1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-30 03:11:43 +00:00
pqcrypto/crypto_kem/hqc-rmrs-256/clean/reed_muller.c
2021-03-24 21:02:47 +00:00

238 lines
8.2 KiB
C

#include "parameters.h"
#include "reed_muller.h"
#include <stdint.h>
#include <string.h>
/**
* @file reed_muller.c
* Constant time implementation of Reed-Muller code RM(1,7)
*/
// number of repeated code words
#define MULTIPLICITY CEIL_DIVIDE(PARAM_N2, 128)
// copy bit 0 into all bits of a 32 bit value
#define BIT0MASK(x) (-((x) & 1))
static void encode(uint8_t *word, uint8_t message);
static void hadamard(uint16_t src[128], uint16_t dst[128]);
static void expand_and_sum(uint16_t dest[128], const uint8_t src[16 * MULTIPLICITY]);
static uint8_t find_peaks(const uint16_t transform[128]);
/**
* @brief Encode a single byte into a single codeword using RM(1,7)
*
* Encoding matrix of this code:
* bit pattern (note that bits are numbered big endian)
* 0 aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
* 1 cccccccc cccccccc cccccccc cccccccc
* 2 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0
* 3 ff00ff00 ff00ff00 ff00ff00 ff00ff00
* 4 ffff0000 ffff0000 ffff0000 ffff0000
* 5 ffffffff 00000000 ffffffff 00000000
* 6 ffffffff ffffffff 00000000 00000000
* 7 ffffffff ffffffff ffffffff ffffffff
*
* @param[out] word An RM(1,7) codeword
* @param[in] message A message
*/
static void encode(uint8_t *word, uint8_t message) {
uint32_t e;
// bit 7 flips all the bits, do that first to save work
e = BIT0MASK(message >> 7);
// bits 0, 1, 2, 3, 4 are the same for all four longs
// (Warning: in the bit matrix above, low bits are at the left!)
e ^= BIT0MASK(message >> 0) & 0xaaaaaaaa;
e ^= BIT0MASK(message >> 1) & 0xcccccccc;
e ^= BIT0MASK(message >> 2) & 0xf0f0f0f0;
e ^= BIT0MASK(message >> 3) & 0xff00ff00;
e ^= BIT0MASK(message >> 4) & 0xffff0000;
// we can store this in the first quarter
word[0 + 0] = (e >> 0x00) & 0xff;
word[0 + 1] = (e >> 0x08) & 0xff;
word[0 + 2] = (e >> 0x10) & 0xff;
word[0 + 3] = (e >> 0x18) & 0xff;
// bit 5 flips entries 1 and 3; bit 6 flips 2 and 3
e ^= BIT0MASK(message >> 5);
word[4 + 0] = (e >> 0x00) & 0xff;
word[4 + 1] = (e >> 0x08) & 0xff;
word[4 + 2] = (e >> 0x10) & 0xff;
word[4 + 3] = (e >> 0x18) & 0xff;
e ^= BIT0MASK(message >> 6);
word[12 + 0] = (e >> 0x00) & 0xff;
word[12 + 1] = (e >> 0x08) & 0xff;
word[12 + 2] = (e >> 0x10) & 0xff;
word[12 + 3] = (e >> 0x18) & 0xff;
e ^= BIT0MASK(message >> 5);
word[8 + 0] = (e >> 0x00) & 0xff;
word[8 + 1] = (e >> 0x08) & 0xff;
word[8 + 2] = (e >> 0x10) & 0xff;
word[8 + 3] = (e >> 0x18) & 0xff;
}
/**
* @brief Hadamard transform
*
* Perform hadamard transform of src and store result in dst
* src is overwritten: it is also used as intermediate buffer
* Method is best explained if we use H(3) instead of H(7):
*
* The routine multiplies by the matrix H(3):
* [1 1 1 1 1 1 1 1]
* [1 -1 1 -1 1 -1 1 -1]
* [1 1 -1 -1 1 1 -1 -1]
* [a b c d e f g h] * [1 -1 -1 1 1 -1 -1 1] = result of routine
* [1 1 1 1 -1 -1 -1 -1]
* [1 -1 1 -1 -1 1 -1 1]
* [1 1 -1 -1 -1 -1 1 1]
* [1 -1 -1 1 -1 1 1 -1]
* You can do this in three passes, where each pass does this:
* set lower half of buffer to pairwise sums,
* and upper half to differences
* index 0 1 2 3 4 5 6 7
* input: a, b, c, d, e, f, g, h
* pass 1: a+b, c+d, e+f, g+h, a-b, c-d, e-f, g-h
* pass 2: a+b+c+d, e+f+g+h, a-b+c-d, e-f+g-h, a+b-c-d, e+f-g-h, a-b-c+d, e-f-g+h
* pass 3: a+b+c+d+e+f+g+h a+b-c-d+e+f-g-h a+b+c+d-e-f-g-h a+b-c-d-e+-f+g+h
* a-b+c-d+e-f+g-h a-b-c+d+e-f-g+h a-b+c-d-e+f-g+h a-b-c+d-e+f+g-h
* This order of computation is chosen because it vectorises well.
