mirror of
https://github.com/henrydcase/pqc.git
synced 2024-11-24 00:11:27 +00:00
b3f9d4f8d6
* Add McEliece reference implementations * Add Vec implementations of McEliece * Add sse implementations * Add AVX2 implementations * Get rid of stuff not supported by Mac ABI * restrict to two cores * Ditch .data files * Remove .hidden from all .S files * speed up duplicate consistency tests by batching * make cpuinfo more robust * Hope to stabilize macos cpuinfo without ccache * Revert "Hope to stabilize macos cpuinfo without ccache" This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322. * Just hardcode what's available at travis * Fixed-size types in api.h * namespace all header files in mceliece * Ditch operations.h * Get rid of static inline functions * fixup! Ditch operations.h
295 lines
7.2 KiB
C
295 lines
7.2 KiB
C
/*
|
|
This file is for public-key generation
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "controlbits.h"
|
|
#include "benes.h"
|
|
#include "params.h"
|
|
#include "pk_gen.h"
|
|
#include "root.h"
|
|
#include "util.h"
|
|
|
|
#define min(a, b) (((a) < (b)) ? (a) : (b))
|
|
|
|
static void transpose_64x64(uint64_t *out, const uint64_t *in) {
|
|
int i, j, s, d;
|
|
|
|
uint64_t x, y;
|
|
uint64_t masks[6][2] = {
|
|
{0x5555555555555555, 0xAAAAAAAAAAAAAAAA},
|
|
{0x3333333333333333, 0xCCCCCCCCCCCCCCCC},
|
|
{0x0F0F0F0F0F0F0F0F, 0xF0F0F0F0F0F0F0F0},
|
|
{0x00FF00FF00FF00FF, 0xFF00FF00FF00FF00},
|
|
{0x0000FFFF0000FFFF, 0xFFFF0000FFFF0000},
|
|
{0x00000000FFFFFFFF, 0xFFFFFFFF00000000}
|
|
};
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
out[i] = in[i];
|
|
}
|
|
|
|
for (d = 5; d >= 0; d--) {
|
|
s = 1 << d;
|
|
|
|
for (i = 0; i < 64; i += s * 2) {
|
|
for (j = i; j < i + s; j++) {
|
|
x = (out[j] & masks[d][0]) | ((out[j + s] & masks[d][0]) << s);
|
|
y = ((out[j] & masks[d][1]) >> s) | (out[j + s] & masks[d][1]);
|
|
|
|
out[j + 0] = x;
|
|
out[j + s] = y;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* return number of trailing zeros of the non-zero input in */
|
|
static inline int ctz(uint64_t in) {
|
|
int i, b, m = 0, r = 0;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
b = (int)(in >> i) & 1;
|
|
m |= b;
|
|
r += (m ^ 1) & (b ^ 1);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline uint64_t same_mask(uint16_t x, uint16_t y) {
|
|
uint64_t mask;
|
|
|
|
mask = x ^ y;
|
|
mask -= 1;
|
|
mask >>= 63;
|
|
mask = -mask;
|
|
|
|
return mask;
|
|
}
|
|
|
|
static int mov_columns(uint8_t mat[][ SYS_N / 8 ], uint32_t *perm) {
|
|
int i, j, k, s, block_idx, row;
|
|
uint64_t buf[64], ctz_list[32], t, d, mask;
|
|
|
|
row = GFBITS * SYS_T - 32;
|
|
block_idx = row / 8;
|
|
|
|
// extract the 32x64 matrix
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
buf[i] = PQCLEAN_MCELIECE8192128F_CLEAN_load8( &mat[ row + i ][ block_idx ] );
|
|
}
|
|
|
|
// compute the column indices of pivots by Gaussian elimination.
|
|
// the indices are stored in ctz_list
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
t = buf[i];
|
|
for (j = i + 1; j < 32; j++) {
|
|
t |= buf[j];
|
|
}
|
|
|
|
if (t == 0) {
|
|
return -1; // return if buf is not full rank
|
|
}
|
|
|
|
ctz_list[i] = s = ctz(t);
|
|
|
|
for (j = i + 1; j < 32; j++) {
|
|
mask = (buf[i] >> s) & 1;
|
|
mask -= 1;
|
|
buf[i] ^= buf[j] & mask;
|
|
}
|
|
for (j = 0; j < i; j++) {
|
|
mask = (buf[j] >> s) & 1;
|
|
mask = -mask;
|
|
buf[j] ^= buf[i] & mask;
|
|
}
|
|
for (j = i + 1; j < 32; j++) {
|
|
mask = (buf[j] >> s) & 1;
|
|
mask = -mask;
|
|
buf[j] ^= buf[i] & mask;
|
|
}
|
|
}
|
|
|
|
// updating permutation
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
for (k = j + 1; k < 64; k++) {
|
|
d = perm[ row + j ] ^ perm[ row + k ];
|
|
d &= same_mask((uint16_t)k, (uint16_t)ctz_list[j]);
|
|
