mirror of
https://github.com/henrydcase/pqc.git
synced 2024-11-24 00:11:27 +00:00
b3f9d4f8d6
* Add McEliece reference implementations * Add Vec implementations of McEliece * Add sse implementations * Add AVX2 implementations * Get rid of stuff not supported by Mac ABI * restrict to two cores * Ditch .data files * Remove .hidden from all .S files * speed up duplicate consistency tests by batching * make cpuinfo more robust * Hope to stabilize macos cpuinfo without ccache * Revert "Hope to stabilize macos cpuinfo without ccache" This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322. * Just hardcode what's available at travis * Fixed-size types in api.h * namespace all header files in mceliece * Ditch operations.h * Get rid of static inline functions * fixup! Ditch operations.h
302 lines
7.5 KiB
C
302 lines
7.5 KiB
C
/*
|
|
This file is for public-key generation
|
|
*/
|
|
|
|
#include "pk_gen.h"
|
|
|
|
#include "benes.h"
|
|
#include "controlbits.h"
|
|
#include "fft.h"
|
|
#include "params.h"
|
|
#include "transpose.h"
|
|
#include "util.h"
|
|
#include "vec.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#define min(a, b) (((a) < (b)) ? (a) : (b))
|
|
|
|
static void de_bitslicing(uint64_t *out, vec in[][GFBITS]) {
|
|
int i, j, r;
|
|
|
|
for (i = 0; i < (1 << GFBITS); i++) {
|
|
out[i] = 0 ;
|
|
}
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
for (j = GFBITS - 1; j >= 0; j--) {
|
|
for (r = 0; r < 64; r++) {
|
|
out[i * 64 + r] <<= 1;
|
|
out[i * 64 + r] |= (in[i][j] >> r) & 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void to_bitslicing_2x(vec out0[][GFBITS], vec out1[][GFBITS], const uint64_t *in) {
|
|
int i, j, r;
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
for (j = GFBITS - 1; j >= 0; j--) {
|
|
for (r = 63; r >= 0; r--) {
|
|
out1[i][j] <<= 1;
|
|
out1[i][j] |= (in[i * 64 + r] >> (j + GFBITS)) & 1;
|
|
}
|
|
}
|
|
|
|
for (j = GFBITS - 1; j >= 0; j--) {
|
|
for (r = 63; r >= 0; r--) {
|
|
out0[i][GFBITS - 1 - j] <<= 1;
|
|
out0[i][GFBITS - 1 - j] |= (in[i * 64 + r] >> j) & 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* return number of trailing zeros of the non-zero input in */
|
|
static inline int ctz(uint64_t in) {
|
|
int i, b, m = 0, r = 0;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
b = (int)(in >> i) & 1;
|
|
m |= b;
|
|
r += (m ^ 1) & (b ^ 1);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline uint64_t same_mask(uint16_t x, uint16_t y) {
|
|
uint64_t mask;
|
|
|
|
mask = x ^ y;
|
|
mask -= 1;
|
|
mask >>= 63;
|
|
mask = -mask;
|
|
|
|
return mask;
|
|
}
|
|
|
|
static int mov_columns(uint64_t mat[][ 128 ], uint32_t *perm) {
|
|
int i, j, k, s, block_idx, row;
|
|
uint64_t buf[64], ctz_list[32], t, d, mask;
|
|
|
|
row = GFBITS * SYS_T - 32;
|
|
block_idx = row / 64;
|
|
|
|
// extract the 32x64 matrix
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
buf[i] = (mat[ row + i ][ block_idx + 0 ] >> 32) |
|
|
(mat[ row + i ][ block_idx + 1 ] << 32);
|
|
}
|
|
|
|
// compute the column indices of pivots by Gaussian elimination.
|
|
// the indices are stored in ctz_list
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
t = buf[i];
|
|
for (j = i + 1; j < 32; j++) {
|
|
t |= buf[j];
|
|
}
|
|
|
|
if (t == 0) {
|
|
return -1; // return if buf is not full rank
|
|
}
|
|
|
|
ctz_list[i] = s = ctz(t);
|
|
|
|
for (j = i + 1; j < 32; j++) {
|
|
mask = (buf[i] >> s) & 1;
|
|
mask -= 1;
|
|
buf[i] ^= buf[j] & mask;
|
|
}
|
|
for (j = 0; j < i; j++) {
|
|
mask = (buf[j] >> s) & 1;
|
|
mask = -mask;
|
|
buf[j] ^= buf[i] & mask;
|
|
}
|
|
for (j = i + 1; j < 32; j++) {
|
|
mask = (buf[j] >> s) & 1;
|
|
mask = -mask;
|
|
buf[j] ^= buf[i] & mask;
|
|
}
|
|
}
|
|
|
|
// updating permutation
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
for (k = j + 1; k < 64; k++) {
|
|
d = perm[ row + j ] ^ perm[ row + k ];
|
|
d &= same_mask((uint16_t)k, (uint16_t)ctz_list[j]);
|
|
perm[ row + j ] ^= d;
|
|
perm[ row + k ] ^= d;
|
|
}
|
|
}
|
|
|
|
// moving columns of mat according to the column indices of pivots
