mirror of
https://github.com/henrydcase/pqc.git
synced 2024-11-22 23:48:58 +00:00
avoid global state by including 2nd round threshold in secret key
This commit is contained in:
parent
5a4b7f24a3
commit
bf0aca644e
@ -3,10 +3,10 @@ type: kem
|
||||
claimed-nist-level: 1
|
||||
claimed-security: IND-CCA2
|
||||
length-public-key: 6520
|
||||
length-secret-key: 25
|
||||
length-secret-key: 26
|
||||
length-ciphertext: 6520
|
||||
length-shared-secret: 32
|
||||
nistkat-sha256: 3bb5945e0aea26f121e1d56946760e506bdfbebb07e2fb018ce737b90b1eee2b
|
||||
nistkat-sha256: c49a3f0ff5f3e7d6b41995649d7003daf7c06d9539fc28cb3b93ed02dcbe09d4
|
||||
principal-submitter: Marco Baldi
|
||||
auxiliary-submitters:
|
||||
- Alessandro Barenghi
|
||||
@ -15,4 +15,4 @@ auxiliary-submitters:
|
||||
- Paolo Santini
|
||||
implementations:
|
||||
- name: clean
|
||||
version: 2.0
|
||||
version: 2.?
|
||||
|
@ -3,7 +3,7 @@
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_SECRETKEYBYTES 25
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_SECRETKEYBYTES 26
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_PUBLICKEYBYTES 6520
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_CIPHERTEXTBYTES 6520
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_BYTES 32
|
||||
|
@ -4,18 +4,18 @@
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
unsigned int PQCLEAN_LEDAKEMLT12_CLEAN_thresholds[2] = {B0, (DV * M) / 2 + 1};
|
||||
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[]) {
|
||||
DIGIT privateSyndrome[],
|
||||
uint8_t threshold) {
|
||||
|
||||
uint8_t unsatParityChecks[N0 * P];
|
||||
POSITION_T currQBlkPos[M], currQBitPos[M];
|
||||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
int check;
|
||||
int iteration = 0;
|
||||
unsigned int corrt_syndrome_based;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
@ -32,7 +32,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
|
||||
}
|
||||
|
||||
/* iteration based threshold determination*/
|
||||
unsigned int corrt_syndrome_based = PQCLEAN_LEDAKEMLT12_CLEAN_thresholds[iteration];
|
||||
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0;
|
||||
|
||||
//Computation of correlation with a full Q matrix
|
||||
for (int i = 0; i < N0; i++) {
|
||||
@ -45,7 +45,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
|
||||
endQblockIdx += qBlockWeights[blockIdx][i];
|
||||
int currblockoffset = blockIdx * P;
|
||||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
|
||||
uint32_t tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
tmp = tmp >= P ? tmp - P : tmp;
|
||||
currQBitPos[currQoneIdx] = tmp;
|
||||
currQBlkPos[currQoneIdx] = blockIdx;
|
||||
@ -56,7 +56,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
|
||||
if (correlation >= corrt_syndrome_based) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
for (int v = 0; v < M; v++) {
|
||||
unsigned syndromePosToFlip;
|
||||
POSITION_T syndromePosToFlip;
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
|
||||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
|
||||
|
@ -12,6 +12,7 @@
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[]);
|
||||
DIGIT privateSyndrome[],
|
||||
uint8_t threshold); // B2
|
||||
|
||||
#endif
|
||||
|
@ -6,29 +6,22 @@
|
||||
#include <string.h>
|
||||
|
||||
/* Tests if the current code attains the desired DFR. If that is the case,
|
||||
* computes the threshold for the second iteration of the decoder and stores
|
||||
* it in the globally accessible vector */
|
||||
* computes the threshold for the second iteration of the decoder and returns this values
|
||||
* (max DV * M), on failure it returns 255 >> DV * M */
|
||||
|
||||
extern unsigned int PQCLEAN_LEDAKEMLT12_CLEAN_thresholds[2];
|
||||
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
|
||||
POSITION_T LSparse_loc[N0][DV * M];
|
||||
|
||||
POSITION_T rotated_column[DV * M];
|
||||
/* Gamma matrix: an N0 x N0 block circulant matrix with block size p
|
||||
* gamma[a][b][c] stores the intersection of the first column of the a-th
|
||||
* block of L with the c-th column of the b-th block of L */
|
||||
/* Gamma computation can be accelerated employing symmetry and QC properties */
|
||||
* block of L with the c-th column of the b-th block of L.
