1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-27 01:41:40 +00:00
pqcrypto/crypto_kem/kyber768/clean/ntt.c
John M. Schanck 127e9ec326 Round 3 Kyber
2021-03-24 21:02:49 +00:00

147 lines
5.4 KiB
C

#include "ntt.h"
#include "params.h"
#include "reduce.h"
#include <stdint.h>
/* Code to generate PQCLEAN_KYBER768_CLEAN_zetas and zetas_inv used in the number-theoretic transform:
#define KYBER_ROOT_OF_UNITY 17
static const uint8_t tree[128] = {
0, 64, 32, 96, 16, 80, 48, 112, 8, 72, 40, 104, 24, 88, 56, 120,
4, 68, 36, 100, 20, 84, 52, 116, 12, 76, 44, 108, 28, 92, 60, 124,
2, 66, 34, 98, 18, 82, 50, 114, 10, 74, 42, 106, 26, 90, 58, 122,
6, 70, 38, 102, 22, 86, 54, 118, 14, 78, 46, 110, 30, 94, 62, 126,
1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89, 57, 121,
5, 69, 37, 101, 21, 85, 53, 117, 13, 77, 45, 109, 29, 93, 61, 125,
3, 67, 35, 99, 19, 83, 51, 115, 11, 75, 43, 107, 27, 91, 59, 123,
7, 71, 39, 103, 23, 87, 55, 119, 15, 79, 47, 111, 31, 95, 63, 127
};
void init_ntt() {
unsigned int i;
int16_t tmp[128];
tmp[0] = MONT;
for(i=1;i<128;i++)
tmp[i] = fqmul(tmp[i-1],MONT*KYBER_ROOT_OF_UNITY % KYBER_Q);
for(i=0;i<128;i++) {
PQCLEAN_KYBER768_CLEAN_zetas[i] = tmp[tree[i]];
if(PQCLEAN_KYBER768_CLEAN_zetas[i] > KYBER_Q/2)
PQCLEAN_KYBER768_CLEAN_zetas[i] -= KYBER_Q;
if(PQCLEAN_KYBER768_CLEAN_zetas[i] < -KYBER_Q/2)
PQCLEAN_KYBER768_CLEAN_zetas[i] += KYBER_Q;
}
}
*/
const int16_t PQCLEAN_KYBER768_CLEAN_zetas[128] = {
-1044, -758, -359, -1517, 1493, 1422, 287, 202,
-171, 622, 1577, 182, 962, -1202, -1474, 1468,
573, -1325, 264, 383, -829, 1458, -1602, -130,
-681, 1017, 732, 608, -1542, 411, -205, -1571,
1223, 652, -552, 1015, -1293, 1491, -282, -1544,
516, -8, -320, -666, -1618, -1162, 126, 1469,
-853, -90, -271, 830, 107, -1421, -247, -951,
-398, 961, -1508, -725, 448, -1065, 677, -1275,
-1103, 430, 555, 843, -1251, 871, 1550, 105,
422, 587, 177, -235, -291, -460, 1574, 1653,
-246, 778, 1159, -147, -777, 1483, -602, 1119,
-1590, 644, -872, 349, 418, 329, -156, -75,
817, 1097, 603, 610, 1322, -1285, -1465, 384,
-1215, -136, 1218, -1335, -874, 220, -1187, -1659,
-1185, -1530, -1278, 794, -1510, -854, -870, 478,
-108, -308, 996, 991, 958, -1460, 1522, 1628
};
/*************************************************
* Name: fqmul
*
* Description: Multiplication followed by Montgomery reduction
*
* Arguments: - int16_t a: first factor
* - int16_t b: second factor
*
* Returns 16-bit integer congruent to a*b*R^{-1} mod q
**************************************************/
static int16_t fqmul(int16_t a, int16_t b) {
return PQCLEAN_KYBER768_CLEAN_montgomery_reduce((int32_t)a * b);
}
/*************************************************
* Name: PQCLEAN_KYBER768_CLEAN_ntt
*
* Description: Inplace number-theoretic transform (NTT) in Rq.
* input is in standard order, output is in bitreversed order
*
* Arguments: - int16_t r[256]: pointer to input/output vector of elements of Zq
**************************************************/
void PQCLEAN_KYBER768_CLEAN_ntt(int16_t r[256]) {
unsigned int len, start, j, k;
int16_t t, zeta;
k = 1;
for (len = 128; len >= 2; len >>= 1) {
for (start = 0; start < 256; start = j + len) {
zeta = PQCLEAN_KYBER768_CLEAN_zetas[k++];
for (j = start; j < start + len; j++) {
t = fqmul(zeta, r[j + len]);
r[j + len] = r[j] - t;
r[j] = r[j] + t;
}
}
}
}
/*************************************************
* Name: invntt_tomont
*
* Description: Inplace inverse number-theoretic transform in Rq and
* multiplication by Montgomery factor 2^16.
* Input is in bitreversed order, output is in standard order
*
* Arguments: - int16_t r[256]: pointer to input/output vector of elements of Zq
**************************************************/
void PQCLEAN_KYBER768_CLEAN_invntt(int16_t r[256]) {
unsigned int start, len, j, k;
int16_t t, zeta;
const int16_t f = 1441; // mont^2/128
k = 127;
for (len = 2; len <= 128; len <<= 1) {
for (start = 0; start < 256; start = j + len) {
zeta = PQCLEAN_KYBER768_CLEAN_zetas[k--];
for (j = start; j < start + len; j++) {
t = r[j];
r[j] = PQCLEAN_KYBER768_CLEAN_barrett_reduce(t + r[j + len]);
r[j + len] = r[j + len] - t;
r[j + len] = fqmul(zeta, r[j + len]);
}
}
}
for (j = 0; j < 256; j++) {
r[j] = fqmul(r[j], f);
}
}
/*************************************************
* Name: PQCLEAN_KYBER768_CLEAN_basemul
*
* Description: Multiplication of polynomials in Zq[X]/(X^2-zeta)
* used for multiplication of elements in Rq in NTT domain
*
* Arguments: - int16_t r[2]: pointer to the output polynomial
* - const int16_t a[2]: pointer to the first factor
* - const int16_t b[2]: pointer to the second factor
* - int16_t zeta: integer defining the reduction polynomial
**************************************************/
void PQCLEAN_KYBER768_CLEAN_basemul(int16_t r[2], const int16_t a[2], const int16_t b[2], int16_t zeta) {
r[0] = fqmul(a[1], b[1]);
r[0] = fqmul(r[0], zeta);
r[0] += fqmul(a[0], b[0]);
r[1] = fqmul(a[0], b[1]);
r[1] += fqmul(a[1], b[0]);
}