1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-12-02 12:21:23 +00:00
pqcrypto/crypto_kem/hqc-128-1-cca2/leaktime/vector.c
Sebastian 33232a0343
HQC submission (#202)
* Sebastian's HQC merge request

* Clean up changes to common infrastructure

* Fix Bitmask macro

It assumed that ``unsigned long`` was 64 bit

* Remove maxlen from nistseedexpander

It's a complicated thing to handle because the value is larger than size_t supports on 32-bit platforms

* Initialize buffers to help linter

* Add Nistseedexpander test

* Resolve UB in gf2x.c

Some of the shifts could be larger than WORD_SIZE_BITS, ie. larger than
the width of uint64_t. This apparently on Intel gets interpreted as the
shift mod 64, but on ARM something else happened.

* Fix Windows complaints

* rename log, exp which appear to be existing functions on MS

* Solve endianness problems

* remove all spaces before ';'

* Fix duplicate consistency

* Fix duplicate consistency

* Fix complaints by MSVC about narrowing int

* Add nistseedexpander.obj to COMMON_OBJECTS_NOPATH

* astyle format util.[ch]

* add util.h to makefile

* Sort includes in util.h

* Fix more Windows MSVC complaints

Co-authored-by: Sebastian Verschoor <sebastian@zeroknowledge.me>
Co-authored-by: Thom Wiggers <thom@thomwiggers.nl>
2020-04-01 13:57:21 +08:00

225 lines
7.2 KiB
C

/**
* @file vector.c
* @brief Implementation of vectors sampling and some utilities for the HQC scheme
*/
#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>. The vector
* is stored by position.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight) {
size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint8_t exist = 0;
size_t j = 0;
seedexpander(ctx, rand_bytes, random_bytes_size);
for (uint32_t i = 0; i < weight; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}
random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];
} while (random_data >= UTILS_REJECTION_THRESHOLD);
random_data = random_data % PARAM_N;
for (uint32_t k = 0; k < i; k++) {
if (v[k] == random_data) {
exist = 1;
}
}
if (exist == 1) {
i--;
} else {
v[i] = random_data;
}
}
}
/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint8_t *v, uint16_t weight) {
size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint32_t tmp[PARAM_OMEGA_R] = {0};
uint8_t exist = 0;
size_t j = 0;
seedexpander(ctx, rand_bytes, random_bytes_size);
for (uint32_t i = 0; i < weight; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}
random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];
} while (random_data >= UTILS_REJECTION_THRESHOLD);
random_data = random_data % PARAM_N;
for (uint32_t k = 0; k < i; k++) {
if (tmp[k] == random_data) {
exist = 1;
}
}
if (exist == 1) {
i--;
} else {
tmp[i] = random_data;
}
}
for (uint16_t i = 0; i < weight; ++i) {
int32_t index = tmp[i] / 8;
int32_t pos = tmp[i] % 8;
v[index] |= 1 << pos;
}
}
/**
* @brief Generates a random vector of dimension <b>PARAM_N</b>
*
* This function generates a random binary vector of dimension <b>PARAM_N</b>. It generates a random
* array of bytes using the seedexpander function, and drop the extra bits using a mask.
*
* @param[in] v Pointer to an array
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random(AES_XOF_struct *ctx, uint8_t *v) {
uint8_t rand_bytes[VEC_N_SIZE_BYTES] = {0};
seedexpander(ctx, rand_bytes, VEC_N_SIZE_BYTES);
memcpy(v, rand_bytes, VEC_N_SIZE_BYTES);
v[VEC_N_SIZE_BYTES - 1] &= BITMASK(PARAM_N, 8);
}
/**
* @brief Generates a random vector
*
* This function generates a random binary vector. It uses the the randombytes function.
*
* @param[in] v Pointer to an array
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_from_randombytes(uint8_t *v) {
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0};
randombytes(rand_bytes, VEC_K_SIZE_BYTES);
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES);
}
/**
* @brief Adds two vectors
*
* @param[out] o Pointer to an array that is the result
* @param[in] v1 Pointer to an array that is the first vector
* @param[in] v2 Pointer to an array that is the second vector
* @param[in] size Integer that is the size of the vectors
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_add(uint8_t *o, const uint8_t *v1, const uint8_t *v2, uint32_t size) {
for (uint32_t i = 0; i < size; ++i) {
o[i] = v1[i] ^ v2[i];
}
}
/**
* @brief Compares two vectors
*
* @param[in] v1 Pointer to an array that is first vector
* @param[in] v2 Pointer to an array that is second vector
* @param[in] size Integer that is the size of the vectors
* @returns 0 if the vectors are equals and a negative/psotive value otherwise
*/
int PQCLEAN_HQC1281CCA2_LEAKTIME_vect_compare(const uint8_t *v1, const uint8_t *v2, uint32_t size) {
return memcmp(v1, v2, size);
}
/**
* @brief Resize a vector so that it contains <b>size_o</b> bits
*
* @param[out] o Pointer to the output vector
* @param[in] size_o Integer that is the size of the output vector in bits
* @param[in] v Pointer to the input vector
* @param[in] size_v Integer that is the size of the input vector in bits
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_resize(uint8_t *o, uint32_t size_o, const uint8_t *v, uint32_t size_v) {
if (size_o < size_v) {
uint8_t mask = 0x7F;
int8_t val = 8 - (size_o % 8);
memcpy(o, v, VEC_N1N2_SIZE_BYTES);
for (int8_t i = 0; i < val; ++i) {
o[VEC_N1N2_SIZE_BYTES - 1] &= (mask >> i);
}
} else {
memcpy(o, v, CEIL_DIVIDE(size_v, 8));
}
}