|
||||
* Gamma computation can be accelerated employing symmetry and QC properties */
|
||||
unsigned int gamma[N0][N0][P] = {{{0}}};
|
||||
unsigned int rotated_column[DV * M];
|
||||
|
||||
unsigned int firstidx, secondidx, intersectionval;
|
||||
|
||||
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
|
||||
|
||||
unsigned int maxMut[N0], maxMutMinusOne[N0];
|
||||
unsigned int firstidx, secondidx, intersectionval;
|
||||
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
|
||||
|
||||
unsigned int toAdd, histIdx;
|
||||
|
||||
/*transpose blocks of L, we need its columns */
|
||||
@ -113,8 +106,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
allBlockMaxSumstMinusOne;
|
||||
}
|
||||
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_thresholds[1] = allBlockMaxSumst + 1;
|
||||
return 1;
|
||||
return allBlockMaxSumst + 1;
|
||||
}
|
||||
return 0;
|
||||
return DFR_TEST_FAIL;
|
||||
}
|
||||
|
@ -1,6 +1,8 @@
|
||||
#ifndef DFR_TEST_H
|
||||
#define DFR_TEST_H
|
||||
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
#define DFR_TEST_FAIL (255)
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
|
||||
#endif
|
||||
|
@ -13,7 +13,7 @@ static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) {
|
||||
}
|
||||
}
|
||||
|
||||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
|
||||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
|
@ -10,7 +10,6 @@
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
|
||||
|
||||
|
||||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi
|
||||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H
|
||||
POSITION_T QPosOnes[N0][M]; // Sparse Q, Each row contains the position of the ones of all the blocks of a row of Q as exponent+P*block_position
|
||||
@ -20,7 +19,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
DIGIT Ln0dense[NUM_DIGITS_GF2X_ELEMENT];
|
||||
DIGIT Ln0Inv[NUM_DIGITS_GF2X_ELEMENT];
|
||||
int is_L_full = 0;
|
||||
int isDFRok = 0;
|
||||
uint8_t threshold; // threshold for round 2
|
||||
sk->rejections = (int8_t) 0;
|
||||
|
||||
do {
|
||||
@ -50,10 +49,11 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
}
|
||||
sk->rejections = sk->rejections + 1;
|
||||
if (is_L_full) {
|
||||
isDFRok = PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(LPosOnes);
|
||||
threshold = PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(LPosOnes);
|
||||
}
|
||||
} while (!is_L_full || !isDFRok);
|
||||
} while (!is_L_full || threshold == DFR_TEST_FAIL);
|
||||
sk->rejections = sk->rejections - 1;
|
||||
sk->threshold = threshold;
|
||||
|
||||
memset(Ln0dense, 0x00, sizeof(Ln0dense));
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
@ -176,7 +176,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
|
||||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
decryptOk = PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome);
|
||||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold);
|
||||
|
||||
err_weight = 0;
|
||||
for (int i = 0 ; i < N0; i++) {
|
||||
|
@ -10,6 +10,7 @@ typedef struct {
|
||||
* H and Q during decryption */
|
||||
unsigned char prng_seed[TRNG_BYTE_LENGTH];
|
||||
int8_t rejections;
|
||||
uint8_t threshold; // for round 2
|
||||
} privateKeyNiederreiter_t;
|
||||
|
||||
typedef struct {
|
||||
|
@ -3,10 +3,10 @@ type: kem
|
||||
claimed-nist-level: 3
|
||||
claimed-security: IND-CCA2
|
||||
length-public-key: 12032
|
||||
length-secret-key: 33
|
||||
length-secret-key: 34
|
||||
length-ciphertext: 12032
|
||||
length-shared-secret: 48
|
||||
nistkat-sha256: 5f4e10c91755d87722bc16e13c6bc5d8bcd6190589cb8924aedb8639d9f1f244
|
||||
nistkat-sha256: 455dc69ee95196fe0526c3289fe46792acd55ac380b3c66be48eb3e3e10ad4e6
|
||||
principal-submitter: Marco Baldi
|
||||
auxiliary-submitters:
|
||||
- Alessandro Barenghi
|
||||
@ -15,4 +15,4 @@ auxiliary-submitters:
|
||||
- Paolo Santini
|
||||
implementations:
|
||||
- name: clean
|
||||
version: 2.0
|
||||
version: 2.?
