Init
This commit is contained in:
commit
2f4912c8fd
107
msr/include/P751_api.h
Normal file
107
msr/include/P751_api.h
Normal file
@ -0,0 +1,107 @@
|
|||||||
|
/********************************************************************************************
|
||||||
|
* SIDH: an efficient supersingular isogeny cryptography library
|
||||||
|
*
|
||||||
|
* Abstract: API header file for P751
|
||||||
|
*********************************************************************************************/
|
||||||
|
|
||||||
|
#ifndef __P751_API_H__
|
||||||
|
#define __P751_API_H__
|
||||||
|
|
||||||
|
|
||||||
|
/*********************** Key encapsulation mechanism API ***********************/
|
||||||
|
|
||||||
|
#define CRYPTO_SECRETKEYBYTES 644 // MSG_BYTES + SECRETKEY_B_BYTES + CRYPTO_PUBLICKEYBYTES bytes
|
||||||
|
#define CRYPTO_PUBLICKEYBYTES 564
|
||||||
|
#define CRYPTO_BYTES 24
|
||||||
|
#define CRYPTO_CIPHERTEXTBYTES 596 // CRYPTO_PUBLICKEYBYTES + MSG_BYTES bytes
|
||||||
|
|
||||||
|
// Algorithm name
|
||||||
|
#define CRYPTO_ALGNAME "SIKEp751"
|
||||||
|
|
||||||
|
// SIKE's key generation
|
||||||
|
// It produces a private key sk and computes the public key pk.
|
||||||
|
// Outputs: secret key sk (CRYPTO_SECRETKEYBYTES = 644 bytes)
|
||||||
|
// public key pk (CRYPTO_PUBLICKEYBYTES = 564 bytes)
|
||||||
|
int crypto_kem_keypair_SIKEp751(unsigned char *pk, unsigned char *sk);
|
||||||
|
|
||||||
|
// SIKE's encapsulation
|
||||||
|
// Input: public key pk (CRYPTO_PUBLICKEYBYTES = 564 bytes)
|
||||||
|
// Outputs: shared secret ss (CRYPTO_BYTES = 24 bytes)
|
||||||
|
// ciphertext message ct (CRYPTO_CIPHERTEXTBYTES = 596 bytes)
|
||||||
|
int crypto_kem_enc_SIKEp751(unsigned char *ct, unsigned char *ss, const unsigned char *pk);
|
||||||
|
|
||||||
|
// SIKE's decapsulation
|
||||||
|
// Input: secret key sk (CRYPTO_SECRETKEYBYTES = 644 bytes)
|
||||||
|
// ciphertext message ct (CRYPTO_CIPHERTEXTBYTES = 596 bytes)
|
||||||
|
// Outputs: shared secret ss (CRYPTO_BYTES = 24 bytes)
|
||||||
|
int crypto_kem_dec_SIKEp751(unsigned char *ss, const unsigned char *ct, const unsigned char *sk);
|
||||||
|
|
||||||
|
|
||||||
|
// Encoding of keys for KEM-based isogeny system "SIKEp751" (wire format):
|
||||||
|
// ----------------------------------------------------------------------
|
||||||
|
// Elements over GF(p751) are encoded in 94 octets in little endian format (i.e., the least significant octet is located in the lowest memory address).
|
||||||
|
// Elements (a+b*i) over GF(p751^2), where a and b are defined over GF(p751), are encoded as {a, b}, with a in the lowest memory portion.
|
||||||
|
//
|
||||||
|
// Private keys sk consist of the concatenation of a 32-byte random value, a value in the range [0, 2^378-1] and the public key pk. In the SIKE API,
|
||||||
|
// private keys are encoded in 644 octets in little endian format.
|
||||||
|
// Public keys pk consist of 3 elements in GF(p751^2). In the SIKE API, pk is encoded in 564 octets.
|
||||||
|
// Ciphertexts ct consist of the concatenation of a public key value and a 32-byte value. In the SIKE API, ct is encoded in 564 + 32 = 596 octets.
