1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-27 09:51:30 +00:00
pqcrypto/crypto_kem/mceliece348864/sse/decrypt.c
Thom Wiggers b3f9d4f8d6
Classic McEliece (#259)
* Add McEliece reference implementations

* Add Vec implementations of McEliece

* Add sse implementations

* Add AVX2 implementations

* Get rid of stuff not supported by Mac ABI

* restrict to two cores

* Ditch .data files

* Remove .hidden from all .S files

* speed up duplicate consistency tests by batching

* make cpuinfo more robust

* Hope to stabilize macos cpuinfo without ccache

* Revert "Hope to stabilize macos cpuinfo without ccache"

This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322.

* Just hardcode what's available at travis

* Fixed-size types in api.h

* namespace all header files in mceliece

* Ditch operations.h

* Get rid of static inline functions

* fixup! Ditch operations.h
2020-02-05 13:09:56 +01:00

204 lines
4.9 KiB
C

/*
This file is for Niederreiter decryption
*/
#include "decrypt.h"
#include "benes.h"
#include "bm.h"
#include "fft.h"
#include "fft_tr.h"
#include "params.h"
#include "util.h"
#include <stdio.h>
static void scaling(vec128 out[][GFBITS], vec128 inv[][GFBITS], const unsigned char *sk, vec128 *recv) {
int i, j;
uint64_t irr_int[ GFBITS ];
vec128 eval[32][ GFBITS ];
vec128 tmp[ GFBITS ];
//
PQCLEAN_MCELIECE348864_SSE_irr_load(irr_int, sk);
PQCLEAN_MCELIECE348864_SSE_fft(eval, irr_int);
for (i = 0; i < 32; i++) {
PQCLEAN_MCELIECE348864_SSE_vec128_sq(eval[i], eval[i]);
}
PQCLEAN_MCELIECE348864_SSE_vec128_copy(inv[0], eval[0]);
for (i = 1; i < 32; i++) {
PQCLEAN_MCELIECE348864_SSE_vec128_mul(inv[i], inv[i - 1], eval[i]);
}
PQCLEAN_MCELIECE348864_SSE_vec128_inv(tmp, inv[31]);
for (i = 30; i >= 0; i--) {
PQCLEAN_MCELIECE348864_SSE_vec128_mul(inv[i + 1], tmp, inv[i]);
PQCLEAN_MCELIECE348864_SSE_vec128_mul(tmp, tmp, eval[i + 1]);
}
PQCLEAN_MCELIECE348864_SSE_vec128_copy(inv[0], tmp);
//
for (i = 0; i < 32; i++) {
for (j = 0; j < GFBITS; j++) {
out[i][j] = PQCLEAN_MCELIECE348864_SSE_vec128_and(inv[i][j], recv[i]);
}
}
}
static void preprocess(vec128 *recv, const unsigned char *s) {
int i;
uint8_t r[ 512 ];
for (i = 0; i < SYND_BYTES; i++) {
r[i] = s[i];
}
for (i = SYND_BYTES; i < 512; i++) {
r[i] = 0;
}
for (i = 0; i < 32; i++) {
recv[i] = PQCLEAN_MCELIECE348864_SSE_load16(r + i * 16);
}
}
static void postprocess(unsigned char *e, vec128 *err) {
int i;
unsigned char error8[ (1 << GFBITS) / 8 ];
uint64_t v[2];
for (i = 0; i < 32; i++) {
v[0] = PQCLEAN_MCELIECE348864_SSE_vec128_extract(err[i], 0);
v[1] = PQCLEAN_MCELIECE348864_SSE_vec128_extract(err[i], 1);
PQCLEAN_MCELIECE348864_SSE_store8(error8 + i * 16 + 0, v[0]);
