1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-26 17:31:38 +00:00
pqcrypto/crypto_kem/firesaber/clean/SABER_indcpa.c
2019-06-24 09:14:24 +02:00

299 lines
9.1 KiB
C

#include "SABER_indcpa.h"
#include "SABER_params.h"
#include "fips202.h"
#include "pack_unpack.h"
#include "poly.h"
#include "poly_mul.h"
#include "randombytes.h"
#include <stdint.h>
#include <string.h>
/*-----------------------------------------------------------------------------------
This routine generates a=[Matrix K x K] of 256-coefficient polynomials
-------------------------------------------------------------------------------------*/
#define h1 4 //2^(EQ-EP-1)
#define h2 ( (1<<(SABER_EP-2)) - (1<<(SABER_EP-SABER_ET-1)) + (1<<(SABER_EQ-SABER_EP-1)) )
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]);
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose);
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec);
static void GenMatrix(polyvec *a, const unsigned char *seed) {
unsigned char buf[SABER_K * SABER_K * (13 * SABER_N / 8)];
uint16_t temp_ar[SABER_N];
int i, j, k;
uint16_t mod = (SABER_Q - 1);
shake128(buf, sizeof(buf), seed, SABER_SEEDBYTES);
for (i = 0; i < SABER_K; i++) {
for (j = 0; j < SABER_K; j++) {
PQCLEAN_FIRESABER_CLEAN_BS2POL(buf + (i * SABER_K + j) * (13 * SABER_N / 8), temp_ar);
for (k = 0; k < SABER_N; k++) {
a[i].vec[j].coeffs[k] = (temp_ar[k])& mod ;
}
}
}
}
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) {
polyvec a[SABER_K];
uint16_t skpv[SABER_K][SABER_N];
unsigned char seed[SABER_SEEDBYTES];
unsigned char noiseseed[SABER_COINBYTES];
int32_t i, j;
uint16_t mod_q = SABER_Q - 1;
uint16_t res[SABER_K][SABER_N];
randombytes(seed, SABER_SEEDBYTES);
// for not revealing system RNG state
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES);
randombytes(noiseseed, SABER_COINBYTES);
GenMatrix(a, seed); //sample matrix A
// generate secret from constant-time binomial distribution
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv, noiseseed);
// do the matrix vector multiplication and rounding
for (i = 0; i < SABER_K; i++) {
for (j = 0; j < SABER_N; j++) {
res[i][j] = 0;
}
}
MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1);
// now rounding
for (i = 0; i < SABER_K; i++) {
for (j = 0; j < SABER_N; j++) {
// shift right 3 bits
res[i][j] = (res[i][j] + h1) & (mod_q);
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP));
}
}
// unload and pack sk=3 x (256 coefficients of 14 bits)
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q);
// unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits)
// load the public-key coefficients
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(pk, res, SABER_P);
// now load the seedbytes in PK. Easy since seed bytes are kept in byte format.
for (i = 0; i < SABER_SEEDBYTES; i++) {
pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i];
}
}
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) {
uint32_t i, j, k;
polyvec a[SABER_K];
unsigned char seed[SABER_SEEDBYTES];
// public key of received by the client
uint16_t pkcl[SABER_K][SABER_N];
uint16_t skpv1[SABER_K][SABER_N];
uint16_t message[SABER_KEYBYTES * 8];
uint16_t res[SABER_K][SABER_N];
uint16_t mod_p = SABER_P - 1;
uint16_t mod_q = SABER_Q - 1;
uint16_t vprime[SABER_N];
unsigned char msk_c[SABER_SCALEBYTES_KEM];
// extract the seedbytes from Public Key.
