mirror of
https://github.com/henrydcase/pqc.git
synced 2024-11-24 00:11:27 +00:00
586 lines
19 KiB
C
586 lines
19 KiB
C
#include "gf2x_arith_mod_xPplusOne.h"
|
|
#include "rng.h"
|
|
|
|
#include <assert.h>
|
|
#include <string.h> // memcpy(...), memset(...)
|
|
|
|
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
|
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
|
dest[i] = in[i];
|
|
}
|
|
}
|
|
|
|
/* returns the coefficient of the x^exponent term as the LSB of a digit */
|
|
DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
|
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
|
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
|
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
|
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ;
|
|
}
|
|
|
|
/* sets the coefficient of the x^exponent term as the LSB of a digit */
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
|
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
|
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
|
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
|
|
|
/* clear given coefficient */
|
|
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
|
poly[digitIdx] = poly[digitIdx] & mask;
|
|
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
|
}
|
|
|
|
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
|
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
|
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
|
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
|
|
|
/* clear given coefficient */
|
|
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
|
poly[digitIdx] = poly[digitIdx] ^ mask;
|
|
}
|
|
|
|
/* population count for an unsigned 64-bit integer
|
|
Source: Hacker's delight, p.66 */
|
|
static int popcount_uint64t(uint64_t x) {
|
|
x -= (x >> 1) & 0x5555555555555555;
|
|
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
|
|
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f;
|
|
return (int)((x * 0x0101010101010101) >> 56);
|
|
}
|
|
|
|
/* population count for a single polynomial */
|
|
int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly) {
|
|
int ret = 0;
|
|
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
|
ret += popcount_uint64t(poly[i]);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
|
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
|
|
}
|
|
|
|
static int partition(POSITION_T arr[], int lo, int hi) {
|
|
POSITION_T x = arr[hi];
|
|
POSITION_T tmp;
|
|
int i = (lo - 1);
|
|
for (int j = lo; j <= hi - 1; j++) {
|
|
if (arr[j] <= x) {
|
|
i++;
|
|
tmp = arr[i];
|
|
arr[i] = arr[j];
|
|
arr[j] = tmp;
|
|
}
|
|
}
|
|
tmp = arr[i + 1];
|
|
arr[i + 1] = arr[hi];
|
|
arr[hi] = tmp;
|
|
|
|
return i + 1;
|
|
}
|
|
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]) {
|
|
int stack[DV * M];
|
|
int hi, lo, pivot, tos = -1;
|
|
stack[++tos] = 0;
|
|
stack[++tos] = (DV * M) - 1;
|
|
while (tos >= 0 ) {
|
|
hi = stack[tos--];
|
|
lo = stack[tos--];
|
|
pivot = partition(Res, lo, hi);
|
|
if ( (pivot - 1) > lo) {
|
|
stack[++tos] = lo;
|
|
stack[++tos] = pivot - 1;
|
|
}
|
|
if ( (pivot + 1) < hi) {
|
|
stack[++tos] = pivot + 1;
|
|
stack[++tos] = hi;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gf2x_mod(DIGIT out[], const DIGIT in[]) {
|
|
|
|
int i, j, posTrailingBit, maskOffset;
|
|
DIGIT mask, aux[2 * NUM_DIGITS_GF2X_ELEMENT];
|
|
|
|
memcpy(aux, in, 2 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
|
memset(out, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
|
|
|
for (i = 0; i < (2 * NUM_DIGITS_GF2X_ELEMENT) - NUM_DIGITS_GF2X_MODULUS; i += 1) {
|
|
for (j = DIGIT_SIZE_b - 1; j >= 0; j--) {
|
|
mask = ((DIGIT)0x1) << j;
|
|
if (aux[i] & mask) {
|
|
aux[i] ^= mask;
|
|
posTrailingBit = (DIGIT_SIZE_b - 1 - j) + i * DIGIT_SIZE_b + P;
|
|
maskOffset = (DIGIT_SIZE_b - 1 - (posTrailingBit % DIGIT_SIZE_b));
|
|
mask = (DIGIT) 0x1 << maskOffset;
|
|
aux[posTrailingBit / DIGIT_SIZE_b] ^= mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (j = DIGIT_SIZE_b - 1; j >= MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS; j--) {
