mirror of
https://github.com/henrydcase/pqc.git
synced 2024-11-23 16:08:59 +00:00
b3f9d4f8d6
* Add McEliece reference implementations * Add Vec implementations of McEliece * Add sse implementations * Add AVX2 implementations * Get rid of stuff not supported by Mac ABI * restrict to two cores * Ditch .data files * Remove .hidden from all .S files * speed up duplicate consistency tests by batching * make cpuinfo more robust * Hope to stabilize macos cpuinfo without ccache * Revert "Hope to stabilize macos cpuinfo without ccache" This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322. * Just hardcode what's available at travis * Fixed-size types in api.h * namespace all header files in mceliece * Ditch operations.h * Get rid of static inline functions * fixup! Ditch operations.h
269 lines
7.8 KiB
C
269 lines
7.8 KiB
C
/*
|
|
This file is for public-key generation
|
|
*/
|
|
|
|
#include "pk_gen.h"
|
|
|
|
#include "benes.h"
|
|
#include "controlbits.h"
|
|
#include "fft.h"
|
|
#include "params.h"
|
|
#include "util.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
static void de_bitslicing(uint64_t *out, vec128 in[][GFBITS]) {
|
|
int i, j, r;
|
|
uint64_t u = 0;
|
|
|
|
for (i = 0; i < (1 << GFBITS); i++) {
|
|
out[i] = 0 ;
|
|
}
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
for (j = GFBITS - 1; j >= 0; j--) {
|
|
u = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(in[i][j], 0);
|
|
for (r = 0; r < 64; r++) {
|
|
out[i * 128 + 0 * 64 + r] <<= 1;
|
|
out[i * 128 + 0 * 64 + r] |= (u >> r) & 1;
|
|
}
|
|
u = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(in[i][j], 1);
|
|
for (r = 0; r < 64; r++) {
|
|
out[i * 128 + 1 * 64 + r] <<= 1;
|
|
out[i * 128 + 1 * 64 + r] |= (u >> r) & 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void to_bitslicing_2x(vec128 out0[][GFBITS], vec128 out1[][GFBITS], const uint64_t *in) {
|
|
int i, j, k, r;
|
|
uint64_t u[2] = {0};
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
for (j = GFBITS - 1; j >= 0; j--) {
|
|
for (k = 0; k < 2; k++) {
|
|
for (r = 63; r >= 0; r--) {
|
|
u[k] <<= 1;
|
|
u[k] |= (in[i * 128 + k * 64 + r] >> (j + GFBITS)) & 1;
|
|
}
|
|
}
|
|
|
|
out1[i][j] = PQCLEAN_MCELIECE8192128_SSE_vec128_set2x(u[0], u[1]);
|
|
}
|
|
|
|
for (j = GFBITS - 1; j >= 0; j--) {
|
|
for (k = 0; k < 2; k++) {
|
|
for (r = 63; r >= 0; r--) {
|
|
u[k] <<= 1;
|
|
u[k] |= (in[i * 128 + k * 64 + r] >> j) & 1;
|
|
}
|
|
}
|
|
|
|
out0[i][GFBITS - 1 - j] = PQCLEAN_MCELIECE8192128_SSE_vec128_set2x(u[0], u[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
int PQCLEAN_MCELIECE8192128_SSE_pk_gen(unsigned char *pk, uint32_t *perm, const unsigned char *sk) {
|
|
int i, j, k;
|
|
int row, c, d;
|
|
|
|
uint64_t mat[ GFBITS * SYS_T ][ 128 ];
|
|
uint64_t ops[ GFBITS * SYS_T ][ GFBITS * SYS_T / 64 ];
|
|
|
|
uint64_t mask;
|
|
|
|
vec128 irr_int[ GFBITS ];
|
|
|
|
vec128 consts[ 64 ][ GFBITS ];
|
|
vec128 eval[ 64 ][ GFBITS ];
|
|
vec128 prod[ 64 ][ GFBITS ];
|
|
vec128 tmp[ GFBITS ];
|
|
|
|
uint64_t list[1 << GFBITS];
|
|
uint64_t one_row[ (SYS_N - GFBITS * SYS_T) / 64 ];
|
|
|
|
// compute the inverses
|
|
|
|
PQCLEAN_MCELIECE8192128_SSE_irr_load(irr_int, sk);
|
|
|
|
PQCLEAN_MCELIECE8192128_SSE_fft(eval, irr_int);
|
|
|
|
PQCLEAN_MCELIECE8192128_SSE_vec128_copy(prod[0], eval[0]);
|
|
|
|
for (i = 1; i < 64; i++) {
|
|
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[i], prod[i - 1], eval[i]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE8192128_SSE_vec128_inv(tmp, prod[63]);
|
|
|
|
for (i = 62; i >= 0; i--) {
|
|
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[i + 1], prod[i], tmp);
|
|
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(tmp, tmp, eval[i + 1]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE8192128_SSE_vec128_copy(prod[0], tmp);
|
|
|
|
// fill matrix
|
|
|
|
de_bitslicing(list, prod);
|
|
|
|
for (i = 0; i < (1 << GFBITS); i++) {
|