for (i = 0; i < SABER_SEEDBYTES; i++) {
seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i];
}
GenMatrix(a, seed);
// generate secret from constant-time binomial distribution
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv1, noiseseed);
// matrix-vector multiplication and rounding
for (i = 0; i < SABER_K; i++) {
for (j = 0; j < SABER_N; j++) {
res[i][j] = 0;
}
}
MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0);
// now rounding
//shift right 3 bits
for (i = 0; i < SABER_K; i++) {
for (j = 0; j < SABER_N; j++) {
res[i][j] = ( res[i][j] + h1 ) & mod_q;
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) );
}
}
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P);
// ************client matrix-vector multiplication ends************
// now calculate the v'
// unpack the public_key
// pkcl is the b in the protocol
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P);
for (i = 0; i < SABER_N; i++) {
vprime[i] = 0;
}
for (i = 0; i < SABER_K; i++) {
for (j = 0; j < SABER_N; j++) {
skpv1[i][j] = skpv1[i][j] & (mod_p);
}
}
// vector-vector scalar multiplication with mod p
InnerProd(pkcl, skpv1, mod_p, vprime);
// addition of h1 to vprime
for (i = 0; i < SABER_N; i++) {
vprime[i] = vprime[i] + h1;
}
// unpack message_received;
for (j = 0; j < SABER_KEYBYTES; j++) {
for (i = 0; i < 8; i++) {
message[8 * j + i] = ((message_received[j] >> i) & 0x01);
}
}
// message encoding
for (i = 0; i < SABER_N; i++) {
message[i] = (message[i] << (SABER_EP - 1));
}
for (k = 0; k < SABER_N; k++) {
vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET);
}
PQCLEAN_FIRESABER_CLEAN_pack_6bit(msk_c, vprime);
for (j = 0; j < SABER_SCALEBYTES_KEM; j++) {
ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j];
}
}
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) {
uint32_t i, j;
// secret key of the server
uint16_t sksv[SABER_K][SABER_N];
uint16_t pksv[SABER_K][SABER_N];
uint8_t scale_ar[SABER_SCALEBYTES_KEM];
uint16_t mod_p = SABER_P - 1;
uint16_t v[SABER_N];
uint16_t op[SABER_N];
// sksv is the secret-key
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q);
// pksv is the ciphertext
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P);
// vector-vector scalar multiplication with mod p
for (i = 0; i < SABER_N; i++) {
v[i] = 0;
}
for (i = 0; i < SABER_K; i++) {
for (j = 0; j < SABER_N; j++) {
sksv[i][j] = sksv[i][j] & (mod_p);
}
}
InnerProd(pksv, sksv, mod_p, v);
//Extraction
for (i = 0; i < SABER_SCALEBYTES_KEM; i++) {
scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i];
}
PQCLEAN_FIRESABER_CLEAN_un_pack6bit(scale_ar, op);
//addition of h1
for (i = 0; i < SABER_N; i++) {
v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1);
}
// pack decrypted message
POL2MSG(v, message_dec);
}
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) {
uint16_t acc[SABER_N];
int32_t i, j, k;
if (transpose == 1) {
for (i = 0; i < SABER_K; i++) {
for (j = 0; j < SABER_K; j++) {
PQCLEAN_FIRESABER_CLEAN_pol_mul((uint16_t *)&a[j].vec[i], skpv[j], acc, SABER_Q, SABER_N);
for (k = 0; k < SABER_N; k++) {
res[i][k] = res[i][k] + acc[k];
//reduction mod p
res[i][k] = (res[i][k] & mod);
//clear the accumulator
acc[k] = 0;
}
}
}
} else {
for (i = 0; i < SABER_K; i++) {
for (j = 0; j < SABER_K; j++) {
PQCLEAN_FIRESABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N);
for (k = 0; k < SABER_N; k++) {
res[i][k] = res[i][k] + acc[k];
// reduction
res[i][k] = res[i][k] & mod;
// clear the accumulator
acc[k] = 0;
}
}
}
}
}
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) {
int32_t i, j;
for (j = 0; j < SABER_KEYBYTES; j++) {
message_dec[j] = 0;
for (i = 0; i < 8; i++) {
message_dec[j] = message_dec[j] | (uint8_t) (message_dec_unpacked[j * 8 + i] << i);
}
}
}
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) {
uint32_t j, k;
uint16_t acc[SABER_N];
// vector-vector scalar multiplication with mod p
for (j = 0; j < SABER_K; j++) {
PQCLEAN_FIRESABER_CLEAN_pol_mul(pkcl[j], skpv[j], acc, SABER_P, SABER_N);
for (k = 0; k < SABER_N; k++) {
res[k] = res[k] + acc[k];
// reduction
res[k] = res[k] & mod;
// clear the accumulator
acc[k] = 0;
}
}
}