1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-27 01:41:40 +00:00
pqcrypto/crypto_kem/mceliece8192128f/avx/operations.c
Thom Wiggers b3f9d4f8d6
Classic McEliece (#259)
* Add McEliece reference implementations

* Add Vec implementations of McEliece

* Add sse implementations

* Add AVX2 implementations

* Get rid of stuff not supported by Mac ABI

* restrict to two cores

* Ditch .data files

* Remove .hidden from all .S files

* speed up duplicate consistency tests by batching

* make cpuinfo more robust

* Hope to stabilize macos cpuinfo without ccache

* Revert "Hope to stabilize macos cpuinfo without ccache"

This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322.

* Just hardcode what's available at travis

* Fixed-size types in api.h

* namespace all header files in mceliece

* Ditch operations.h

* Get rid of static inline functions

* fixup! Ditch operations.h
2020-02-05 13:09:56 +01:00

137 lines
3.1 KiB
C

#include "api.h"
#include "aes256ctr.h"
#include "controlbits.h"
#include "crypto_hash.h"
#include "decrypt.h"
#include "encrypt.h"
#include "params.h"
#include "pk_gen.h"
#include "randombytes.h"
#include "sk_gen.h"
#include "util.h"
#include <stdint.h>
#include <string.h>
int PQCLEAN_MCELIECE8192128F_AVX_crypto_kem_enc(
uint8_t *c,
uint8_t *key,
const uint8_t *pk
) {
uint8_t two_e[ 1 + SYS_N / 8 ] = {2};
uint8_t *e = two_e + 1;
uint8_t one_ec[ 1 + SYS_N / 8 + (SYND_BYTES + 32) ] = {1};
PQCLEAN_MCELIECE8192128F_AVX_encrypt(c, e, pk);
crypto_hash_32b(c + SYND_BYTES, two_e, sizeof(two_e));
memcpy(one_ec + 1, e, SYS_N / 8);
memcpy(one_ec + 1 + SYS_N / 8, c, SYND_BYTES + 32);
crypto_hash_32b(key, one_ec, sizeof(one_ec));
return 0;
}
int PQCLEAN_MCELIECE8192128F_AVX_crypto_kem_dec(
uint8_t *key,
const uint8_t *c,
const uint8_t *sk
) {
int i;
uint8_t ret_confirm = 0;
uint8_t ret_decrypt = 0;
uint16_t m;
uint8_t conf[32];
uint8_t two_e[ 1 + SYS_N / 8 ] = {2};
uint8_t *e = two_e + 1;
uint8_t preimage[ 1 + SYS_N / 8 + (SYND_BYTES + 32) ];
uint8_t *x = preimage;
//
ret_decrypt = (uint8_t)PQCLEAN_MCELIECE8192128F_AVX_decrypt(e, sk + SYS_N / 8, c);
crypto_hash_32b(conf, two_e, sizeof(two_e));
for (i = 0; i < 32; i++) {
ret_confirm |= conf[i] ^ c[SYND_BYTES + i];
}
m = ret_decrypt | ret_confirm;
m -= 1;
m >>= 8;
*x++ = (~m & 0) | (m & 1);
for (i = 0; i < SYS_N / 8; i++) {
*x++ = (~m & sk[i]) | (m & e[i]);
}
for (i = 0; i < SYND_BYTES + 32; i++) {
*x++ = c[i];
}
crypto_hash_32b(key, preimage, sizeof(preimage));
return 0;
}
int PQCLEAN_MCELIECE8192128F_AVX_crypto_kem_keypair
(
uint8_t *pk,
uint8_t *sk
) {
int i;
uint8_t seed[ 32 ];
uint8_t r[ SYS_T * 2 + (1 << GFBITS)*sizeof(uint32_t) + SYS_N / 8 + 32 ];
uint8_t nonce[ 16 ] = {0};
uint8_t *rp;
gf f[ SYS_T ]; // element in GF(2^mt)
gf irr[ SYS_T ]; // Goppa polynomial
uint32_t perm[ 1 << GFBITS ]; // random permutation
randombytes(seed, sizeof(seed));
while (1) {
rp = r;
PQCLEAN_MCELIECE8192128F_AVX_aes256ctr(r, sizeof(r), nonce, seed);
memcpy(seed, &r[ sizeof(r) - 32 ], 32);
for (i = 0; i < SYS_T; i++) {
f[i] = PQCLEAN_MCELIECE8192128F_AVX_load2(rp + i * 2);
}
rp += sizeof(f);
if (PQCLEAN_MCELIECE8192128F_AVX_genpoly_gen(irr, f)) {
continue;
}
for (i = 0; i < (1 << GFBITS); i++) {
perm[i] = PQCLEAN_MCELIECE8192128F_AVX_load4(rp + i * 4);
}
rp += sizeof(perm);
if (PQCLEAN_MCELIECE8192128F_AVX_perm_check(perm)) {
continue;
}
for (i = 0; i < SYS_T; i++) {
PQCLEAN_MCELIECE8192128F_AVX_store2(sk + SYS_N / 8 + i * 2, irr[i]);
}
if (PQCLEAN_MCELIECE8192128F_AVX_pk_gen(pk, perm, sk + SYS_N / 8)) {
continue;
}
memcpy(sk, rp, SYS_N / 8);
PQCLEAN_MCELIECE8192128F_AVX_controlbits(sk + SYS_N / 8 + IRR_BYTES, perm);
break;
}
return 0;
}