1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-24 00:11:27 +00:00
pqcrypto/crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.c
2019-08-24 16:40:47 +02:00

532 lines
17 KiB
C

#include "gf2x_arith_mod_xPplusOne.h"
#include "rng.h"
#include "sort.h"
#include <string.h> // memcpy(...), memset(...)
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
dest[i] = in[i];
}
}
/* returns the coefficient of the x^exponent term as the LSB of a digit */
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ;
}
/* sets the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
/* clear given coefficient */
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] & mask;
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
}
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) {
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
/* clear given coefficient */
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
poly[digitIdx] = poly[digitIdx] ^ mask;
}
/* population count for an unsigned 64-bit integer
Source: Hacker's delight, p.66 */
static int popcount_uint64t(uint64_t x) {
x -= (x >> 1) & 0x5555555555555555;
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f;
return (int)((x * 0x0101010101010101) >> 56);
}
/* population count for a single polynomial */
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(const DIGIT *poly) {
int ret = 0;
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
ret += popcount_uint64t(poly[i]);
}
return ret;
}
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
}
static void gf2x_mod(DIGIT out[], const DIGIT in[]) {
DIGIT aux[NUM_DIGITS_GF2X_ELEMENT + 1];
memcpy(aux, in, (NUM_DIGITS_GF2X_ELEMENT + 1)*DIGIT_SIZE_B);
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT + 1, aux,
MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(out, aux + 1, in + NUM_DIGITS_GF2X_ELEMENT,
NUM_DIGITS_GF2X_ELEMENT);
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1;
}
static void right_bit_shift(size_t length, DIGIT in[]) {
size_t j;
for (j = length - 1; j > 0; j--) {
in[j] >>= 1;
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1);
}
in[j] >>= 1;
}
/* shifts by whole digits */
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) {
size_t j;
for (j = 0; (j + amount) < length; j++) {
in[j] = in[j + amount];
}
for (; j < length; j++) {
in[j] = (DIGIT)0;
}
}
/* may shift by an arbitrary amount*/
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) {
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
}
/* Hackers delight, reverses a uint64_t */
static DIGIT reverse_digit(DIGIT x) {
uint64_t t;
x = (x << 31) | (x >> 33);
t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL;
x = (t | (t << 20)) ^ x;
t = (x ^ (x >> 8)) & 0x00F8000F80700807LL;
x = (t | (t << 8)) ^ x;
t = (x ^ (x >> 4)) & 0x0808708080807008LL;
x = (t | (t << 4)) ^ x;
t = (x ^ (x >> 2)) & 0x1111111111111111LL;
x = (t | (t << 2)) ^ x;
return x;
}
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
/* it keeps the lsb in the same position and
* inverts the sequence of the remaining bits */
DIGIT mask = (DIGIT)0x1;
DIGIT rev1, rev2, a00;
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask;
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A);
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
rev1 = reverse_digit(A[i]);
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]);
A[i] = rev2;
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1;
}
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);
if (slack_bits_amount) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
}
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00;
}
static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */
DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1);
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in);
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1;
rotated_bit = rotated_bit << msb_offset_in_digit;
in[0] |= rotated_bit;
}
/* cond swap: swaps digits A and B if swap_mask == -1 */
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) {
DIGIT t;
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
t = swap_mask & (a[i] ^ b[i]);
a[i] ^= t;
b[i] ^= t;
}
}
/* returns -1 mask if x != 0, otherwise 0 */
static inline int32_t nonzero(DIGIT x) {
DIGIT t = x;
t = (~t) + 1;
t >>= DIGIT_SIZE_b - 1;
return -((int32_t)t);
}
/* returns -1 mask if x < 0 else 0 */
static inline int32_t negative(int x) {
uint32_t u = x;
u >>= 31;
return -((int32_t)u);
}
/* return f(0) as digit */
static inline DIGIT lsb(const DIGIT *p) {
DIGIT mask = (DIGIT)1;
return p[NUM_DIGITS_GF2X_ELEMENT - 1] & mask;
}
/* multiply poly with scalar and accumulate, expects s all-zero of all-one mask */
