1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-24 00:11:27 +00:00
pqcrypto/crypto_sign/dilithium3/clean/sign.c
Thom Wiggers 3c2967b5a1
Fix documentation for Dilithium crypto_sign_open
It mentioned `sk` instead of `pk` as specified in the arguments.

Closes #205.
2019-07-22 09:20:54 +02:00

406 lines
13 KiB
C

#include "fips202.h"
#include "packing.h"
#include "params.h"
#include "poly.h"
#include "polyvec.h"
#include "randombytes.h"
#include "sign.h"
#include "symmetric.h"
#include <stdint.h>
/*************************************************
* Name: expand_mat
*
* Description: Implementation of ExpandA. Generates matrix A with uniformly
* random coefficients a_{i,j} by performing rejection
* sampling on the output stream of SHAKE128(rho|i|j).
*
* Arguments: - polyvecl mat[K]: output matrix
* - const unsigned char rho[]: byte array containing seed rho
**************************************************/
void PQCLEAN_DILITHIUM3_CLEAN_expand_mat(polyvecl mat[K], const unsigned char rho[SEEDBYTES]) {
unsigned int i, j;
for (i = 0; i < K; ++i) {
for (j = 0; j < L; ++j) {
PQCLEAN_DILITHIUM3_CLEAN_poly_uniform(&mat[i].vec[j], rho, (uint16_t)((i << 8) + j));
}
}
}
/*************************************************
* Name: challenge
*
* Description: Implementation of H. Samples polynomial with 60 nonzero
* coefficients in {-1,1} using the output stream of
* SHAKE256(mu|w1).
*
* Arguments: - poly *c: pointer to output polynomial
* - const unsigned char mu[]: byte array containing mu
* - const polyveck *w1: pointer to vector w1
**************************************************/
void PQCLEAN_DILITHIUM3_CLEAN_challenge(poly *c,
const unsigned char mu[CRHBYTES],
const polyveck *w1) {
unsigned int i, b, pos;
uint64_t signs;
unsigned char inbuf[CRHBYTES + K * POLW1_SIZE_PACKED];
unsigned char outbuf[SHAKE256_RATE];
shake256ctx state;
for (i = 0; i < CRHBYTES; ++i) {
inbuf[i] = mu[i];
}
for (i = 0; i < K; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_polyw1_pack(inbuf + CRHBYTES + i * POLW1_SIZE_PACKED, &w1->vec[i]);
}
shake256_absorb(&state, inbuf, sizeof(inbuf));
shake256_squeezeblocks(outbuf, 1, &state);
signs = 0;
for (i = 0; i < 8; ++i) {
signs |= (uint64_t)outbuf[i] << 8 * i;
}
pos = 8;
for (i = 0; i < N; ++i) {
c->coeffs[i] = 0;
}
for (i = 196; i < 256; ++i) {
do {
if (pos >= SHAKE256_RATE) {
shake256_squeezeblocks(outbuf, 1, &state);
pos = 0;
}
b = outbuf[pos++];
} while (b > i);
c->coeffs[i] = c->coeffs[b];
c->coeffs[b] = 1;
c->coeffs[b] ^= -((int32_t)signs & 1) & (1 ^ (Q - 1));
signs >>= 1;
}
}
/*************************************************
* Name: crypto_sign_keypair
*
* Description: Generates public and private key.