|
||||
|
@ -3,7 +3,7 @@
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_SECRETKEYBYTES 33
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_SECRETKEYBYTES 34
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_PUBLICKEYBYTES 12032
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_CIPHERTEXTBYTES 12032
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_BYTES 48
|
||||
|
@ -4,18 +4,18 @@
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
unsigned int PQCLEAN_LEDAKEMLT32_CLEAN_thresholds[2] = {B0, (DV * M) / 2 + 1};
|
||||
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[]) {
|
||||
DIGIT privateSyndrome[],
|
||||
uint8_t threshold) {
|
||||
|
||||
uint8_t unsatParityChecks[N0 * P];
|
||||
POSITION_T currQBlkPos[M], currQBitPos[M];
|
||||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
int check;
|
||||
int iteration = 0;
|
||||
unsigned int corrt_syndrome_based;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
@ -32,7 +32,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
|
||||
}
|
||||
|
||||
/* iteration based threshold determination*/
|
||||
unsigned int corrt_syndrome_based = PQCLEAN_LEDAKEMLT32_CLEAN_thresholds[iteration];
|
||||
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0;
|
||||
|
||||
//Computation of correlation with a full Q matrix
|
||||
for (int i = 0; i < N0; i++) {
|
||||
@ -45,7 +45,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
|
||||
endQblockIdx += qBlockWeights[blockIdx][i];
|
||||
int currblockoffset = blockIdx * P;
|
||||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
|
||||
uint32_t tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
tmp = tmp >= P ? tmp - P : tmp;
|
||||
currQBitPos[currQoneIdx] = tmp;
|
||||
currQBlkPos[currQoneIdx] = blockIdx;
|
||||
@ -56,7 +56,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
|
||||
if (correlation >= corrt_syndrome_based) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
for (int v = 0; v < M; v++) {
|
||||
unsigned syndromePosToFlip;
|
||||
POSITION_T syndromePosToFlip;
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
|
||||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
|
||||
|
@ -12,6 +12,7 @@
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[]);
|
||||
DIGIT privateSyndrome[],
|
||||
uint8_t threshold);
|
||||
|
||||
#endif
|
||||
|
@ -6,29 +6,22 @@
|
||||
#include <string.h>
|
||||
|
||||
/* Tests if the current code attains the desired DFR. If that is the case,
|
||||
* computes the threshold for the second iteration of the decoder and stores
|
||||
* it in the globally accessible vector */
|
||||
* computes the threshold for the second iteration of the decoder and returns this values
|
||||
* (max DV * M), on failure it returns 255 >> DV * M */
|
||||
|
||||
extern unsigned int PQCLEAN_LEDAKEMLT32_CLEAN_thresholds[2];
|
||||
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
|
||||
POSITION_T LSparse_loc[N0][DV * M];
|
||||
|
||||
POSITION_T rotated_column[DV * M];
|
||||
/* Gamma matrix: an N0 x N0 block circulant matrix with block size p
|
||||
* gamma[a][b][c] stores the intersection of the first column of the a-th
|
||||
* block of L with the c-th column of the b-th block of L */
|
||||
/* Gamma computation can be accelerated employing symmetry and QC properties */
|
||||
* block of L with the c-th column of the b-th block of L.
|
||||
* Gamma computation can be accelerated employing symmetry and QC properties */
|
||||
unsigned int gamma[N0][N0][P] = {{{0}}};
|
||||
unsigned int rotated_column[DV * M];
|
||||
|
||||
unsigned int firstidx, secondidx, intersectionval;
|
||||
|
||||
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
|
||||
|
||||
unsigned int maxMut[N0], maxMutMinusOne[N0];
|
||||
unsigned int firstidx, secondidx, intersectionval;
|
||||
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
|
||||
|
||||
unsigned int toAdd, histIdx;
|
||||
|
||||
/*transpose blocks of L, we need its columns */
|
||||
@ -113,8 +106,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
allBlockMaxSumstMinusOne;
|
||||
}
|
||||
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_thresholds[1] = allBlockMaxSumst + 1;
|
||||
return 1;
|
||||
return allBlockMaxSumst + 1;
|
||||
}
|
||||
return 0;
|
||||
return DFR_TEST_FAIL;
|
||||
}
|
||||
|
@ -1,6 +1,8 @@
|
||||
#ifndef DFR_TEST_H
|
||||
#define DFR_TEST_H
|
||||
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
#define DFR_TEST_FAIL (255)
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
|
||||
#endif
|
||||
|
@ -13,7 +13,7 @@ static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) {
|
||||
}
|
||||
}
|
||||
|
||||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
|
||||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
|
@ -10,7 +10,6 @@
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
|
||||
|
||||
|
||||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi
|
||||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H
|
||||
POSITION_T QPosOnes[N0][M]; // Sparse Q, Each row contains the position of the ones of all the blocks of a row of Q as exponent+P*block_position
|
||||
@ -20,7 +19,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
DIGIT Ln0dense[NUM_DIGITS_GF2X_ELEMENT];
|
||||
DIGIT Ln0Inv[NUM_DIGITS_GF2X_ELEMENT];
|
||||
int is_L_full = 0;
|
||||
int isDFRok = 0;
|
||||