static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) {
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
f[i] = f[i] ^ (s & g[i]);
}
}
/* constant-time inverse, source: gcd.cr.yp.to */
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
int32_t swap, delta = 1;
DIGIT g0_mask;
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1
DIGIT g[NUM_DIGITS_GF2X_ELEMENT]; // g = in
DIGIT *v = out; // v = 0, save space
DIGIT r[NUM_DIGITS_GF2X_ELEMENT] = {0}; // r = 1
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1;
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS);
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
g[i] = in[i];
}
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
v[i] = 0;
}
r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1;
for (int loop = 0; loop < 2 * P - 1; ++loop) {
swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap
delta++;
gf2x_cswap(f, g, swap);
gf2x_cswap(v, r, swap);
g0_mask = ~lsb(g) + 1;
// g = (g - g0 * f) / x
gf2x_mult_scalar_acc(g, f, g0_mask);
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, g);
// r = (r - g0 * v) / x
gf2x_mult_scalar_acc(r, v, g0_mask);
rotate_bit_right(r);
}
return nonzero(delta); // -1 if fail, 0 if success
}
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT];
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul(aux, A, B, NUM_DIGITS_GF2X_ELEMENT);
gf2x_mod(Res, aux);
}
/*PRE: the representation of the sparse coefficients is sorted in increasing
order of the coefficients themselves */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[],
POSITION_T sparse[], size_t nPos) {
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
memcpy(aux + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
memcpy(resDouble + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
if (sparse[0] != INVALID_POS_VALUE) {
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]);
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]);
for (size_t i = 1; i < nPos; i++) {
if (sparse[i] != INVALID_POS_VALUE) {
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
}
}
}
gf2x_mod(Res, resDouble);
}
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) {
POSITION_T t;
size_t i = 0, j;
if (A[i] == 0) {
i = 1;
}
j = i;
for (; i < sizeA && A[i] != INVALID_POS_VALUE; i++) {
A[i] = P - A[i];
}
for (i -= 1; j < i; j++, i--) {
t = A[j];
A[j] = A[i];
A[i] = t;
}
}
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
size_t sizeA, const POSITION_T A[],
size_t sizeB, const POSITION_T B[]) {
POSITION_T prod;
POSITION_T lastReadPos;
size_t duplicateCount;
size_t write_idx, read_idx;
/* compute all the coefficients, filling invalid positions with P*/
size_t lastFilledPos = 0;
for (size_t i = 0 ; i < sizeA ; i++) {
for (size_t j = 0 ; j < sizeB ; j++) {
prod = A[i] + B[j];
prod = ( (prod >= P) ? prod - P : prod);
if ((A[i] != INVALID_POS_VALUE) &&
(B[j] != INVALID_POS_VALUE)) {
Res[lastFilledPos] = prod;
} else {
Res[lastFilledPos] = INVALID_POS_VALUE;
}
lastFilledPos++;
}
}
while (lastFilledPos < sizeR) {
Res[lastFilledPos] = INVALID_POS_VALUE;
lastFilledPos++;
}
PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(Res, sizeR);
/* eliminate duplicates */
write_idx = read_idx = 0;
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) {
lastReadPos = Res[read_idx];
read_idx++;
duplicateCount = 1;
while ( (Res[read_idx] == lastReadPos) && (Res[read_idx] != INVALID_POS_VALUE)) {
read_idx++;
duplicateCount++;
}
if (duplicateCount % 2) {
Res[write_idx] = lastReadPos;
write_idx++;
}
}
/* fill remaining cells with INVALID_POS_VALUE */
for (; write_idx < sizeR; write_idx++) {
Res[write_idx] = INVALID_POS_VALUE;
}
}
/* the implementation is safe even in case A or B alias with the result
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[],
size_t sizeA, const POSITION_T A[],
size_t sizeB, const POSITION_T B[]) {
POSITION_T tmpRes[DV * M];
size_t idxA = 0, idxB = 0, idxR = 0;
while ( idxA < sizeA &&
idxB < sizeB &&
A[idxA] != INVALID_POS_VALUE &&
B[idxB] != INVALID_POS_VALUE ) {
if (A[idxA] == B[idxB]) {
idxA++;
idxB++;
} else {
if (A[idxA] < B[idxB]) {
tmpRes[idxR] = A[idxA];
idxA++;
} else {
tmpRes[idxR] = B[idxB];
idxB++;
}
idxR++;
}
}
while (idxA < sizeA && A[idxA] != INVALID_POS_VALUE) {
tmpRes[idxR] = A[idxA];
idxA++;
idxR++;
}
while (idxB < sizeB && B[idxB] != INVALID_POS_VALUE) {
tmpRes[idxR] = B[idxB];
idxB++;
idxR++;
}
while (idxR < sizeR) {
tmpRes[idxR] = INVALID_POS_VALUE;
idxR++;
}
memcpy(Res, tmpRes, sizeof(POSITION_T)*sizeR);
}
/* Return a uniform random value in the range 0..n-1 inclusive,
* applying a rejection sampling strategy and exploiting as a random source
* the NIST seedexpander seeded with the proper key.
