mirror of
https://github.com/henrydcase/pqc.git
synced 2024-11-24 00:11:27 +00:00
285 lines
11 KiB
C
285 lines
11 KiB
C
#include "bch.h"
|
|
#include "fft.h"
|
|
#include "gf.h"
|
|
#include "parameters.h"
|
|
#include "vector.h"
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
/**
|
|
* @file bch.c
|
|
* Constant time implementation of BCH codes
|
|
*/
|
|
|
|
|
|
static void unpack_message(uint8_t *message_unpacked, const uint64_t *message);
|
|
static void lfsr_encode(uint8_t *codeword, const uint8_t *message);
|
|
static void pack_codeword(uint64_t *codeword, const uint8_t *codeword_unpacked);
|
|
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
|
|
static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
|
|
static void compute_syndromes(uint16_t *syndromes, const uint64_t *vector);
|
|
static void compute_roots(uint64_t *error, const uint16_t *sigma);
|
|
|
|
/**
|
|
* @brief Unpacks the message message to the array message_unpacked where each byte stores a bit of the message
|
|
*
|
|
* @param[out] message_unpacked Array of VEC_K_SIZE_BYTES bytes receiving the unpacked message
|
|
* @param[in] message Array of PARAM_K bytes storing the packed message
|
|
*/
|
|
static void unpack_message(uint8_t *message_unpacked, const uint64_t *message) {
|
|
for (size_t i = 0; i < (VEC_K_SIZE_64 - (PARAM_K % 64 != 0)); ++i) {
|
|
for (size_t j = 0; j < 64; ++j) {
|
|
message_unpacked[j + 64 * i] = (message[i] >> j) & 0x0000000000000001;
|
|
}
|
|
}
|
|
|
|
for (int8_t j = 0; j < PARAM_K % 64; ++j) {
|
|
message_unpacked[j + 64 * (VEC_K_SIZE_64 - 1)] = (message[VEC_K_SIZE_64 - 1] >> j) & 0x0000000000000001;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Encodes the message message to a codeword codeword using the generator polynomial bch_poly of the code
|
|
*
|
|
* @param[out] codeword Array of PARAM_N1 bytes receiving the codeword
|
|
* @param[in] message Array of PARAM_K bytes storing the message to encode
|
|
*/
|
|
static void lfsr_encode(uint8_t *codeword, const uint8_t *message) {
|
|
uint8_t gate_value = 0;
|
|
uint8_t bch_poly[PARAM_G] = PARAM_BCH_POLY;
|
|
|
|
// Compute the Parity-check digits
|
|
for (int16_t i = PARAM_K - 1; i >= 0; --i) {
|
|
gate_value = message[i] ^ codeword[PARAM_N1 - PARAM_K - 1];
|
|
|
|
for (size_t j = PARAM_N1 - PARAM_K - 1; j; --j) {
|
|
codeword[j] = codeword[j - 1] ^ (-gate_value & bch_poly[j]);
|
|
}
|
|
|
|
codeword[0] = gate_value;
|
|
}
|
|
|
|
// Add the message
|
|
memcpy(codeword + PARAM_N1 - PARAM_K, message, PARAM_K);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Packs the codeword from an array codeword_unpacked where each byte stores a bit to a compact array codeword
|
|
*
|
|
* @param[out] codeword Array of VEC_N1_SIZE_BYTES bytes receiving the packed codeword
|
|
* @param[in] codeword_unpacked Array of PARAM_N1 bytes storing the unpacked codeword
|
|
*/
|
|
static void pack_codeword(uint64_t *codeword, const uint8_t *codeword_unpacked) {
|
|
for (size_t i = 0; i < (VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0)); ++i) {
|
|
for (size_t j = 0; j < 64; ++j) {
|
|
codeword[i] |= ((uint64_t) codeword_unpacked[j + 64 * i]) << j;
|
|
}
|
|
}
|
|
|
|
for (size_t j = 0; j < PARAM_N1 % 64; ++j) {
|
|
codeword[VEC_N1_SIZE_64 - 1] |= ((uint64_t) codeword_unpacked[j + 64 * (VEC_N1_SIZE_64 - 1)]) << j;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Encodes a message message of PARAM_K bits to a BCH codeword codeword of PARAM_N1 bits
|
|
*
|
|
* Following @cite lin1983error (Chapter 4 - Cyclic Codes),
|
|
* We perform a systematic encoding using a linear (PARAM_N1 - PARAM_K)-stage shift register
|
|
* with feedback connections based on the generator polynomial bch_poly of the BCH code.