perm[ row + j ] ^= d;
|
|
perm[ row + k ] ^= d;
|
|
}
|
|
}
|
|
|
|
// moving columns of mat according to the column indices of pivots
|
|
|
|
for (i = 0; i < GFBITS * SYS_T; i += 64) {
|
|
for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) {
|
|
buf[j] = PQCLEAN_MCELIECE8192128F_CLEAN_load8( &mat[ i + j ][ block_idx ] );
|
|
}
|
|
|
|
transpose_64x64(buf, buf);
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
for (k = j + 1; k < 64; k++) {
|
|
d = buf[ j ] ^ buf[ k ];
|
|
d &= same_mask((uint16_t)k, (uint16_t)ctz_list[j]);
|
|
buf[ j ] ^= d;
|
|
buf[ k ] ^= d;
|
|
}
|
|
}
|
|
|
|
transpose_64x64(buf, buf);
|
|
|
|
for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) {
|
|
PQCLEAN_MCELIECE8192128F_CLEAN_store8( &mat[ i + j ][ block_idx ], buf[j] );
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* input: secret key sk */
|
|
/* output: public key pk */
|
|
int PQCLEAN_MCELIECE8192128F_CLEAN_pk_gen(uint8_t *pk, uint32_t *perm, const uint8_t *sk) {
|
|
int i, j, k;
|
|
int row, c;
|
|
|
|
uint64_t buf[ 1 << GFBITS ];
|
|
|
|
unsigned char mat[ GFBITS * SYS_T ][ SYS_N / 8 ];
|
|
unsigned char mask;
|
|
unsigned char b;
|
|
|
|
gf g[ SYS_T + 1 ]; // Goppa polynomial
|
|
gf L[ SYS_N ]; // support
|
|
gf inv[ SYS_N ];
|
|
|
|
//
|
|
|
|
g[ SYS_T ] = 1;
|
|
|
|
for (i = 0; i < SYS_T; i++) {
|
|
g[i] = PQCLEAN_MCELIECE8192128F_CLEAN_load2(sk);
|
|
g[i] &= GFMASK;
|
|
sk += 2;
|
|
}
|
|
|
|
for (i = 0; i < (1 << GFBITS); i++) {
|
|
buf[i] = perm[i];
|
|
buf[i] <<= 31;
|
|
buf[i] |= i;
|
|
}
|
|
|
|
PQCLEAN_MCELIECE8192128F_CLEAN_sort_63b(1 << GFBITS, buf);
|
|
|
|
for (i = 0; i < (1 << GFBITS); i++) {
|
|
perm[i] = buf[i] & GFMASK;
|
|
}
|
|
for (i = 0; i < SYS_N; i++) {
|
|
L[i] = PQCLEAN_MCELIECE8192128F_CLEAN_bitrev((gf)perm[i]);
|
|
}
|
|
|
|
// filling the matrix
|
|
|
|
PQCLEAN_MCELIECE8192128F_CLEAN_root(inv, g, L);
|
|
|
|
for (i = 0; i < SYS_N; i++) {
|
|
inv[i] = PQCLEAN_MCELIECE8192128F_CLEAN_gf_inv(inv[i]);
|
|
}
|
|
|
|
for (i = 0; i < PK_NROWS; i++) {
|
|
for (j = 0; j < SYS_N / 8; j++) {
|
|
mat[i][j] = 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SYS_T; i++) {
|
|
for (j = 0; j < SYS_N; j += 8) {
|
|
for (k = 0; k < GFBITS; k++) {
|
|
b = (inv[j + 7] >> k) & 1;
|
|
b <<= 1;
|
|
b |= (inv[j + 6] >> k) & 1;
|
|
b <<= 1;
|
|
b |= (inv[j + 5] >> k) & 1;
|
|
b <<= 1;
|
|
b |= (inv[j + 4] >> k) & 1;
|
|
b <<= 1;
|
|
b |= (inv[j + 3] >> k) & 1;
|
|
b <<= 1;
|
|
b |= (inv[j + 2] >> k) & 1;
|
|
b <<= 1;
|
|
b |= (inv[j + 1] >> k) & 1;
|
|
b <<= 1;
|
|
b |= (inv[j + 0] >> k) & 1;
|
|
|
|
mat[ i * GFBITS + k ][ j / 8 ] = b;
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < SYS_N; j++) {
|
|
inv[j] = PQCLEAN_MCELIECE8192128F_CLEAN_gf_mul(inv[j], L[j]);
|
|
}
|
|
|
|
}
|
|
|
|
// gaussian elimination
|
|
|
|
for (i = 0; i < (GFBITS * SYS_T + 7) / 8; i++) {
|
|
for (j = 0; j < 8; j++) {
|
|
row = i * 8 + j;
|
|
|
|
if (row >= GFBITS * SYS_T) {
|
|
break;
|
|
}
|
|
|
|
if (row == GFBITS * SYS_T - 32) {
|
|
if (mov_columns(mat, perm)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (k = row + 1; k < GFBITS * SYS_T; k++) {
|
|
mask = mat[ row ][ i ] ^ mat[ k ][ i ];
|
|
mask >>= j;
|
|
mask &= 1;
|
|
mask = -mask;
|
|
|
|
for (c = 0; c < SYS_N / 8; c++) {
|
|
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
|
|
}
|
|
}
|
|
|
|
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
|
|
return -1;
|
|
}
|
|
|
|
for (k = 0; k < GFBITS * SYS_T; k++) {
|
|
if (k != row) {
|
|
mask = mat[ k ][ i ] >> j;
|
|
mask &= 1;
|
|
mask = -mask;
|
|
|
|
for (c = 0; c < SYS_N / 8; c++) {
|
|
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < PK_NROWS; i++) {
|
|
memcpy(pk + i * PK_ROW_BYTES, mat[i] + PK_NROWS / 8, PK_ROW_BYTES);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|