|
|
mask = ((DIGIT)0x1) << j;
|
|
if (aux[i] & mask) {
|
|
aux[i] ^= mask;
|
|
posTrailingBit = (DIGIT_SIZE_b - 1 - j) + i * DIGIT_SIZE_b + P;
|
|
maskOffset = (DIGIT_SIZE_b - 1 - (posTrailingBit % DIGIT_SIZE_b));
|
|
mask = (DIGIT) 0x1 << maskOffset;
|
|
aux[posTrailingBit / DIGIT_SIZE_b] ^= mask;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
|
out[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = aux[2 * NUM_DIGITS_GF2X_ELEMENT - 1 - i];
|
|
}
|
|
|
|
}
|
|
|
|
static void left_bit_shift(const int length, DIGIT in[]) {
|
|
|
|
int j;
|
|
for (j = 0; j < length - 1; j++) {
|
|
in[j] <<= 1; /* logical shift does not need clearing */
|
|
in[j] |= in[j + 1] >> (DIGIT_SIZE_b - 1);
|
|
}
|
|
in[j] <<= 1;
|
|
}
|
|
|
|
static void right_bit_shift(unsigned int length, DIGIT in[]) {
|
|
|
|
unsigned int j;
|
|
for (j = length - 1; j > 0 ; j--) {
|
|
in[j] >>= 1;
|
|
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1);
|
|
}
|
|
in[j] >>= 1;
|
|
}
|
|
|
|
|
|
/* shifts by whole digits */
|
|
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) {
|
|
unsigned int j;
|
|
for (j = 0; (j + amount) < length; j++) {
|
|
in[j] = in[j + amount];
|
|
}
|
|
for (; j < length; j++) {
|
|
in[j] = (DIGIT)0;
|
|
}
|
|
}
|
|
|
|
/* may shift by an arbitrary amount*/
|
|
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
|
|
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
|
|
PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
|
}
|
|
|
|
/* Hackers delight, reverses a uint64_t */
|
|
static DIGIT reverse_digit(DIGIT x) {
|
|
uint64_t t;
|
|
x = (x << 31) | (x >> 33);
|
|
t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL;
|
|
x = (t | (t << 20)) ^ x;
|
|
t = (x ^ (x >> 8)) & 0x00F8000F80700807LL;
|
|
x = (t | (t << 8)) ^ x;
|
|
t = (x ^ (x >> 4)) & 0x0808708080807008LL;
|
|
x = (t | (t << 4)) ^ x;
|
|
t = (x ^ (x >> 2)) & 0x1111111111111111LL;
|
|
x = (t | (t << 2)) ^ x;
|
|
return x;
|
|
}
|
|
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
|
|
/* it keeps the lsb in the same position and
|
|
* inverts the sequence of the remaining bits */
|
|
|
|
DIGIT mask = (DIGIT)0x1;
|
|
DIGIT rev1, rev2, a00;
|
|
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
|
|
|
|
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask;
|
|
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A);
|
|
|
|
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
|
|
rev1 = reverse_digit(A[i]);
|
|
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]);
|
|
A[i] = rev2;
|
|
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1;
|
|
}
|
|
|
|
// A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // no middle digit
|
|
|
|
if (slack_bits_amount) {
|
|
PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
|
}
|
|
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00;
|
|
}
|
|
|
|
static void rotate_bit_left(DIGIT in[]) { /* equivalent to x * in(x) mod x^P+1 */
|
|
|
|
DIGIT mask, rotated_bit;
|
|
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1;
|
|
mask = ((DIGIT)0x1) << msb_offset_in_digit;
|
|
rotated_bit = !!(in[0] & mask);
|
|
in[0] &= ~mask;
|
|
left_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in);
|
|
in[NUM_DIGITS_GF2X_ELEMENT - 1] |= rotated_bit;
|
|
}
|
|
|
|
static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */
|
|
|
|
DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1);
|
|
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in);
|
|
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1;
|
|
rotated_bit = rotated_bit << msb_offset_in_digit;
|
|
in[0] |= rotated_bit;
|
|
}
|
|
|
|
static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) {
|
|
DIGIT t;
|
|
for (int i = length - 1; i >= 0; i--) {
|
|
t = f[i];
|
|
f[i] = s[i];
|
|
s[i] = t;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Optimized extended GCD algorithm to compute the multiplicative inverse of
|
|
* a non-zero element in GF(2)[x] mod x^P+1, in polyn. representation.
