1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-27 09:51:30 +00:00
pqcrypto/crypto_kem/mceliece8192128f/avx/decrypt.c
Thom Wiggers b3f9d4f8d6
Classic McEliece (#259)
* Add McEliece reference implementations

* Add Vec implementations of McEliece

* Add sse implementations

* Add AVX2 implementations

* Get rid of stuff not supported by Mac ABI

* restrict to two cores

* Ditch .data files

* Remove .hidden from all .S files

* speed up duplicate consistency tests by batching

* make cpuinfo more robust

* Hope to stabilize macos cpuinfo without ccache

* Revert "Hope to stabilize macos cpuinfo without ccache"

This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322.

* Just hardcode what's available at travis

* Fixed-size types in api.h

* namespace all header files in mceliece

* Ditch operations.h

* Get rid of static inline functions

* fixup! Ditch operations.h
2020-02-05 13:09:56 +01:00

208 lines
5.1 KiB
C

/*
This file is for Niederreiter decryption
*/
#include "decrypt.h"
#include "benes.h"
#include "bm.h"
#include "fft.h"
#include "fft_tr.h"
#include "params.h"
#include "util.h"
#include <stdio.h>
static void scaling(vec256 out[][GFBITS], vec256 inv[][GFBITS], const unsigned char *sk, vec256 *recv) {
int i, j;
vec128 sk_int[ GFBITS ];
vec256 eval[32][ GFBITS ];
vec256 tmp[ GFBITS ];
// computing inverses
PQCLEAN_MCELIECE8192128F_AVX_irr_load(sk_int, sk);
PQCLEAN_MCELIECE8192128F_AVX_fft(eval, sk_int);
for (i = 0; i < 32; i++) {
PQCLEAN_MCELIECE8192128F_AVX_vec256_sq(eval[i], eval[i]);
}
vec256_copy(inv[0], eval[0]);
for (i = 1; i < 32; i++) {
vec256_mul(inv[i], inv[i - 1], eval[i]);
}
PQCLEAN_MCELIECE8192128F_AVX_vec256_inv(tmp, inv[31]);
for (i = 30; i >= 0; i--) {
vec256_mul(inv[i + 1], tmp, inv[i]);
vec256_mul(tmp, tmp, eval[i + 1]);
}
vec256_copy(inv[0], tmp);
//
for (i = 0; i < 32; i++) {
for (j = 0; j < GFBITS; j++) {
out[i][j] = vec256_and(inv[i][j], recv[i]);
}
}
}
static void scaling_inv(vec256 out[][GFBITS], vec256 inv[][GFBITS], vec256 *recv) {
int i, j;
for (i = 0; i < 32; i++) {
for (j = 0; j < GFBITS; j++) {
out[i][j] = vec256_and(inv[i][j], recv[i]);
}
}
}
static void preprocess(vec128 *recv, const unsigned char *s) {
int i;
recv[0] = PQCLEAN_MCELIECE8192128F_AVX_vec128_setbits(0);
for (i = 1; i < 64; i++) {
recv[i] = recv[0];
}
for (i = 0; i < SYND_BYTES / 16; i++) {
recv[i] = PQCLEAN_MCELIECE8192128F_AVX_load16(s + i * 16);
}
}
static int weight(vec256 *v) {
int i, w = 0;
for (i = 0; i < 32; i++) {
w += (int)_mm_popcnt_u64( vec256_extract(v[i], 0) );
w += (int)_mm_popcnt_u64( vec256_extract(v[i], 1) );
w += (int)_mm_popcnt_u64( vec256_extract(v[i], 2) );
w += (int)_mm_popcnt_u64( vec256_extract(v[i], 3) );
}
return w;
}
static uint16_t synd_cmp(vec256 *s0, vec256 *s1) {
