1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-30 03:11:43 +00:00
pqcrypto/crypto_sign/sphincs-haraka-256f-simple/aesni/sign.c
Thom Wiggers facb527c7c SPHINCS+ optimized implementations (#253)
* Add state destroy to SHA2 API

* Include optimized SPHINCS+ implementations

I've generated new implementations from the sphincsplus repository.

* Don't destroy sha256ctx after finalize

* Attempt to shut up MSVC

* Make sure to drop errors in rmtree
2021-03-24 21:02:45 +00:00

410 lines
16 KiB
C

#include <immintrin.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include "address.h"
#include "api.h"
#include "fors.h"
#include "hash.h"
#include "hash_state.h"
#include "params.h"
#include "randombytes.h"
#include "thash.h"
#include "utils.h"
#include "wots.h"
/**
* Computes the leaf at a given address. First generates the WOTS key pair,
* then computes leaf by hashing horizontally.
*/
static void wots_gen_leaf(unsigned char *leaf, const unsigned char *sk_seed,
const unsigned char *pub_seed,
uint32_t addr_idx, const uint32_t tree_addr[8],
const hash_state *hash_state_seeded) {
unsigned char pk[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_WOTS_BYTES];
uint32_t wots_addr[8] = {0};
uint32_t wots_pk_addr[8] = {0};
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_type(
wots_addr, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_ADDR_TYPE_WOTS);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_type(
wots_pk_addr, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_ADDR_TYPE_WOTSPK);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_copy_subtree_addr(
wots_addr, tree_addr);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_keypair_addr(
wots_addr, addr_idx);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_wots_gen_pk(
pk, sk_seed, pub_seed, wots_addr, hash_state_seeded);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_copy_keypair_addr(
wots_pk_addr, wots_addr);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_thash_WOTS_LEN(
leaf, pk, pub_seed, wots_pk_addr, hash_state_seeded);
}
/*
* Returns the length of a secret key, in bytes
*/
size_t PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_secretkeybytes(void) {
return PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SECRETKEYBYTES;
}
/*
* Returns the length of a public key, in bytes
*/
size_t PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_publickeybytes(void) {
return PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_PUBLICKEYBYTES;
}
/*
* Returns the length of a signature, in bytes
*/
size_t PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_bytes(void) {
return PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_BYTES;
}
/*
* Returns the length of the seed required to generate a key pair, in bytes
*/
size_t PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_seedbytes(void) {
return PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SEEDBYTES;
}
/*
* Generates an SPX key pair given a seed of length
* Format sk: [SK_SEED || SK_PRF || PUB_SEED || root]
* Format pk: [PUB_SEED || root]
*/
int PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_seed_keypair(
uint8_t *pk, uint8_t *sk, const uint8_t *seed) {
/* We do not need the auth path in key generation, but it simplifies the
code to have just one treehash routine that computes both root and path
in one function. */
unsigned char auth_path[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_TREE_HEIGHT * PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N];
uint32_t top_tree_addr[8] = {0};
hash_state hash_state_seeded;
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_layer_addr(
top_tree_addr, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_D - 1);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_type(
top_tree_addr, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_ADDR_TYPE_HASHTREE);
/* Initialize SK_SEED, SK_PRF and PUB_SEED from seed. */
memcpy(sk, seed, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SEEDBYTES);
memcpy(pk, sk + 2 * PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N);
/* This hook allows the hash function instantiation to do whatever
preparation or computation it needs, based on the public seed. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_initialize_hash_function(&hash_state_seeded, pk, sk);
/* Compute root node of the top-most subtree. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_treehash_TREE_HEIGHT(
sk + 3 * PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N, auth_path, sk, sk + 2 * PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N, 0, 0,
wots_gen_leaf, top_tree_addr, &hash_state_seeded);
memcpy(pk + PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N, sk + 3 * PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N);
return 0;
}
/*
* Generates an SPX key pair.
* Format sk: [SK_SEED || SK_PRF || PUB_SEED || root]
* Format pk: [PUB_SEED || root]
*/
int PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_keypair(
uint8_t *pk, uint8_t *sk) {
// guarantee alignment of pk
union {
__m128 _x[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_PUBLICKEYBYTES / 16];
uint8_t pk[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_PUBLICKEYBYTES];
} aligned_pk;
// guarantee alignment of sk
union {
__m128 _x[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SECRETKEYBYTES / 16];
uint8_t sk[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SECRETKEYBYTES];
} aligned_sk;
union {
__m128 _x[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SEEDBYTES / 16];
uint8_t seed[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SEEDBYTES];
