffer */) {

/*the NIST seedexpander will however access 32B from this buffer */
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH;
unsigned char prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = { 0x00 };
unsigned char *diversifier = ((unsigned char *)trng_entropy) + 32;
uint8_t prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = {0x00};
uint8_t *diversifier = (uint8_t *)trng_entropy + 32;

memcpy(prng_buffer,
trng_entropy,
@@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
x - returns the XOF data
xlen - number of bytes to return
*/
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen) {
size_t offset;
aes256ctx ctx256;



+ 11
- 0
crypto_kem/ledakemlt52/leaktime/sort.c View File

@@ -5,6 +5,17 @@
Source: https://sorting.cr.yp.to
*/

#define int32_MINMAX(a,b) \
do { \
int32 ab = (b) ^ (a); \
int32 c = (b) - (a); \
c ^= ab & (c ^ (b)); \
c >>= 31; \
c &= ab; \
(a) ^= c; \
(b) ^= c; \
} while(0)

static void int32_sort(int32 *x, size_t n) {
size_t top, p, q, r, i, j;



+ 0
- 11
crypto_kem/ledakemlt52/leaktime/sort.h View File

@@ -6,17 +6,6 @@

#define int32 int32_t

#define int32_MINMAX(a,b) \
do { \
int32 ab = (b) ^ (a); \
int32 c = (b) - (a); \
c ^= ab & (c ^ (b)); \
c >>= 31; \
c &= ab; \
(a) ^= c; \
(b) ^= c; \
} while(0)

void PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(uint32_t *x, size_t n);

#endif

+ 2
- 1
test/duplicate_consistency/ledakemlt12_leaktime.yml View File

@@ -7,6 +7,7 @@ consistency_checks:
- dfr_test.c
- dfr_test.h
- gf2x_arith.c
- gf2x_arith_mod_xPplusOne.c
- H_Q_matrices_generation.c
- H_Q_matrices_generation.h
- kem.c
@@ -24,6 +25,7 @@ consistency_checks:
- dfr_test.c
- dfr_test.h
- gf2x_arith.c
- gf2x_arith_mod_xPplusOne.c
- H_Q_matrices_generation.c
- H_Q_matrices_generation.h
- kem.c
@@ -32,4 +34,3 @@ consistency_checks:
- rng.h
- utils.c
- utils.h


+ 2
- 1
test/duplicate_consistency/ledakemlt32_leaktime.yml View File

@@ -7,6 +7,7 @@ consistency_checks:
- dfr_test.c
- dfr_test.h
- gf2x_arith.c
- gf2x_arith_mod_xPplusOne.c
- H_Q_matrices_generation.c
- H_Q_matrices_generation.h
- kem.c
@@ -24,6 +25,7 @@ consistency_checks:
- dfr_test.c
- dfr_test.h
- gf2x_arith.c
- gf2x_arith_mod_xPplusOne.c
- H_Q_matrices_generation.c
- H_Q_matrices_generation.h
- kem.c
@@ -32,4 +34,3 @@ consistency_checks:
- rng.h
- utils.c
- utils.h


+ 1
- 1
test/duplicate_consistency/ledakemlt52_leaktime.yml View File

@@ -7,6 +7,7 @@ consistency_checks:
- dfr_test.c
- dfr_test.h
- gf2x_arith.c
- gf2x_arith_mod_xPplusOne.c
- H_Q_matrices_generation.c
- H_Q_matrices_generation.h
- kem.c
@@ -32,4 +33,3 @@ consistency_checks:
- rng.h
- utils.c
- utils.h


Loading…
Cancel
Save