int i;
vec256 diff;
diff = vec256_xor(s0[0], s1[0]);
for (i = 1; i < GFBITS; i++) {
diff = vec256_or(diff, vec256_xor(s0[i], s1[i]));
}
return vec256_testz(diff);
}
static void reformat_128to256(vec256 *out, vec128 *in) {
int i;
uint64_t v[4];
for (i = 0; i < 32; i++) {
v[0] = PQCLEAN_MCELIECE8192128F_AVX_vec128_extract(in[2 * i + 0], 0);
v[1] = PQCLEAN_MCELIECE8192128F_AVX_vec128_extract(in[2 * i + 0], 1);
v[2] = PQCLEAN_MCELIECE8192128F_AVX_vec128_extract(in[2 * i + 1], 0);
v[3] = PQCLEAN_MCELIECE8192128F_AVX_vec128_extract(in[2 * i + 1], 1);
out[i] = vec256_set4x(v[0], v[1], v[2], v[3]);
}
}
static void reformat_256to128(vec128 *out, vec256 *in) {
int i;
uint64_t v[4];
for (i = 0; i < 32; i++) {
v[0] = vec256_extract(in[i], 0);
v[1] = vec256_extract(in[i], 1);
v[2] = vec256_extract(in[i], 2);
v[3] = vec256_extract(in[i], 3);
out[2 * i + 0] = PQCLEAN_MCELIECE8192128F_AVX_vec128_set2x(v[0], v[1]);
out[2 * i + 1] = PQCLEAN_MCELIECE8192128F_AVX_vec128_set2x(v[2], v[3]);
}
}
/* Niederreiter decryption with the Berlekamp decoder */
/* intput: sk, secret key */
/* c, ciphertext (syndrome) */
/* output: e, error vector */
/* return: 0 for success; 1 for failure */
int PQCLEAN_MCELIECE8192128F_AVX_decrypt(unsigned char *e, const unsigned char *sk, const unsigned char *c) {
int i;
uint16_t check_synd;
uint16_t check_weight;
vec256 inv[ 64 ][ GFBITS ];
vec256 scaled[ 64 ][ GFBITS ];
vec256 eval[ 64 ][ GFBITS ];
vec128 error128[ 64 ];
vec256 error256[ 32 ];
vec256 s_priv[ GFBITS ];
vec256 s_priv_cmp[ GFBITS ];
vec128 locator[ GFBITS ];
vec128 recv128[ 64 ];
vec256 recv256[ 32 ];
vec256 allone;
vec128 bits_int[25][32];
// Berlekamp decoder
preprocess(recv128, c);
PQCLEAN_MCELIECE8192128F_AVX_load_bits(bits_int, sk + IRR_BYTES);
PQCLEAN_MCELIECE8192128F_AVX_benes(recv128, bits_int, 1);
reformat_128to256(recv256, recv128);
scaling(scaled, inv, sk, recv256); // scaling
PQCLEAN_MCELIECE8192128F_AVX_fft_tr(s_priv, scaled); // transposed FFT
PQCLEAN_MCELIECE8192128F_AVX_bm(locator, s_priv); // Berlekamp Massey
PQCLEAN_MCELIECE8192128F_AVX_fft(eval, locator); // FFT
// reencryption and weight check
allone = vec256_set1_16b(0xFFFF);
for (i = 0; i < 32; i++) {
error256[i] = vec256_or_reduce(eval[i]);
error256[i] = vec256_xor(error256[i], allone);
}
check_weight = (uint16_t)(weight(error256) ^ SYS_T);
check_weight -= 1;
check_weight >>= 15;
scaling_inv(scaled, inv, error256);
PQCLEAN_MCELIECE8192128F_AVX_fft_tr(s_priv_cmp, scaled);
check_synd = synd_cmp(s_priv, s_priv_cmp);
//
reformat_256to128(error128, error256);
PQCLEAN_MCELIECE8192128F_AVX_benes(error128, bits_int, 0);
for (i = 0; i < 64; i++) {
PQCLEAN_MCELIECE8192128F_AVX_store16(e + i * 16, error128[i]);
}
return 1 - (check_synd & check_weight);
}