|
|
*
|
|
* H. Brunner, A. Curiger, and M. Hofstetter. 1993.
|
|
* On Computing Multiplicative Inverses in GF(2^m).
|
|
* IEEE Trans. Comput. 42, 8 (August 1993), 1010-1015.
|
|
* DOI=http://dx.doi.org/10.1109/12.238496
|
|
*
|
|
*
|
|
* Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange,
|
|
* Kim Nguyen, and Frederik Vercauteren. 2012.
|
|
* Handbook of Elliptic and Hyperelliptic Curve Cryptography,
|
|
* Second Edition (2nd ed.). Chapman & Hall/CRC.
|
|
* (Chapter 11 -- Algorithm 11.44 -- pag 223)
|
|
*
|
|
*/
|
|
int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
|
|
|
|
int i;
|
|
int delta = 0;
|
|
DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0};
|
|
DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0};
|
|
DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0};
|
|
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // alignas(32)?
|
|
|
|
DIGIT mask;
|
|
u[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x1;
|
|
v[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x0;
|
|
|
|
s[NUM_DIGITS_GF2X_MODULUS - 1] = 0x1;
|
|
|
|
mask = (((DIGIT)0x1) << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS);
|
|
s[0] |= mask;
|
|
|
|
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 && in[i] == 0; i--) { };
|
|
if (i < 0) {
|
|
return 0;
|
|
}
|
|
|
|
for (i = NUM_DIGITS_GF2X_MODULUS - 1; i >= 0 ; i--) {
|
|
f[i] = in[i];
|
|
}
|
|
|
|
for (i = 1; i <= 2 * P; i++) {
|
|
if ( (f[0] & mask) == 0 ) {
|
|
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, f);
|
|
rotate_bit_left(u);
|
|
delta += 1;
|
|
} else {
|
|
if ( (s[0] & mask) != 0) {
|
|
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
|
|
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(v, v, u);
|
|
}
|
|
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s);
|
|
if ( delta == 0 ) {
|
|
gf2x_swap(NUM_DIGITS_GF2X_MODULUS, f, s);
|
|
gf2x_swap(NUM_DIGITS_GF2X_ELEMENT, u, v);
|
|
rotate_bit_left(u);
|
|
delta = 1;
|
|
} else {
|
|
rotate_bit_right(u);
|
|
delta = delta - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 ; i--) {
|
|
out[i] = u[i];
|
|
}
|
|
|
|
return (delta == 0);
|
|
}
|
|
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
|
|
|
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT];
|
|
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux,
|
|
NUM_DIGITS_GF2X_ELEMENT, A,
|
|
NUM_DIGITS_GF2X_ELEMENT, B);
|
|
gf2x_mod(Res, aux);
|
|
|
|
}
|
|
|
|
/*PRE: the representation of the sparse coefficients is sorted in increasing
|
|
order of the coefficients themselves */
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
|
DIGIT Res[],
|
|
const DIGIT dense[],
|
|
POSITION_T sparse[], unsigned int nPos) {
|
|
|
|
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
|
|
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
|
|
memcpy(aux + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
|
memcpy(resDouble + NUM_DIGITS_GF2X_ELEMENT, dense,
|
|
NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
|
|
|
if (sparse[0] != INVALID_POS_VALUE) {
|
|
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]);
|
|
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]);
|
|
|
|
for (unsigned int i = 1; i < nPos; i++) {
|
|
if (sparse[i] != INVALID_POS_VALUE) {
|
|