|
|
*
|
|
* @param[out] codeword Array of size VEC_N1_SIZE_BYTES receiving the encoded message
|
|
* @param[in] message Array of size VEC_K_SIZE_BYTES storing the message
|
|
*/
|
|
void PQCLEAN_HQC256_CLEAN_bch_code_encode(uint64_t *codeword, const uint64_t *message) {
|
|
uint8_t message_unpacked[PARAM_K];
|
|
uint8_t codeword_unpacked[PARAM_N1] = {0};
|
|
|
|
unpack_message(message_unpacked, message);
|
|
lfsr_encode(codeword_unpacked, message_unpacked);
|
|
pack_codeword(codeword, codeword_unpacked);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Computes the error locator polynomial (ELP) sigma
|
|
*
|
|
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
|
|
* We use the letter p for rho which is initialized at -1/2. <br>
|
|
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
|
|
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
|
|
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
|
|
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
|
|
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
|
|
* and we only need to save its first PARAM_DELTA - 1 coefficients.
|
|
*
|
|
* @returns the degree of the ELP sigma
|
|
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
|
|
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
|
|
*/
|
|
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
|
|
sigma[0] = 1;
|
|
size_t deg_sigma = 0;
|
|
size_t deg_sigma_p = 0;
|
|
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
|
|
size_t deg_sigma_copy = 0;
|
|
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
|
|
int32_t pp = -1; // 2*rho
|
|
uint16_t d_p = 1;
|
|
uint16_t d = syndromes[0];
|
|
|
|
for (size_t mu = 0; mu < PARAM_DELTA; ++mu) {
|
|
// Save sigma in case we need it to update X_sigma_p
|
|
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
|
|
deg_sigma_copy = deg_sigma;
|
|
|
|
uint16_t dd = PQCLEAN_HQC256_CLEAN_gf_mul(d, PQCLEAN_HQC256_CLEAN_gf_inverse(d_p)); // 0 if(d == 0)
|
|
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
|
|
sigma[i] ^= PQCLEAN_HQC256_CLEAN_gf_mul(dd, X_sigma_p[i]);
|
|
}
|
|
|
|
size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
|
|
size_t deg_X_sigma_p = deg_X + deg_sigma_p;
|
|
|
|
// mask1 = 0xffff if(d != 0) and 0 otherwise
|
|
int16_t mask1 = -((uint16_t) - d >> 15);
|
|
|
|
// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
|
|
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);
|
|
|
|
// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
|
|
int16_t mask12 = mask1 & mask2;
|
|
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);
|
|
|
|
if (mu == PARAM_DELTA - 1) {
|
|
break;
|
|
}
|
|
|
|
// Update pp, d_p and X_sigma_p if needed
|
|
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
|
|
d_p = (mask12 & d) ^ (~mask12 & d_p);
|
|
for (size_t i = PARAM_DELTA - 1; i; --i) {
|
|
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
|
|
}
|
|
X_sigma_p[1] = 0;
|
|
X_sigma_p[0] = 0;
|
|
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);
|
|
|
|
// Compute the next discrepancy
|
|
d = syndromes[2 * mu + 2];
|
|
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
|
|
d ^= PQCLEAN_HQC256_CLEAN_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
|
|
}
|
|
}
|
|
|
|
return deg_sigma;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Retrieves the message message from the codeword codeword
|
|
*
|
|
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
|
|
*
|
|
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
|
|
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
|
|
*/
|
|
static void message_from_codeword(uint64_t *message, const uint64_t *codeword) {
|
|