uint8_t threshold; // threshold for round 2
|
||||
sk->rejections = (int8_t) 0;
|
||||
|
||||
do {
|
||||
@ -50,10 +49,11 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
}
|
||||
sk->rejections = sk->rejections + 1;
|
||||
if (is_L_full) {
|
||||
isDFRok = PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(LPosOnes);
|
||||
threshold = PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(LPosOnes);
|
||||
}
|
||||
} while (!is_L_full || !isDFRok);
|
||||
} while (!is_L_full || threshold == DFR_TEST_FAIL);
|
||||
sk->rejections = sk->rejections - 1;
|
||||
sk->threshold = threshold;
|
||||
|
||||
memset(Ln0dense, 0x00, sizeof(Ln0dense));
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
@ -176,7 +176,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
|
||||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
decryptOk = PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome);
|
||||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold);
|
||||
|
||||
err_weight = 0;
|
||||
for (int i = 0 ; i < N0; i++) {
|
||||
|
@ -10,6 +10,7 @@ typedef struct {
|
||||
* H and Q during decryption */
|
||||
unsigned char prng_seed[TRNG_BYTE_LENGTH];
|
||||
int8_t rejections;
|
||||
uint8_t threshold;
|
||||
} privateKeyNiederreiter_t;
|
||||
|
||||
typedef struct {
|
||||
|
@ -3,10 +3,10 @@ type: kem
|
||||
claimed-nist-level: 5
|
||||
claimed-security: IND-CCA2
|
||||
length-public-key: 19040
|
||||
length-secret-key: 41
|
||||
length-secret-key: 42
|
||||
length-ciphertext: 19040
|
||||
length-shared-secret: 64
|
||||
nistkat-sha256: c53eaa3c3573a4db989671994e9501dbbc080b9c86106787f438960848c71326
|
||||
nistkat-sha256: 9cd9299d20a1c8c242730d3795683a9e87c6bcd0e691dc1fd54cd6a418266c36
|
||||
principal-submitter: Marco Baldi
|
||||
auxiliary-submitters:
|
||||
- Alessandro Barenghi
|
||||
@ -15,4 +15,4 @@ auxiliary-submitters:
|
||||
- Paolo Santini
|
||||
implementations:
|
||||
- name: clean
|
||||
version: 2.0
|
||||
version: 2.?
|
||||
|
@ -3,7 +3,7 @@
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_SECRETKEYBYTES 41
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_SECRETKEYBYTES 42
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_PUBLICKEYBYTES 19040
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_CIPHERTEXTBYTES 19040
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_BYTES 64
|
||||
|
@ -4,18 +4,18 @@
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
unsigned int PQCLEAN_LEDAKEMLT52_CLEAN_thresholds[2] = {B0, (DV * M) / 2 + 1};
|
||||
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[]) {
|
||||
DIGIT privateSyndrome[],
|
||||
uint8_t threshold) {
|
||||
|
||||
uint8_t unsatParityChecks[N0 * P];
|
||||
POSITION_T currQBlkPos[M], currQBitPos[M];
|
||||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
int check;
|
||||
int iteration = 0;
|
||||
unsigned int corrt_syndrome_based;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
@ -32,7 +32,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
|
||||
}
|
||||
|
||||
/* iteration based threshold determination*/
|
||||
unsigned int corrt_syndrome_based = PQCLEAN_LEDAKEMLT52_CLEAN_thresholds[iteration];
|
||||
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0;
|
||||
|
||||
//Computation of correlation with a full Q matrix
|
||||
for (int i = 0; i < N0; i++) {
|
||||
@ -45,7 +45,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
|
||||
endQblockIdx += qBlockWeights[blockIdx][i];
|
||||
int currblockoffset = blockIdx * P;
|
||||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
|
||||
uint32_t tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
tmp = tmp >= P ? tmp - P : tmp;
|
||||
currQBitPos[currQoneIdx] = tmp;
|
||||
currQBlkPos[currQoneIdx] = blockIdx;
|
||||
@ -56,7 +56,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
|
||||
if (correlation >= corrt_syndrome_based) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
for (int v = 0; v < M; v++) {
|
||||
unsigned syndromePosToFlip;
|
||||
POSITION_T syndromePosToFlip;
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
|
||||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
|
||||
|
@ -12,6 +12,7 @@
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[]);
|
||||
DIGIT privateSyndrome[],
|
||||
uint8_t threshold);
|
||||
|
||||
#endif
|
||||
|
@ -6,29 +6,22 @@
|
||||
#include <string.h>
|
||||
|
||||
/* Tests if the current code attains the desired DFR. If that is the case,
|
||||
* computes the threshold for the second iteration of the decoder and stores
|
||||
* it in the globally accessible vector */
|
||||
* computes the threshold for the second iteration of the decoder and returns this values
|
||||
* (max DV * M), on failure it returns 255 >> DV * M */
|
||||
|
||||
extern unsigned int PQCLEAN_LEDAKEMLT52_CLEAN_thresholds[2];
|
||||
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
|
||||
POSITION_T LSparse_loc[N0][DV * M];
|
||||
|
||||
POSITION_T rotated_column[DV * M];
|
||||
/* Gamma matrix: an N0 x N0 block circulant matrix with block size p
|
||||
* gamma[a][b][c] stores the intersection of the first column of the a-th
|
||||
* block of L with the c-th column of the b-th block of L */
|
||||
/* Gamma computation can be accelerated employing symmetry and QC properties */
|
||||
* block of L with the c-th column of the b-th block of L.