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
|
|
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
|
}
|
|
}
|
|
}
|
|
|
|
gf2x_mod(Res, resDouble);
|
|
|
|
}
|
|
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
|
|
|
POSITION_T t;
|
|
int i = 0, j;
|
|
|
|
if (A[i] == 0) {
|
|
i = 1;
|
|
}
|
|
j = i;
|
|
|
|
for (; i < sizeA && A[i] != INVALID_POS_VALUE; i++) {
|
|
A[i] = P - A[i];
|
|
}
|
|
|
|
for (i -= 1; j < i; j++, i--) {
|
|
t = A[j];
|
|
A[j] = A[i];
|
|
A[i] = t;
|
|
}
|
|
|
|
}
|
|
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
|
|
size_t sizeA, const POSITION_T A[],
|
|
size_t sizeB, const POSITION_T B[]) {
|
|
|
|
/* compute all the coefficients, filling invalid positions with P*/
|
|
size_t lastFilledPos = 0;
|
|
for (size_t i = 0 ; i < sizeA ; i++) {
|
|
for (size_t j = 0 ; j < sizeB ; j++) {
|
|
uint32_t prod = A[i] + B[j];
|
|
prod = ( (prod >= P) ? prod - P : prod);
|
|
if ((A[i] != INVALID_POS_VALUE) &&
|
|
(B[j] != INVALID_POS_VALUE)) {
|
|
Res[lastFilledPos] = prod;
|
|
} else {
|
|
Res[lastFilledPos] = INVALID_POS_VALUE;
|
|
}
|
|
lastFilledPos++;
|
|
}
|
|
}
|
|
while (lastFilledPos < sizeR) {
|
|
Res[lastFilledPos] = INVALID_POS_VALUE;
|
|
lastFilledPos++;
|
|
}
|
|
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(Res);
|
|
/* eliminate duplicates */
|
|
POSITION_T lastReadPos = Res[0];
|
|
int duplicateCount;
|
|
size_t write_idx = 0;
|
|
size_t read_idx = 0;
|
|
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) {
|
|
lastReadPos = Res[read_idx];
|
|
read_idx++;
|
|
duplicateCount = 1;
|
|
while ( (Res[read_idx] == lastReadPos) && (Res[read_idx] != INVALID_POS_VALUE)) {
|
|
read_idx++;
|
|
duplicateCount++;
|
|
}
|
|
if (duplicateCount % 2) {
|
|
Res[write_idx] = lastReadPos;
|
|
write_idx++;
|
|
}
|
|
}
|
|
/* fill remaining cells with INVALID_POS_VALUE */
|
|
for (; write_idx < sizeR; write_idx++) {
|
|
Res[write_idx] = INVALID_POS_VALUE;
|
|
}
|
|
}
|
|
|
|
/* the implementation is safe even in case A or B alias with the result */
|
|
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(
|
|
int sizeR, POSITION_T Res[],
|
|
int sizeA, const POSITION_T A[],
|
|
int sizeB, const POSITION_T B[]) {
|
|
|
|
POSITION_T tmpRes[DV * M]; // TODO: now function only works for adding (disjunct) DV and M positions
|
|
int idxA = 0, idxB = 0, idxR = 0;
|
|
while ( idxA < sizeA &&
|
|
idxB < sizeB &&
|
|
A[idxA] != INVALID_POS_VALUE &&
|
|
B[idxB] != INVALID_POS_VALUE ) {
|
|
|
|
if (A[idxA] == B[idxB]) {
|
|
idxA++;
|
|
idxB++;
|
|
} else {
|
|
if (A[idxA] < B[idxB]) {
|
|
tmpRes[idxR] = A[idxA];
|
|
idxA++;
|
|
} else {
|
|
tmpRes[idxR] = B[idxB];
|
|
idxB++;
|
|
}
|
|
idxR++;
|
|
}
|
|
}
|
|
|
|
while (idxA < sizeA && A[idxA] != INVALID_POS_VALUE) {
|
|
tmpRes[idxR] = A[idxA];
|
|
idxA++;
|
|
idxR++;
|
|
}
|
|
|
|
while (idxB < sizeB && B[idxB] != INVALID_POS_VALUE) {
|
|
tmpRes[idxR] = B[idxB];
|
|
idxB++;
|
|
idxR++;
|
|
}
|
|
|
|
while (idxR < sizeR) {
|
|
tmpRes[idxR] = INVALID_POS_VALUE;
|
|
idxR++;
|
|
}
|
|
memcpy(Res, tmpRes, sizeof(POSITION_T)*sizeR);
|
|
|
|
}
|
|
|
|
/* Return a uniform random value in the range 0..n-1 inclusive,
|
|
* applying a rejection sampling strategy and exploiting as a random source
|
|
* the NIST seedexpander seeded with the proper key.