uint64_t mask1 = (uint64_t) (0xffffffffffffffff << ((PARAM_N1 - PARAM_K) % 64));
|
|
uint64_t mask2 = (uint64_t) (0xffffffffffffffff >> (64 - (PARAM_N1 - PARAM_K) % 64));
|
|
size_t index = (PARAM_N1 - PARAM_K) / 64;
|
|
|
|
for (size_t i = 0; i < VEC_K_SIZE_64 - 1; ++i) {
|
|
message[i] = (codeword[index] & mask1) >> ((PARAM_N1 - PARAM_K) % 64);
|
|
message[i] |= (codeword[++index] & mask2) << (64 - (PARAM_N1 - PARAM_K) % 64);
|
|
}
|
|
|
|
// Last byte (8-val % 8 is the number of bits given by message1)
|
|
message[VEC_K_SIZE_64 - 1] = (codeword[index] & mask1) >> ((PARAM_N1 - PARAM_K) % 64);
|
|
++index;
|
|
if (index < VEC_N1_SIZE_64) {
|
|
message[VEC_K_SIZE_64 - 1] |= (codeword[index] & mask2) << (64 - (PARAM_N1 - PARAM_K) % 64);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
|
|
*
|
|
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
|
|
* To do so, we use the additive FFT transpose, which takes as input a family w of GF(2^PARAM_M) elements
|
|
* and outputs the weighted power sums of these w. <br>
|
|
* Therefore, this requires twisting and applying a permutation before feeding vector to the PQCLEAN_HQC256_CLEAN_fft transpose. <br>
|
|
* For more details see Berstein, Chou and Schawbe's explanations:
|
|
* https://binary.cr.yp.to/mcbits-20130616.pdf
|
|
*
|
|
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
|
|
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
|
|
*/
|
|
static void compute_syndromes(uint16_t *syndromes, const uint64_t *vector) {
|
|
uint16_t w[1 << PARAM_M];
|
|
|
|
PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(w, vector);
|
|
PQCLEAN_HQC256_CLEAN_fft_t(syndromes, w, 2 * PARAM_DELTA);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Computes the error polynomial error from the error locator polynomial sigma
|
|
*
|
|
* See function PQCLEAN_HQC256_CLEAN_fft for more details.
|
|
*
|
|
* @param[out] error Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
|
|
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
|
|
*/
|
|
static void compute_roots(uint64_t *error, const uint16_t *sigma) {
|
|
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements
|
|
|
|
PQCLEAN_HQC256_CLEAN_fft(w, sigma, PARAM_DELTA + 1);
|
|
PQCLEAN_HQC256_CLEAN_fft_retrieve_bch_error_poly(error, w);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Decodes the received word
|
|
*
|
|
* This function relies on four steps:
|
|
* <ol>
|
|
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
|
|
* <li> The second step is the computation of the error-locator polynomial sigma.
|
|
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
|
|
* <li> The fourth step is the correction of the errors in the received polynomial.
|
|
* </ol>
|
|
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
|
|
*
|
|
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
|
|
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
|
|
*/
|
|
void PQCLEAN_HQC256_CLEAN_bch_code_decode(uint64_t *message, uint64_t *vector) {
|
|
uint16_t syndromes[1 << PARAM_FFT_T] = {0};
|
|
uint16_t sigma[1 << PARAM_FFT] = {0};
|
|
uint64_t error[(1 << PARAM_M) / 8] = {0};
|
|
|
|
// Calculate the 2*PARAM_DELTA syndromes
|
|
compute_syndromes(syndromes, vector);
|
|
|
|
// Compute the error locator polynomial sigma
|
|
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
|
|
compute_elp(sigma, syndromes);
|
|
|
|
// Compute the error polynomial error
|
|
compute_roots(error, sigma);
|
|
|
|
// Add the error polynomial to the received polynomial
|
|
PQCLEAN_HQC256_CLEAN_vect_add(vector, vector, error, VEC_N1_SIZE_64);
|
|
|
|
// Retrieve the message from the decoded codeword
|
|
message_from_codeword(message, vector);
|
|
|
|
}
|