*
* Arguments: - unsigned char *pk: pointer to output public key (allocated
* array of CRYPTO_PUBLICKEYBYTES bytes)
* - unsigned char *sk: pointer to output private key (allocated
* array of CRYPTO_SECRETKEYBYTES bytes)
*
* Returns 0 (success)
**************************************************/
int PQCLEAN_DILITHIUM3_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk) {
unsigned int i;
unsigned char seedbuf[3 * SEEDBYTES];
unsigned char tr[CRHBYTES];
const unsigned char *rho, *rhoprime, *key;
uint16_t nonce = 0;
polyvecl mat[K];
polyvecl s1, s1hat;
polyveck s2, t, t1, t0;
/* Expand 32 bytes of randomness into rho, rhoprime and key */
randombytes(seedbuf, 3 * SEEDBYTES);
rho = seedbuf;
rhoprime = seedbuf + SEEDBYTES;
key = seedbuf + 2 * SEEDBYTES;
/* Expand matrix */
PQCLEAN_DILITHIUM3_CLEAN_expand_mat(mat, rho);
/* Sample short vectors s1 and s2 */
for (i = 0; i < L; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_poly_uniform_eta(&s1.vec[i], rhoprime, nonce++);
}
for (i = 0; i < K; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_poly_uniform_eta(&s2.vec[i], rhoprime, nonce++);
}
/* Matrix-vector multiplication */
s1hat = s1;
PQCLEAN_DILITHIUM3_CLEAN_polyvecl_ntt(&s1hat);
for (i = 0; i < K; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_polyvecl_pointwise_acc_invmontgomery(&t.vec[i], &mat[i], &s1hat);
PQCLEAN_DILITHIUM3_CLEAN_poly_reduce(&t.vec[i]);
PQCLEAN_DILITHIUM3_CLEAN_poly_invntt_montgomery(&t.vec[i]);
}
/* Add error vector s2 */
PQCLEAN_DILITHIUM3_CLEAN_polyveck_add(&t, &t, &s2);
/* Extract t1 and write public key */
PQCLEAN_DILITHIUM3_CLEAN_polyveck_freeze(&t);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_power2round(&t1, &t0, &t);
PQCLEAN_DILITHIUM3_CLEAN_pack_pk(pk, rho, &t1);
/* Compute CRH(rho, t1) and write secret key */
crh(tr, pk, CRYPTO_PUBLICKEYBYTES);
PQCLEAN_DILITHIUM3_CLEAN_pack_sk(sk, rho, key, tr, &s1, &s2, &t0);
return 0;
}
int PQCLEAN_DILITHIUM3_CLEAN_crypto_sign_signature(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
unsigned long long i;
unsigned int n;
unsigned char seedbuf[2 * SEEDBYTES + 3 * CRHBYTES];
unsigned char *rho, *tr, *key, *mu, *rhoprime;
uint16_t nonce = 0;
poly c, chat;
polyvecl mat[K], s1, y, yhat, z;
polyveck t0, s2, w, w1, w0;
polyveck h, cs2, ct0;
rho = seedbuf;
tr = rho + SEEDBYTES;
key = tr + CRHBYTES;
mu = key + SEEDBYTES;
rhoprime = mu + CRHBYTES;
PQCLEAN_DILITHIUM3_CLEAN_unpack_sk(rho, key, tr, &s1, &s2, &t0, sk);
// use incremental hash API instead of copying around buffers
/* Compute CRH(tr, msg) */
shake256incctx state;
shake256_inc_init(&state);
shake256_inc_absorb(&state, tr, CRHBYTES);
shake256_inc_absorb(&state, m, mlen);
shake256_inc_finalize(&state);
shake256_inc_squeeze(mu, CRHBYTES, &state);
crh(rhoprime, key, SEEDBYTES + CRHBYTES);
/* Expand matrix and transform vectors */
PQCLEAN_DILITHIUM3_CLEAN_expand_mat(mat, rho);
PQCLEAN_DILITHIUM3_CLEAN_polyvecl_ntt(&s1);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_ntt(&s2);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_ntt(&t0);
rej:
/* Sample intermediate vector y */