|
|
* Assumes that the maximum value for the range n is 2^32-1
|
|
*/
|
|
static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct *seed_expander_ctx) {
|
|
unsigned long required_rnd_bytes = (logn + 7) / 8;
|
|
unsigned char rnd_char_buffer[4];
|
|
uint32_t rnd_value;
|
|
uint32_t mask = ( (uint32_t)1 << logn) - 1;
|
|
|
|
do {
|
|
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
|
|
/* obtain an endianness independent representation of the generated random
|
|
bytes into an unsigned integer */
|
|
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) +
|
|
((uint32_t)rnd_char_buffer[2] << 16) +
|
|
((uint32_t)rnd_char_buffer[1] << 8) +
|
|
((uint32_t)rnd_char_buffer[0] << 0) ;
|
|
rnd_value = mask & rnd_value;
|
|
} while (rnd_value >= n);
|
|
|
|
return rnd_value;
|
|
}
|
|
|
|
/* Obtains fresh randomness and seed-expands it until all the required positions
|
|
* for the '1's in the circulant block are obtained */
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
|
int countOnes,
|
|
AES_XOF_struct *seed_expander_ctx) {
|
|
|
|
int duplicated, placedOnes = 0;
|
|
uint32_t p;
|
|
|
|
while (placedOnes < countOnes) {
|
|
p = rand_range(NUM_BITS_GF2X_ELEMENT,
|
|
P_BITS,
|
|
seed_expander_ctx);
|
|
duplicated = 0;
|
|
for (int j = 0; j < placedOnes; j++) {
|
|
if (pos_ones[j] == p) {
|
|
duplicated = 1;
|
|
}
|
|
}
|
|
if (duplicated == 0) {
|
|
pos_ones[placedOnes] = p;
|
|
placedOnes++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Returns random weight-t circulant block */
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(
|
|
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT],
|
|
AES_XOF_struct *seed_expander_ctx) {
|
|
|
|
int rndPos[NUM_ERRORS_T], duplicated, counter = 0;
|
|
int p, polyIndex, exponent;
|
|
|
|
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
|
|
|
while (counter < NUM_ERRORS_T) {
|
|
p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS,
|
|
seed_expander_ctx);
|
|
duplicated = 0;
|
|
for (int j = 0; j < counter; j++) {
|
|
if (rndPos[j] == p) {
|
|
duplicated = 1;
|
|
}
|
|
}
|
|
if (duplicated == 0) {
|
|
rndPos[counter] = p;
|
|
counter++;
|
|
}
|
|
}
|
|
for (int j = 0; j < counter; j++) {
|
|
polyIndex = rndPos[j] / P;
|
|
exponent = rndPos[j] % P;
|
|
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
|
|
( (DIGIT) 1));
|
|
}
|
|
|
|
}
|
|
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
|
size_t i, j;
|
|
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
|
for (j = 0; j < DIGIT_SIZE_B; j++) {
|
|
bytes[i * DIGIT_SIZE_B + j] = (uint8_t) (poly[i] >> 8 * j);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
|
|
size_t i, j;
|
|
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
|
poly[i] = (DIGIT) 0;
|
|
for (j = 0; j < DIGIT_SIZE_B; j++) {
|
|
poly[i] |= (DIGIT) poly_bytes[i * DIGIT_SIZE_B + j] << 8 * j;
|
|
}
|
|
}
|
|
}
|