* Likewise, this routine multiplies by H(7) in seven passes.
*
* @param[out] src Structure that contain the expanded codeword
* @param[out] dst Structure that contain the expanded codeword
*/
static void hadamard(uint16_t src[128], uint16_t dst[128]) {
// the passes move data:
// src -> dst -> src -> dst -> src -> dst -> src -> dst
// using p1 and p2 alternately
uint16_t *p1 = src;
uint16_t *p2 = dst;
uint16_t *p3;
for (uint32_t pass = 0; pass < 7; pass++) {
for (uint32_t i = 0; i < 64; i++) {
p2[i] = p1[2 * i] + p1[2 * i + 1];
p2[i + 64] = p1[2 * i] - p1[2 * i + 1];
}
// swap p1, p2 for next round
p3 = p1;
p1 = p2;
p2 = p3;
}
}
/**
* @brief Add multiple codewords into expanded codeword
*
* Accesses memory in order
* Note: this does not write the codewords as -1 or +1 as the green machine does
* instead, just 0 and 1 is used.
* The resulting hadamard transform has:
* all values are halved
* the first entry is 64 too high
*
* @param[out] dest Structure that contain the expanded codeword
* @param[in] src Structure that contain the codeword
*/
static void expand_and_sum(uint16_t dest[128], const uint8_t src[16 * MULTIPLICITY]) {
size_t part, bit, copy;
// start with the first copy
for (part = 0; part < 16; part++) {
for (bit = 0; bit < 8; bit++) {
dest[part * 8 + bit] = (uint16_t) ((src[part] >> bit) & 1);
}
}
// sum the rest of the copies
for (copy = 1; copy < MULTIPLICITY; copy++) {
for (part = 0; part < 16; part++) {
for (bit = 0; bit < 8; bit++) {
dest[part * 8 + bit] += (uint16_t) ((src[16 * copy + part] >> bit) & 1);
}
}
}
}
/**
* @brief Finding the location of the highest value
*
* This is the final step of the green machine: find the location of the highest value,
* and add 128 if the peak is positive
* if there are two identical peaks, the peak with smallest value
* in the lowest 7 bits it taken
* @param[in] transform Structure that contain the expanded codeword
*/
static uint8_t find_peaks(const uint16_t transform[128]) {
uint16_t peak_abs = 0;
uint16_t peak = 0;
uint16_t pos = 0;
uint16_t t, abs, mask;
for (uint16_t i = 0; i < 128; i++) {
t = transform[i];
abs = t ^ ((-(t >> 15)) & (t ^ -t)); // t = abs(t)
mask = -(((uint16_t)(peak_abs - abs)) >> 15);
peak ^= mask & (peak ^ t);
pos ^= mask & (pos ^ i);
peak_abs ^= mask & (peak_abs ^ abs);
}
pos |= 128 & ((peak >> 15) - 1);
return (uint8_t) pos;
}
/**
* @brief Encodes the received word
*
* The message consists of N1 bytes each byte is encoded into PARAM_N2 bits,
* or MULTIPLICITY repeats of 128 bits
*
* @param[out] cdw Array of size VEC_N1N2_SIZE_64 receiving the encoded message
* @param[in] msg Array of size VEC_N1_SIZE_64 storing the message
*/
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_encode(uint8_t *cdw, const uint8_t *msg) {
for (size_t i = 0; i < VEC_N1_SIZE_BYTES; i++) {
// encode first word
encode(&cdw[16 * i * MULTIPLICITY], msg[i]);
// copy to other identical codewords
for (size_t copy = 1; copy < MULTIPLICITY; copy++) {
memcpy(&cdw[16 * i * MULTIPLICITY + 16 * copy], &cdw[16 * i * MULTIPLICITY], 16);
}
}
}
/**
* @brief Decodes the received word
*
* Decoding uses fast hadamard transform, for a more complete picture on Reed-Muller decoding, see MacWilliams, Florence Jessie, and Neil James Alexander Sloane.
* The theory of error-correcting codes codes @cite macwilliams1977theory
*
* @param[out] msg Array of size VEC_N1_SIZE_64 receiving the decoded message
* @param[in] cdw Array of size VEC_N1N2_SIZE_64 storing the received word
*/
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_decode(uint8_t *msg, const uint8_t *cdw) {
uint16_t expanded[128];
uint16_t transform[128];
for (size_t i = 0; i < VEC_N1_SIZE_BYTES; i++) {
// collect the codewords
expand_and_sum(expanded, &cdw[16 * i * MULTIPLICITY]);
// apply hadamard transform
hadamard(expanded, transform);
// fix the first entry to get the half Hadamard transform
transform[0] -= 64 * MULTIPLICITY;
// finish the decoding
msg[i] = find_peaks(transform);
}
}