for (i = 0; i < L; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_poly_uniform_gamma1m1(&y.vec[i], rhoprime, nonce++);
}
/* Matrix-vector multiplication */
yhat = y;
PQCLEAN_DILITHIUM3_CLEAN_polyvecl_ntt(&yhat);
for (i = 0; i < K; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_polyvecl_pointwise_acc_invmontgomery(&w.vec[i], &mat[i], &yhat);
PQCLEAN_DILITHIUM3_CLEAN_poly_reduce(&w.vec[i]);
PQCLEAN_DILITHIUM3_CLEAN_poly_invntt_montgomery(&w.vec[i]);
}
/* Decompose w and call the random oracle */
PQCLEAN_DILITHIUM3_CLEAN_polyveck_csubq(&w);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_decompose(&w1, &w0, &w);
PQCLEAN_DILITHIUM3_CLEAN_challenge(&c, mu, &w1);
chat = c;
PQCLEAN_DILITHIUM3_CLEAN_poly_ntt(&chat);
/* Check that subtracting cs2 does not change high bits of w and low bits
* do not reveal secret information */
for (i = 0; i < K; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_poly_pointwise_invmontgomery(&cs2.vec[i], &chat, &s2.vec[i]);
PQCLEAN_DILITHIUM3_CLEAN_poly_invntt_montgomery(&cs2.vec[i]);
}
PQCLEAN_DILITHIUM3_CLEAN_polyveck_sub(&w0, &w0, &cs2);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_freeze(&w0);
if (PQCLEAN_DILITHIUM3_CLEAN_polyveck_chknorm(&w0, GAMMA2 - BETA)) {
goto rej;
}
/* Compute z, reject if it reveals secret */
for (i = 0; i < L; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_poly_pointwise_invmontgomery(&z.vec[i], &chat, &s1.vec[i]);
PQCLEAN_DILITHIUM3_CLEAN_poly_invntt_montgomery(&z.vec[i]);
}
PQCLEAN_DILITHIUM3_CLEAN_polyvecl_add(&z, &z, &y);
PQCLEAN_DILITHIUM3_CLEAN_polyvecl_freeze(&z);
if (PQCLEAN_DILITHIUM3_CLEAN_polyvecl_chknorm(&z, GAMMA1 - BETA)) {
goto rej;
}
/* Compute hints for w1 */
for (i = 0; i < K; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_poly_pointwise_invmontgomery(&ct0.vec[i], &chat, &t0.vec[i]);
PQCLEAN_DILITHIUM3_CLEAN_poly_invntt_montgomery(&ct0.vec[i]);
}
PQCLEAN_DILITHIUM3_CLEAN_polyveck_csubq(&ct0);
if (PQCLEAN_DILITHIUM3_CLEAN_polyveck_chknorm(&ct0, GAMMA2)) {
goto rej;
}
PQCLEAN_DILITHIUM3_CLEAN_polyveck_add(&w0, &w0, &ct0);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_csubq(&w0);
n = PQCLEAN_DILITHIUM3_CLEAN_polyveck_make_hint(&h, &w0, &w1);
if (n > OMEGA) {
goto rej;
}
/* Write signature */
PQCLEAN_DILITHIUM3_CLEAN_pack_sig(sig, &z, &h, &c);
*siglen = CRYPTO_BYTES;
return 0;
}
int PQCLEAN_DILITHIUM3_CLEAN_crypto_sign_verify(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk) {
unsigned long long i;
unsigned char rho[SEEDBYTES];
unsigned char mu[CRHBYTES];
poly c, chat, cp;
polyvecl mat[K], z;
polyveck t1, w1, h, tmp1, tmp2;
if (siglen < CRYPTO_BYTES) {
return -1;
}
PQCLEAN_DILITHIUM3_CLEAN_unpack_pk(rho, &t1, pk);
if (PQCLEAN_DILITHIUM3_CLEAN_unpack_sig(&z, &h, &c, sig)) {
return -1;
}
if (PQCLEAN_DILITHIUM3_CLEAN_polyvecl_chknorm(&z, GAMMA1 - BETA)) {
return -1;
}
/* Compute CRH(CRH(rho, t1), msg) */
crh(mu, pk, CRYPTO_PUBLICKEYBYTES);
shake256incctx state;
shake256_inc_init(&state);
shake256_inc_absorb(&state, mu, CRHBYTES);
shake256_inc_absorb(&state, m, mlen);
shake256_inc_finalize(&state);
shake256_inc_squeeze(mu, CRHBYTES, &state);
/* Matrix-vector multiplication; compute Az - c2^dt1 */