|
|
|
|
for (i = 0; i < GFBITS * SYS_T; i += 64) {
|
|
|
|
for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) {
|
|
buf[j] = (mat[ i + j ][ block_idx + 0 ] >> 32) |
|
|
(mat[ i + j ][ block_idx + 1 ] << 32);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE8192128F_VEC_transpose_64x64(buf, buf);
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
for (k = j + 1; k < 64; k++) {
|
|
d = buf[ j ] ^ buf[ k ];
|
|
d &= same_mask((uint16_t)k, (uint16_t)ctz_list[j]);
|
|
buf[ j ] ^= d;
|
|
buf[ k ] ^= d;
|
|
}
|
|
}
|
|
|
|
PQCLEAN_MCELIECE8192128F_VEC_transpose_64x64(buf, buf);
|
|
|
|
for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) {
|
|
mat[ i + j ][ block_idx + 0 ] = (mat[ i + j ][ block_idx + 0 ] << 32 >> 32) | (buf[j] << 32);
|
|
mat[ i + j ][ block_idx + 1 ] = (mat[ i + j ][ block_idx + 1 ] >> 32 << 32) | (buf[j] >> 32);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int PQCLEAN_MCELIECE8192128F_VEC_pk_gen(unsigned char *pk, uint32_t *perm, const unsigned char *sk) {
|
|
const int nblocks_H = (SYS_N + 63) / 64;
|
|
const int nblocks_I = (GFBITS * SYS_T + 63) / 64;
|
|
|
|
int i, j, k;
|
|
int row, c;
|
|
|
|
uint64_t mat[ GFBITS * SYS_T ][ 128 ];
|
|
|
|
uint64_t mask;
|
|
|
|
vec irr_int[2][ GFBITS ];
|
|
|
|
vec consts[ 128 ][ GFBITS ];
|
|
vec eval[ 128 ][ GFBITS ];
|
|
vec prod[ 128 ][ GFBITS ];
|
|
vec tmp[ GFBITS ];
|
|
|
|
uint64_t list[1 << GFBITS];
|
|
|
|
// compute the inverses
|
|
|
|
PQCLEAN_MCELIECE8192128F_VEC_irr_load(irr_int, sk);
|
|
|
|
PQCLEAN_MCELIECE8192128F_VEC_fft(eval, irr_int);
|
|
|
|
PQCLEAN_MCELIECE8192128F_VEC_vec_copy(prod[0], eval[0]);
|
|
|
|
for (i = 1; i < 128; i++) {
|
|
PQCLEAN_MCELIECE8192128F_VEC_vec_mul(prod[i], prod[i - 1], eval[i]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE8192128F_VEC_vec_inv(tmp, prod[127]);
|
|
|
|
for (i = 126; i >= 0; i--) {
|
|
PQCLEAN_MCELIECE8192128F_VEC_vec_mul(prod[i + 1], prod[i], tmp);
|
|
PQCLEAN_MCELIECE8192128F_VEC_vec_mul(tmp, tmp, eval[i + 1]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE8192128F_VEC_vec_copy(prod[0], tmp);
|
|
|
|
// fill matrix
|
|
|
|
de_bitslicing(list, prod);
|
|
|
|
for (i = 0; i < (1 << GFBITS); i++) {
|
|
list[i] <<= GFBITS;
|
|
list[i] |= i;
|
|
list[i] |= ((uint64_t) perm[i]) << 31;
|
|
}
|
|
|
|
PQCLEAN_MCELIECE8192128F_VEC_sort_63b(1 << GFBITS, list);
|
|
|
|
to_bitslicing_2x(consts, prod, list);
|
|
|
|
for (i = 0; i < (1 << GFBITS); i++) {
|
|
perm[i] = list[i] & GFMASK;
|
|
}
|
|
|
|
for (j = 0; j < nblocks_H; j++) {
|
|
for (k = 0; k < GFBITS; k++) {
|
|
mat[ k ][ j ] = prod[ j ][ k ];
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < SYS_T; i++) {
|
|
for (j = 0; j < nblocks_H; j++) {
|
|
PQCLEAN_MCELIECE8192128F_VEC_vec_mul(prod[j], prod[j], consts[j]);
|
|
|
|
for (k = 0; k < GFBITS; k++) {
|
|
mat[ i * GFBITS + k ][ j ] = prod[ j ][ k ];
|
|
}
|
|
}
|
|
}
|
|
|
|
// gaussian elimination
|
|
|
|
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
|
|
for (j = 0; j < 64; j++) {
|
|
row = i * 64 + j;
|
|
|
|
if (row == GFBITS * SYS_T - 32) {
|
|
if (mov_columns(mat, perm)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (k = row + 1; k < PK_NROWS; k++) {
|
|
mask = mat[ row ][ i ] >> j;
|
|
mask &= 1;
|
|
mask -= 1;
|
|
|
|
for (c = 0; c < 128; c++) {
|
|
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
|
|
}
|
|
}
|
|
|
|
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
|
|
return -1;
|
|
}
|
|
|
|
for (k = 0; k < row; k++) {
|
|
mask = mat[ k ][ i ] >> j;
|
|
mask &= 1;
|
|
mask = -mask;
|
|
|
|
for (c = 0; c < 128; c++) {
|
|
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
|
|
}
|
|
}
|
|
for (k = row + 1; k < GFBITS * SYS_T; k++) {
|
|
mask = mat[ k ][ i ] >> j;
|
|
mask &= 1;
|
|
mask = -mask;
|
|
|
|
for (c = 0; c < 128; c++) {
|
|
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < GFBITS * SYS_T; i++) {
|
|
for (j = nblocks_I; j < 128; j++) {
|
|
PQCLEAN_MCELIECE8192128F_VEC_store8(pk, mat[i][j]);
|
|
pk += 8;
|
|
}
|
|
}
|
|
|
|
//
|
|
|
|
return 0;
|
|
}
|
|
|