1
1
鏡像自 https://github.com/henrydcase/pqc.git synced 2024-11-25 17:01:22 +00:00
移至檔案
Kris Kwiatkowski fbd5687be2
Dilithium 3.1 (#25)
* Dilithium 3.1

* KAT testing
* Incluide AARCH64 implementation
* Add test for Z packing/unpacking
2023-01-09 12:30:12 +00:00
.cmake prevent updating llvm-project during 'make' 2021-06-24 07:48:25 +01:00
.github/workflows Dilithium 3.1 (#25) 2023-01-09 12:30:12 +00:00
public/pqc [sike] Remove 2022-08-04 08:44:28 +01:00
src Dilithium 3.1 (#25) 2023-01-09 12:30:12 +00:00
test Dilithium 3.1 (#25) 2023-01-09 12:30:12 +00:00
.gitignore add benchmarking framework 2021-04-22 21:41:46 +01:00
CITATION.cff Create CITATION.cff 2021-09-19 10:17:13 +01:00
CMakeLists.txt [sike] Remove 2022-08-04 08:44:28 +01:00
LICENSE Create LICENSE 2021-03-25 09:17:59 +00:00
README.md [sike] Remove 2022-08-04 08:44:28 +01:00
SECURITY.md Create SECURITY.md 2021-04-21 10:50:15 +01:00

PQ Crypto Catalog

Implementation of quantum-safe signature and KEM schemes submitted to NIST PQC Standardization Process.

The goal is to provide an easy-to-use API in C and Rust to enable experimentation. The code is derived from the submission to the NIST Post-Quantum Standardization, either directly or by leveraging PQClean project.

Users shouldn't expect any level of security provided by this code. The library is not meant to be used on live production systems.

Supported schemes

All schemes selected by NIST duing PQC standardization:

Name x86 optimized
Kyber x
Dilithium x
Falcon
SPHINCS+ SHA256/SHAKE256 x

KEM candidates for an additional round 4.

Name x86 optimized
HQC-RMRS x
McEliece

Building

CMake is used to build the library:

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make

Build outputs two libraries, a static libpqc_s.a and dynamic libpqc.so, which can be linked with a project.

API

Library provides simple API, wrapping PQClean. For example to use KEM, one should call the library in following way:

    #include <pqc/pqc.h>

    const params_t *p = pqc_kem_alg_by_id(KYBER512);
    std::vector<uint8_t> ct(ciphertext_bsz(p));
    std::vector<uint8_t> ss1(shared_secret_bsz(p));
    std::vector<uint8_t> ss2(shared_secret_bsz(p));
    std::vector<uint8_t> sk(private_key_bsz(p));
    std::vector<uint8_t> pk(public_key_bsz(p));

    pqc_keygen(p, pk.data(), sk.data());
    pqc_kem_encapsulate(p, ct.data(), ss1.data(), pk.data());
    pqc_kem_decapsulate(p, ss2.data(), ct.data(), sk.data());

    p = pqc_sig_alg_by_id(DILITHIUM2);
    size_t sigsz = sig.capacity();
    pqc_keygen(p, pk.data(), sk.data());
    pqc_sig_create(p, sig.data(), &sigsz, msg.data(), msg.size(), sk.data());
    pqc_sig_verify(p, sig.data(), sig.size(), msg.data(), msg.size(), pk.data());

See test implemetnation in test/ut.cpp for more details.

Rust binding

Rust bindgings are provided in the src/rustapi/pqc-sys and can be regenerated automatically by running cargo build in that directory.

Testing against Known Answer Tests

Algorithms are tested against KATs, by the Rust-based runner implemented in the test/katrunner (only verification/decpaulation). The runner uses katwalk crate for parsing NIST format. To run it:

    cd test/katrunner
    curl http://amongbytes.com/~flowher/permalinks/kat.zip --output kat.zip
    unzip kat.zip
    cargo run -- --katdir KAT