|
||||||
|
// Shared keys ss consist of a value of 24 octets.
|
||||||
|
|
||||||
|
|
||||||
|
/*********************** Ephemeral key exchange API ***********************/
|
||||||
|
|
||||||
|
#define SIDH_SECRETKEYBYTES 48
|
||||||
|
#define SIDH_PUBLICKEYBYTES 564
|
||||||
|
#define SIDH_BYTES 188
|
||||||
|
|
||||||
|
// SECURITY NOTE: SIDH supports ephemeral Diffie-Hellman key exchange. It is NOT secure to use it with static keys.
|
||||||
|
// See "On the Security of Supersingular Isogeny Cryptosystems", S.D. Galbraith, C. Petit, B. Shani and Y.B. Ti, in ASIACRYPT 2016, 2016.
|
||||||
|
// Extended version available at: http://eprint.iacr.org/2016/859
|
||||||
|
|
||||||
|
// Generation of Alice's secret key
|
||||||
|
// Outputs random value in [0, 2^372 - 1] to be used as Alice's private key
|
||||||
|
void random_mod_order_A_SIDHp751(unsigned char* random_digits);
|
||||||
|
|
||||||
|
// Generation of Bob's secret key
|
||||||
|
// Outputs random value in [0, 2^Floor(Log(2,3^239)) - 1] to be used as Bob's private key
|
||||||
|
void random_mod_order_B_SIDHp751(unsigned char* random_digits);
|
||||||
|
|
||||||
|
// Alice's ephemeral public key generation
|
||||||
|
// Input: a private key PrivateKeyA in the range [0, 2^372 - 1], stored in 47 bytes.
|
||||||
|
// Output: the public key PublicKeyA consisting of 3 GF(p751^2) elements encoded in 564 bytes.
|
||||||
|
int EphemeralKeyGeneration_A_SIDHp751(const unsigned char* PrivateKeyA, unsigned char* PublicKeyA);
|
||||||
|
|
||||||
|
// Bob's ephemeral key-pair generation
|
||||||
|
// It produces a private key PrivateKeyB and computes the public key PublicKeyB.
|
||||||
|
// The private key is an integer in the range [0, 2^Floor(Log(2,3^239)) - 1], stored in 48 bytes.
|
||||||
|
// The public key consists of 3 GF(p751^2) elements encoded in 564 bytes.
|
||||||
|
int EphemeralKeyGeneration_B_SIDHp751(const unsigned char* PrivateKeyB, unsigned char* PublicKeyB);
|
||||||
|
|
||||||
|
// Alice's ephemeral shared secret computation
|
||||||
|
// It produces a shared secret key SharedSecretA using her secret key PrivateKeyA and Bob's public key PublicKeyB
|
||||||
|
// Inputs: Alice's PrivateKeyA is an integer in the range [0, 2^372 - 1], stored in 47 bytes.
|
||||||
|
// Bob's PublicKeyB consists of 3 GF(p751^2) elements encoded in 564 bytes.
|
||||||
|
// Output: a shared secret SharedSecretA that consists of one element in GF(p751^2) encoded in 188 bytes.
|
||||||
|
int EphemeralSecretAgreement_A_SIDHp751(const unsigned char* PrivateKeyA, const unsigned char* PublicKeyB, unsigned char* SharedSecretA);
|
||||||
|
|
||||||
|
// Bob's ephemeral shared secret computation
|
||||||
|
// It produces a shared secret key SharedSecretB using his secret key PrivateKeyB and Alice's public key PublicKeyA
|
||||||
|
// Inputs: Bob's PrivateKeyB is an integer in the range [0, 2^Floor(Log(2,3^239)) - 1], stored in 48 bytes.
|
||||||
|
// Alice's PublicKeyA consists of 3 GF(p751^2) elements encoded in 564 bytes.
|
||||||
|
// Output: a shared secret SharedSecretB that consists of one element in GF(p751^2) encoded in 188 bytes.