} aligned_seed;
randombytes(aligned_seed.seed, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SEEDBYTES);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_seed_keypair(
aligned_pk.pk, aligned_sk.sk, aligned_seed.seed);
memcpy(pk, aligned_pk.pk, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_PUBLICKEYBYTES);
memcpy(sk, aligned_sk.sk, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SECRETKEYBYTES);
return 0;
}
/**
* Returns an array containing a detached signature.
*/
int PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_signature(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
// guarantee alignment of sk
union {
__m128 *_x;
uint8_t sk[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SECRETKEYBYTES];
} aligned_sk;
memcpy(aligned_sk.sk, sk, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_SECRETKEYBYTES);
sk = aligned_sk.sk;
// guarantee alignment of sig
union {
__m128 *_x;
uint8_t sig[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES];
} aligned_sig;
uint8_t *orig_sig = sig;
sig = (uint8_t *)aligned_sig.sig;
const unsigned char *sk_seed = sk;
const unsigned char *sk_prf = sk + PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N;
const unsigned char *pk = sk + 2 * PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N;
const unsigned char *pub_seed = pk;
unsigned char optrand[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N];
unsigned char mhash[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_FORS_MSG_BYTES];
unsigned char root[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N];
uint32_t i;
uint64_t tree;
uint32_t idx_leaf;
uint32_t wots_addr[8] = {0};
uint32_t tree_addr[8] = {0};
hash_state hash_state_seeded;
/* This hook allows the hash function instantiation to do whatever
preparation or computation it needs, based on the public seed. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_initialize_hash_function(
&hash_state_seeded,
pub_seed, sk_seed);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_type(
wots_addr, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_ADDR_TYPE_WOTS);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_type(
tree_addr, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_ADDR_TYPE_HASHTREE);
/* Optionally, signing can be made non-deterministic using optrand.
This can help counter side-channel attacks that would benefit from
getting a large number of traces when the signer uses the same nodes. */
randombytes(optrand, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N);
/* Compute the digest randomization value. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_gen_message_random(
sig, sk_prf, optrand, m, mlen, &hash_state_seeded);
/* Derive the message digest and leaf index from R, PK and M. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_hash_message(
mhash, &tree, &idx_leaf, sig, pk, m, mlen, &hash_state_seeded);
sig += PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N;
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_tree_addr(wots_addr, tree);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_keypair_addr(
wots_addr, idx_leaf);
/* Sign the message hash using FORS. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_fors_sign(
sig, root, mhash, sk_seed, pub_seed, wots_addr, &hash_state_seeded);
sig += PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_FORS_BYTES;
for (i = 0; i < PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_D; i++) {
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_layer_addr(tree_addr, i);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_tree_addr(tree_addr, tree);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_copy_subtree_addr(
wots_addr, tree_addr);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_keypair_addr(
wots_addr, idx_leaf);
/* Compute a WOTS signature. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_wots_sign(
sig, root, sk_seed, pub_seed, wots_addr, &hash_state_seeded);
sig += PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_WOTS_BYTES;
/* Compute the authentication path for the used WOTS leaf. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_treehash_TREE_HEIGHT(
root, sig, sk_seed, pub_seed, idx_leaf, 0,
wots_gen_leaf, tree_addr, &hash_state_seeded);
sig += PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_TREE_HEIGHT * PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N;
/* Update the indices for the next layer. */
idx_leaf = (tree & ((1 << PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_TREE_HEIGHT) - 1));
tree = tree >> PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_TREE_HEIGHT;
}
memcpy(orig_sig, aligned_sig.sig, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES);
*siglen = PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES;
return 0;
}
/**
* Verifies a detached signature and message under a given public key.
*/
int PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_verify(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk) {
// guarantee alignment of pk
union {
__m128 *_x;
uint8_t pk[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_PUBLICKEYBYTES];
} aligned_pk;
memcpy(aligned_pk.pk, pk, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_PUBLICKEYBYTES);
pk = aligned_pk.pk;
const unsigned char *pub_seed = pk;
const unsigned char *pub_root = pk + PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N;
unsigned char mhash[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_FORS_MSG_BYTES];
unsigned char wots_pk[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_WOTS_BYTES];