PQCLEAN_MCELIECE348864_SSE_store8(error8 + i * 16 + 8, v[1]);
}
for (i = 0; i < SYS_N / 8; i++) {
e[i] = error8[i];
}
}
static void scaling_inv(vec128 out[][GFBITS], vec128 inv[][GFBITS], vec128 *recv) {
int i, j;
for (i = 0; i < 32; i++) {
for (j = 0; j < GFBITS; j++) {
out[i][j] = PQCLEAN_MCELIECE348864_SSE_vec128_and(inv[i][j], recv[i]);
}
}
}
static uint16_t weight_check(unsigned char *e, vec128 *error) {
int i;
uint16_t w0 = 0;
uint16_t w1 = 0;
uint16_t check;
for (i = 0; i < 32; i++) {
w0 += _mm_popcnt_u64( PQCLEAN_MCELIECE348864_SSE_vec128_extract(error[i], 0) );
w0 += _mm_popcnt_u64( PQCLEAN_MCELIECE348864_SSE_vec128_extract(error[i], 1) );
}
for (i = 0; i < SYS_N / 8; i++) {
w1 += _mm_popcnt_u32( e[i] );
}
check = (w0 ^ SYS_T) | (w1 ^ SYS_T);
check -= 1;
check >>= 15;
return check;
}
static uint64_t synd_cmp(vec128 s0[ GFBITS ], vec128 s1[ GFBITS ]) {
int i;
vec128 diff;
diff = PQCLEAN_MCELIECE348864_SSE_vec128_xor(s0[0], s1[0]);
for (i = 1; i < GFBITS; i++) {
diff = PQCLEAN_MCELIECE348864_SSE_vec128_or(diff, PQCLEAN_MCELIECE348864_SSE_vec128_xor(s0[i], s1[i]));
}
return PQCLEAN_MCELIECE348864_SSE_vec128_testz(diff);
}
/* Niederreiter decryption with the Berlekamp decoder */
/* intput: sk, secret key */
/* c, ciphertext (syndrome) */
/* output: e, error vector */
/* return: 0 for success; 1 for failure */
int PQCLEAN_MCELIECE348864_SSE_decrypt(unsigned char *e, const unsigned char *sk, const unsigned char *c) {
int i;
uint16_t check_synd;
uint16_t check_weight;
vec128 inv[ 32 ][ GFBITS ];
vec128 scaled[ 32 ][ GFBITS ];
vec128 eval[ 32 ][ GFBITS ];
vec128 error[ 32 ];
vec128 s_priv[ GFBITS ];
vec128 s_priv_cmp[ GFBITS ];
uint64_t locator[ GFBITS ];
vec128 recv[ 32 ];
vec128 allone;
uint64_t bits_int[23][32];
// Berlekamp decoder
preprocess(recv, c);
PQCLEAN_MCELIECE348864_SSE_load_bits(bits_int, sk + IRR_BYTES);
PQCLEAN_MCELIECE348864_SSE_benes((uint64_t *) recv, bits_int, 1);
scaling(scaled, inv, sk, recv);
PQCLEAN_MCELIECE348864_SSE_fft_tr(s_priv, scaled);
PQCLEAN_MCELIECE348864_SSE_bm(locator, s_priv);
PQCLEAN_MCELIECE348864_SSE_fft(eval, locator);
// reencryption and weight check
allone = PQCLEAN_MCELIECE348864_SSE_vec128_setbits(1);
for (i = 0; i < 32; i++) {
error[i] = PQCLEAN_MCELIECE348864_SSE_vec128_or_reduce(eval[i]);
error[i] = PQCLEAN_MCELIECE348864_SSE_vec128_xor(error[i], allone);
}
scaling_inv(scaled, inv, error);
PQCLEAN_MCELIECE348864_SSE_fft_tr(s_priv_cmp, scaled);
check_synd = synd_cmp(s_priv, s_priv_cmp);
//
PQCLEAN_MCELIECE348864_SSE_benes((uint64_t *) error, bits_int, 0);
postprocess(e, error);
check_weight = weight_check(e, error);
return 1 - (check_synd & check_weight);
}