|
||||||
|
int EphemeralSecretAgreement_B_SIDHp751(const unsigned char* PrivateKeyB, const unsigned char* PublicKeyA, unsigned char* SharedSecretB);
|
||||||
|
|
||||||
|
|
||||||
|
// Encoding of keys for KEX-based isogeny system "SIDHp751" (wire format):
|
||||||
|
// ----------------------------------------------------------------------
|
||||||
|
// Elements over GF(p751) are encoded in 94 octets in little endian format (i.e., the least significant octet is located in the lowest memory address).
|
||||||
|
// Elements (a+b*i) over GF(p751^2), where a and b are defined over GF(p751), are encoded as {a, b}, with a in the lowest memory portion.
|
||||||
|
//
|
||||||
|
// Private keys PrivateKeyA and PrivateKeyB can have values in the range [0, 2^372-1] and [0, 2^378-1], resp. In the SIDH API, private keys are encoded
|
||||||
|
// in 48 octets in little endian format.
|
||||||
|
// Public keys PublicKeyA and PublicKeyB consist of 3 elements in GF(p751^2). In the SIDH API, they are encoded in 564 octets.
|
||||||
|
// Shared keys SharedSecretA and SharedSecretB consist of one element in GF(p751^2). In the SIDH API, they are encoded in 188 octets.
|
||||||
|
|
||||||
|
|
||||||
|
#endif
|
BIN
msr/lib/libsidh751.a
Normal file
BIN
msr/lib/libsidh751.a
Normal file
Binary file not shown.
329
src/runner.go
Normal file
329
src/runner.go
Normal file
@ -0,0 +1,329 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
/*
|
||||||
|
#cgo CFLAGS: -I../msr/include
|
||||||
|
#cgo LDFLAGS: -L../msr/lib -lsidh751
|
||||||
|
#include <P751_api.h>
|
||||||
|
*/
|
||||||
|
import "C"
|
||||||
|
import "fmt"
|
||||||
|
import rand "crypto/rand"
|
||||||
|
import sidh "github.com/henrydcase/nobs/dh/sidh"
|
||||||
|
import sike "github.com/henrydcase/nobs/kem/sike"
|
||||||
|
import "unsafe"
|
||||||
|
|
||||||
|
const (
|
||||||
|
CSKsz = 644
|
||||||
|
GSKsz = 80 // 80 because MSR concatenates public key to the secret key
|
||||||
|
PKsz = 564
|
||||||
|
CTsz = 596
|
||||||
|
SSsz = 24
|
||||||
|
)
|
||||||
|
|
||||||
|
// Helpers for byte convertion
|
||||||
|
func convBytesGoToC(goBytes []byte, cBytes []C.uchar) {
|
||||||
|
for i,v:=range(goBytes) {
|
||||||
|
cBytes[i] = C.uchar(v)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func convBytesCToGo(cBytes []C.uchar, goBytes []byte) {
|
||||||
|
goBytes=C.GoBytes(unsafe.Pointer(&cBytes[0]), GSKsz)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Helpers for key generation
|
||||||
|
func keygenMsr() (*sidh.PublicKey, *sidh.PrivateKey) {
|
||||||
|
var prvKey = sidh.NewPrivateKey(sidh.FP_751, sidh.KeyVariant_SIKE)
|
||||||
|
var pubKey = sidh.NewPublicKey(sidh.FP_751, sidh.KeyVariant_SIKE)
|
||||||
|
var msrPK [PKsz]C.uchar
|
||||||
|
var msrSK [CSKsz]C.uchar
|
||||||
|
|
||||||
|
if C.crypto_kem_keypair_SIKEp751(&msrPK[0], &msrSK[0]) != 0 {
|
||||||
|
panic(0)
|
||||||
|
}
|
||||||
|
|
||||||
|