* Assumes that the maximum value for the range n is 2^32-1
*/
static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct *seed_expander_ctx) {
unsigned long required_rnd_bytes = (logn + 7) / 8;
unsigned char rnd_char_buffer[4];
uint32_t rnd_value;
uint32_t mask = ( (uint32_t)1 << logn) - 1;
do {
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
/* obtain an endianness independent representation of the generated random
bytes into an unsigned integer */
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) +
((uint32_t)rnd_char_buffer[2] << 16) +
((uint32_t)rnd_char_buffer[1] << 8) +
((uint32_t)rnd_char_buffer[0] << 0) ;
rnd_value = mask & rnd_value;
} while (rnd_value >= n);
return rnd_value;
}
/* Obtains fresh randomness and seed-expands it until all the required positions
* for the '1's in the circulant block are obtained */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
size_t countOnes,
AES_XOF_struct *seed_expander_ctx) {
size_t duplicated, placedOnes = 0;
POSITION_T p;
while (placedOnes < countOnes) {
p = rand_range(NUM_BITS_GF2X_ELEMENT,
P_BITS,
seed_expander_ctx);
duplicated = 0;
for (size_t j = 0; j < placedOnes; j++) {
if (pos_ones[j] == p) {
duplicated = 1;
}
}
if (duplicated == 0) {
pos_ones[placedOnes] = p;
placedOnes++;
}
}
}
/* Returns random weight-t circulant block */
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT],
AES_XOF_struct *seed_expander_ctx) {
size_t polyIndex, duplicated, counter = 0;
POSITION_T p, exponent, rndPos[NUM_ERRORS_T];
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
while (counter < NUM_ERRORS_T) {
p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, seed_expander_ctx);
duplicated = 0;
for (size_t j = 0; j < counter; j++) {
if (rndPos[j] == p) {
duplicated = 1;
}
}
if (duplicated == 0) {
rndPos[counter] = p;
counter++;
}
}
for (size_t j = 0; j < counter; j++) {
polyIndex = rndPos[j] / P;
exponent = rndPos[j] % P;
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
( (DIGIT) 1));
}
}
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T],
AES_XOF_struct *seed_expander_ctx) {
int duplicated;
size_t counter = 0;
while (counter < NUM_ERRORS_T) {
POSITION_T p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, seed_expander_ctx);
duplicated = 0;
for (size_t j = 0; j < counter; j++) {
if (errorPos[j] == p) {
duplicated = 1;
}
}
if (duplicated == 0) {
errorPos[counter] = p;
counter++;
}
}
}
void PQCLEAN_LEDAKEMLT12_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT],
const POSITION_T errorPos[NUM_ERRORS_T]) {
size_t polyIndex;
POSITION_T exponent;
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
for (int j = 0; j < NUM_ERRORS_T; j++) {
polyIndex = errorPos[j] / P;
exponent = errorPos[j] % P;
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
( (DIGIT) 1));
}
}
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
size_t i, j;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (j = 0; j < DIGIT_SIZE_B; j++) {
bytes[i * DIGIT_SIZE_B + j] = (uint8_t) (poly[i] >> 8 * j);
}
}
}
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
size_t i, j;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
poly[i] = (DIGIT) 0;
for (j = 0; j < DIGIT_SIZE_B; j++) {
poly[i] |= (DIGIT) poly_bytes[i * DIGIT_SIZE_B + j] << 8 * j;
}
}
}