|
list[i] <<= GFBITS;
|
|
list[i] |= i;
|
|
list[i] |= ((uint64_t) perm[i]) << 31;
|
|
}
|
|
|
|
PQCLEAN_MCELIECE8192128_SSE_sort_63b(1 << GFBITS, list);
|
|
|
|
to_bitslicing_2x(consts, prod, list);
|
|
|
|
for (i = 0; i < (1 << GFBITS); i++) {
|
|
perm[i] = list[i] & GFMASK;
|
|
}
|
|
|
|
for (j = 0; j < (GFBITS * SYS_T + 127) / 128; j++) {
|
|
for (k = 0; k < GFBITS; k++) {
|
|
mat[ k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0);
|
|
mat[ k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1);
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < SYS_T; i++) {
|
|
for (j = 0; j < (GFBITS * SYS_T + 127) / 128; j++) {
|
|
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[j], prod[j], consts[j]);
|
|
|
|
for (k = 0; k < GFBITS; k++) {
|
|
mat[ i * GFBITS + k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0);
|
|
mat[ i * GFBITS + k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// gaussian elimination to obtain an upper triangular matrix
|
|
// and keep track of the operations in ops
|
|
|
|
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
|
|
for (j = 0; j < 64; j++) {
|
|
row = i * 64 + j;
|
|
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
|
|
ops[ row ][ c ] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
|
|
for (j = 0; j < 64; j++) {
|
|
row = i * 64 + j;
|
|
|
|
ops[ row ][ i ] = 1;
|
|
ops[ row ][ i ] <<= j;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
|
|
for (j = 0; j < 64; j++) {
|
|
row = i * 64 + j;
|
|
|
|
for (k = row + 1; k < GFBITS * SYS_T; k++) {
|
|
mask = mat[ row ][ i ] >> j;
|
|
mask &= 1;
|
|
mask -= 1;
|
|
|
|
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
|
|
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
|
|
ops[ row ][ c ] ^= ops[ k ][ c ] & mask;
|
|
}
|
|
}
|
|
|
|
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
|
|
return -1;
|
|
}
|
|
|
|
for (k = row + 1; k < GFBITS * SYS_T; k++) {
|
|
mask = mat[ k ][ i ] >> j;
|
|
mask &= 1;
|
|
mask = -mask;
|
|
|
|
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
|
|
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
|
|
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// computing the lineaer map required to obatin the systematic form
|
|
|
|
for (i = (GFBITS * SYS_T) / 64 - 1; i >= 0; i--) {
|
|
for (j = 63; j >= 0; j--) {
|
|
row = i * 64 + j;
|
|
|
|
for (k = 0; k < row; k++) {
|
|
{
|
|
mask = mat[ k ][ i ] >> j;
|
|
mask &= 1;
|
|
mask = -mask;
|
|
|
|
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
|
|
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// apply the linear map to the non-systematic part
|
|
|
|
for (j = (GFBITS * SYS_T + 127) / 128; j < 64; j++) {
|
|
for (k = 0; k < GFBITS; k++) {
|
|
mat[ k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0);
|
|
mat[ k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1);
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < SYS_T; i++) {
|
|
for (j = (GFBITS * SYS_T + 127) / 128; j < 64; j++) {
|
|
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[j], prod[j], consts[j]);
|
|
|
|
for (k = 0; k < GFBITS; k++) {
|
|
mat[ i * GFBITS + k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0);
|
|
mat[ i * GFBITS + k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
|
|
for (j = 0; j < 64; j++) {
|
|
row = i * 64 + j;
|
|
|
|
for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) {
|
|
one_row[ k ] = 0;
|
|
}
|
|
|
|
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
|
|
for (d = 0; d < 64; d++) {
|
|
mask = ops[ row ][ c ] >> d;
|
|
mask &= 1;
|
|
mask = -mask;
|
|
|
|
for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) {
|
|
one_row[ k ] ^= mat[ c * 64 + d ][ k + (GFBITS * SYS_T) / 64 ] & mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) {
|
|
PQCLEAN_MCELIECE8192128_SSE_store8(pk, one_row[ k ]);
|
|
pk += 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
|
|
return 0;
|
|
}
|
|
|