PQCLEAN_DILITHIUM3_CLEAN_expand_mat(mat, rho);
PQCLEAN_DILITHIUM3_CLEAN_polyvecl_ntt(&z);
for (i = 0; i < K ; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_polyvecl_pointwise_acc_invmontgomery(&tmp1.vec[i], &mat[i], &z);
}
chat = c;
PQCLEAN_DILITHIUM3_CLEAN_poly_ntt(&chat);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_shiftl(&t1);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_ntt(&t1);
for (i = 0; i < K; ++i) {
PQCLEAN_DILITHIUM3_CLEAN_poly_pointwise_invmontgomery(&tmp2.vec[i], &chat, &t1.vec[i]);
}
PQCLEAN_DILITHIUM3_CLEAN_polyveck_sub(&tmp1, &tmp1, &tmp2);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_reduce(&tmp1);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_invntt_montgomery(&tmp1);
/* Reconstruct w1 */
PQCLEAN_DILITHIUM3_CLEAN_polyveck_csubq(&tmp1);
PQCLEAN_DILITHIUM3_CLEAN_polyveck_use_hint(&w1, &tmp1, &h);
/* Call random oracle and verify challenge */
PQCLEAN_DILITHIUM3_CLEAN_challenge(&cp, mu, &w1);
for (i = 0; i < N; ++i) {
if (c.coeffs[i] != cp.coeffs[i]) {
return -1;
}
}
// All good
return 0;
}
/*************************************************
* Name: crypto_sign
*
* Description: Compute signed message.
*
* Arguments: - unsigned char *sm: pointer to output signed message (allocated
* array with CRYPTO_BYTES + mlen bytes),
* can be equal to m
* - unsigned long long *smlen: pointer to output length of signed
* message
* - const unsigned char *m: pointer to message to be signed
* - unsigned long long mlen: length of message
* - const unsigned char *sk: pointer to bit-packed secret key
*
* Returns 0 (success)
**************************************************/
int PQCLEAN_DILITHIUM3_CLEAN_crypto_sign(uint8_t *sm,
size_t *smlen,
const uint8_t *m,
size_t mlen,
const uint8_t *sk) {
size_t i;
int rc;
for (i = 0; i < mlen; i++) {
sm[CRYPTO_BYTES + i] = m[i];
}
rc = PQCLEAN_DILITHIUM3_CLEAN_crypto_sign_signature(sm, smlen, m, mlen, sk);
*smlen += mlen;
return rc;
}
/*************************************************
* Name: crypto_sign_open
*
* Description: Verify signed message.
*
* Arguments: - unsigned char *m: pointer to output message (allocated
* array with smlen bytes), can be equal to sm
* - unsigned long long *mlen: pointer to output length of message
* - const unsigned char *sm: pointer to signed message
* - unsigned long long smlen: length of signed message
* - const unsigned char *pk: pointer to bit-packed public key
*
* Returns 0 if signed message could be verified correctly and -1 otherwise
**************************************************/
int PQCLEAN_DILITHIUM3_CLEAN_crypto_sign_open(uint8_t *m,
size_t *mlen,
const uint8_t *sm,
size_t smlen,
const uint8_t *pk) {
size_t i;
if (smlen < CRYPTO_BYTES) {
goto badsig;
}
*mlen = smlen - CRYPTO_BYTES;
if (PQCLEAN_DILITHIUM3_CLEAN_crypto_sign_verify(sm, CRYPTO_BYTES,
sm + CRYPTO_BYTES, *mlen, pk)) {
goto badsig;
} else {
/* All good, copy msg, return 0 */
for (i = 0; i < *mlen; ++i) {
m[i] = sm[CRYPTO_BYTES + i];
}
return 0;
}
/* Signature verification failed */
badsig:
*mlen = (size_t) -1;
for (i = 0; i < smlen; ++i) {
m[i] = 0;
}
return -1;
}