1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-27 01:41:40 +00:00
pqcrypto/crypto_sign/rainbowVc-cyclic/clean/blas_comm.h
Matthias J. Kannwischer 1fca5ec068 unsigned -> unsigned int
2019-07-24 10:42:15 +02:00

91 lines
3.6 KiB
C

#ifndef _BLAS_COMM_H_
#define _BLAS_COMM_H_
/// @file blas_comm.h
/// @brief Common functions for linear algebra.
///
#include "rainbow_config.h"
#include <stdint.h>
/// @brief set a vector to 0.
///
/// @param[in,out] b - the vector b.
/// @param[in] _num_byte - number of bytes for the vector b.
///
void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte);
/// @brief get an element from GF(256) vector .
///
/// @param[in] a - the input vector a.
/// @param[in] i - the index in the vector a.
/// @return the value of the element.
///
uint8_t PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned int i);
/// @brief check if a vector is 0.
///
/// @param[in] a - the vector a.
/// @param[in] _num_byte - number of bytes for the vector a.
/// @return 1(true) if a is 0. 0(false) else.
///
unsigned int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned int _num_byte);
/// @brief polynomial multiplication: c = a*b
///
/// @param[out] c - the output polynomial c
/// @param[in] a - the vector a.
/// @param[in] b - the vector b.
/// @param[in] _num - number of elements for the polynomials a and b.
///
void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int _num);
/// @brief matrix-vector multiplication: c = matA * b , in GF(256)
///
/// @param[out] c - the output vector c
/// @param[in] matA - a column-major matrix A.
/// @param[in] n_A_vec_byte - the size of column vectors in bytes.
/// @param[in] n_A_width - the width of matrix A.
/// @param[in] b - the vector b.
///
void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b);
/// @brief matrix-matrix multiplication: c = a * b , in GF(256)
///
/// @param[out] c - the output matrix c
/// @param[in] c - a matrix a.
/// @param[in] b - a matrix b.
/// @param[in] len_vec - the length of column vectors.
///
void PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec);
/// @brief Gauss elimination for a matrix, in GF(256)
///
/// @param[in,out] mat - the matrix.
/// @param[in] h - the height of the matrix.
/// @param[in] w - the width of the matrix.
/// @return 1(true) if success. 0(false) if the matrix is singular.
///
unsigned int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w);
/// @brief Solving linear equations, in GF(256)
///
/// @param[out] sol - the solutions.
/// @param[in] inp_mat - the matrix parts of input equations.
/// @param[in] c_terms - the constant terms of the input equations.
/// @param[in] n - the number of equations.
/// @return 1(true) if success. 0(false) if the matrix is singular.
///
unsigned int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n);
/// @brief Computing the inverse matrix, in GF(256)
///
/// @param[out] inv_a - the output of matrix a.
/// @param[in] a - a matrix a.
/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix.
/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes.
/// @return 1(true) if success. 0(false) if the matrix is singular.
///
unsigned int PQCLEAN_RAINBOWVCCYCLIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer);
#endif // _BLAS_COMM_H_