|
||||
* Gamma computation can be accelerated employing symmetry and QC properties */
|
||||
unsigned int gamma[N0][N0][P] = {{{0}}};
|
||||
unsigned int rotated_column[DV * M];
|
||||
|
||||
unsigned int firstidx, secondidx, intersectionval;
|
||||
|
||||
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
|
||||
|
||||
unsigned int maxMut[N0], maxMutMinusOne[N0];
|
||||
unsigned int firstidx, secondidx, intersectionval;
|
||||
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
|
||||
|
||||
unsigned int toAdd, histIdx;
|
||||
|
||||
/*transpose blocks of L, we need its columns */
|
||||
@ -113,8 +106,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
allBlockMaxSumstMinusOne;
|
||||
}
|
||||
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_thresholds[1] = allBlockMaxSumst + 1;
|
||||
return 1;
|
||||
return allBlockMaxSumst + 1;
|
||||
}
|
||||
return 0;
|
||||
return DFR_TEST_FAIL;
|
||||
}
|
||||
|
@ -1,6 +1,8 @@
|
||||
#ifndef DFR_TEST_H
|
||||
#define DFR_TEST_H
|
||||
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
#define DFR_TEST_FAIL (255)
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
|
||||
#endif
|
||||
|
@ -13,7 +13,7 @@ static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) {
|
||||
}
|
||||
}
|
||||
|
||||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
|
||||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
|
@ -10,7 +10,6 @@
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
|
||||
|
||||
|
||||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi
|
||||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H
|
||||
POSITION_T QPosOnes[N0][M]; // Sparse Q, Each row contains the position of the ones of all the blocks of a row of Q as exponent+P*block_position
|
||||
@ -20,7 +19,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
DIGIT Ln0dense[NUM_DIGITS_GF2X_ELEMENT];
|
||||
DIGIT Ln0Inv[NUM_DIGITS_GF2X_ELEMENT];
|
||||
int is_L_full = 0;
|
||||
int isDFRok = 0;
|
||||
uint8_t threshold; // threshold for round 2
|
||||
sk->rejections = (int8_t) 0;
|
||||
|
||||
do {
|
||||
@ -50,10 +49,11 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
}
|
||||
sk->rejections = sk->rejections + 1;
|
||||
if (is_L_full) {
|
||||
isDFRok = PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(LPosOnes);
|
||||
threshold = PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(LPosOnes);
|
||||
}
|
||||
} while (!is_L_full || !isDFRok);
|
||||
} while (!is_L_full || threshold == DFR_TEST_FAIL);
|
||||
sk->rejections = sk->rejections - 1;
|
||||
sk->threshold = threshold;
|
||||
|
||||
memset(Ln0dense, 0x00, sizeof(Ln0dense));
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
@ -176,7 +176,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
|
||||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
decryptOk = PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome);
|
||||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold);
|
||||
|
||||
err_weight = 0;
|
||||
for (int i = 0 ; i < N0; i++) {
|
||||
|
@ -10,6 +10,7 @@ typedef struct {
|
||||
* H and Q during decryption */
|
||||
unsigned char prng_seed[TRNG_BYTE_LENGTH];
|
||||
int8_t rejections;
|
||||
uint8_t threshold;
|
||||
} privateKeyNiederreiter_t;
|
||||
|
||||
typedef struct {
|
||||
|
Loading…
Reference in New Issue
Block a user