unsigned char root[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N];
unsigned char leaf[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N];
unsigned int i;
uint64_t tree;
uint32_t idx_leaf;
uint32_t wots_addr[8] = {0};
uint32_t tree_addr[8] = {0};
uint32_t wots_pk_addr[8] = {0};
hash_state hash_state_seeded;
if (siglen != PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES) {
return -1;
}
/* This hook allows the hash function instantiation to do whatever
preparation or computation it needs, based on the public seed. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_initialize_hash_function(
&hash_state_seeded,
pub_seed, NULL);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_type(
wots_addr, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_ADDR_TYPE_WOTS);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_type(
tree_addr, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_ADDR_TYPE_HASHTREE);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_type(
wots_pk_addr, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_ADDR_TYPE_WOTSPK);
/* Derive the message digest and leaf index from R || PK || M. */
/* The additional PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N is a result of the hash domain separator. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_hash_message(
mhash, &tree, &idx_leaf, sig, pk, m, mlen, &hash_state_seeded);
sig += PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N;
/* Layer correctly defaults to 0, so no need to set_layer_addr */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_tree_addr(wots_addr, tree);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_keypair_addr(
wots_addr, idx_leaf);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_fors_pk_from_sig(
root, sig, mhash, pub_seed, wots_addr, &hash_state_seeded);
sig += PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_FORS_BYTES;
/* For each subtree.. */
for (i = 0; i < PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_D; i++) {
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_layer_addr(tree_addr, i);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_tree_addr(tree_addr, tree);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_copy_subtree_addr(
wots_addr, tree_addr);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_set_keypair_addr(
wots_addr, idx_leaf);
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_copy_keypair_addr(
wots_pk_addr, wots_addr);
/* The WOTS public key is only correct if the signature was correct. */
/* Initially, root is the FORS pk, but on subsequent iterations it is
the root of the subtree below the currently processed subtree. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_wots_pk_from_sig(
wots_pk, sig, root, pub_seed, wots_addr, &hash_state_seeded);
sig += PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_WOTS_BYTES;
/* Compute the leaf node using the WOTS public key. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_thash_WOTS_LEN(
leaf, wots_pk, pub_seed, wots_pk_addr, &hash_state_seeded);
/* Compute the root node of this subtree. */
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_compute_root(
root, leaf, idx_leaf, 0, sig, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_TREE_HEIGHT,
pub_seed, tree_addr, &hash_state_seeded);
sig += PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_TREE_HEIGHT * PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N;
/* Update the indices for the next layer. */
idx_leaf = (tree & ((1 << PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_TREE_HEIGHT) - 1));
tree = tree >> PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_TREE_HEIGHT;
}
/* Check if the root node equals the root node in the public key. */
if (memcmp(root, pub_root, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_N) != 0) {
return -1;
}
return 0;
}
/**
* Returns an array containing the signature followed by the message.
*/
int PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign(
uint8_t *sm, size_t *smlen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
size_t siglen;
PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_signature(
sm, &siglen, m, mlen, sk);
memmove(sm + PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES, m, mlen);
*smlen = siglen + mlen;
return 0;
}
/**
* Verifies a given signature-message pair under a given public key.
*/
int PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_open(
uint8_t *m, size_t *mlen,
const uint8_t *sm, size_t smlen, const uint8_t *pk) {
// guarantee alignment of pk
union {
__m128 *_x;
uint8_t pk[PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_PUBLICKEYBYTES];
} aligned_pk;
memcpy(aligned_pk.pk, pk, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_CRYPTO_PUBLICKEYBYTES);
pk = aligned_pk.pk;
/* The API caller does not necessarily know what size a signature should be
but SPHINCS+ signatures are always exactly PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES. */
if (smlen < PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES) {
memset(m, 0, smlen);
*mlen = 0;
return -1;
}
*mlen = smlen - PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES;
if (PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_crypto_sign_verify(
sm, PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES, sm + PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES, *mlen, pk)) {
memset(m, 0, smlen);
*mlen = 0;
return -1;
}
/* If verification was successful, move the message to the right place. */
memmove(m, sm + PQCLEAN_SPHINCSHARAKA256FSIMPLE_AESNI_BYTES, *mlen);
return 0;
}