if prvKey.Import(C.GoBytes(unsafe.Pointer(&msrSK[0]), GSKsz)) != nil {
|
||||||
|
panic(0)
|
||||||
|
}
|
||||||
|
|
||||||
|
if pubKey.Import(C.GoBytes(unsafe.Pointer(&msrPK[0]), PKsz)) != nil {
|
||||||
|
panic(0)
|
||||||
|
}
|
||||||
|
|
||||||
|
return pubKey, prvKey
|
||||||
|
}
|
||||||
|
|
||||||
|
func keygenCf() (*sidh.PublicKey, *sidh.PrivateKey) {
|
||||||
|
var prvKey = sidh.NewPrivateKey(sidh.FP_751, sidh.KeyVariant_SIKE)
|
||||||
|
|
||||||
|
err := prvKey.Generate(rand.Reader)
|
||||||
|
if err!=nil {
|
||||||
|
fmt.Errorf("ERR: Generate private key for CF failed")
|
||||||
|
}
|
||||||
|
pubKey, _ := sidh.GeneratePublicKey(prvKey)
|
||||||
|
return pubKey,prvKey
|
||||||
|
}
|
||||||
|
|
||||||
|
// MSR keygen
|
||||||
|
// MSR Encapsulate
|
||||||
|
// CF Decapsulate
|
||||||
|
func test_msrK_msrE_cfD() {
|
||||||
|
var msrCipherText [CTsz]C.uchar
|
||||||
|
var ss2 [SSsz]C.uchar
|
||||||
|
var msrSK [CSKsz]C.uchar
|
||||||
|
|
||||||
|
pubKey, prvKey := keygenMsr()
|
||||||
|
ctext, ss1, err := sike.Encapsulate(rand.Reader, pubKey)
|
||||||
|
if err != nil {
|
||||||
|
panic(0)
|
||||||
|
}
|
||||||
|
|
||||||
|
for i,_:=range(ctext) {
|
||||||
|
msrCipherText[i] = C.uchar(ctext[i])
|
||||||
|
}
|
||||||
|
|
||||||
|
convBytesGoToC(prvKey.Export(), msrSK[:])
|
||||||
|
convBytesGoToC(pubKey.Export(), msrSK[80:])
|
||||||
|
if C.crypto_kem_dec_SIKEp751(&msrSK[0], &msrCipherText[0], &ss2[0]) != 0 {
|
||||||
|
panic(0)
|
||||||
|
}
|
||||||
|
for _,i:=range(ss2) {
|
||||||
|
if byte(ss2[i]) != ss1[i] {
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(ss2), ss2)
|
||||||
|
// fmt.Printf("LEN=%d %X\n", len(ss1), ss1)
|
||||||
|
fmt.Println("ERR: shared secrets differ")
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// CF keygen
|
||||||
|
// CF Encapsulate
|
||||||
|
// MSR Decapsulate
|
||||||
|
func test_cfK_cfE_msrD() {
|
||||||
|
// C variables
|
||||||
|
var cSS [SSsz]C.uchar
|
||||||
|
var cCT [CTsz]C.uchar
|
||||||
|
var cPK [PKsz]C.uchar
|
||||||
|
var cSK [CSKsz]C.uchar
|
||||||
|
|
||||||
|
pubKey, prvKey := keygenCf()
|
||||||
|
convBytesGoToC(pubKey.Export(), cPK[:])
|
||||||
|
gCT, gSS, err := sike.Encapsulate(rand.Reader, pubKey)
|
||||||
|
if err != nil {
|
||||||
|
panic("err: SIKE CF encapsulation")
|
||||||
|
}
|
||||||
|
|
||||||
|
convBytesGoToC(gCT[:], cCT[:])
|
||||||
|
convBytesGoToC(prvKey.Export(), cSK[:])
|
||||||
|
convBytesGoToC(pubKey.Export(), cSK[80:])
|
||||||
|
if C.crypto_kem_dec_SIKEp751(&cSS[0], &cCT[0], &cSK[0]) != 0 {
|
||||||
|
panic("Decapsulation failed")
|
||||||
|
}
|
||||||
|
|
||||||
|
for i,_:=range(gSS) {
|
||||||
|
if gSS[i] != byte(cSS[i]) {
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(gSS), gSS)
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(cSS), cSS)
|
||||||
|
fmt.Println("ERR: shared secrets differ")
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// CF keygen
|
||||||
|
// MSR Encapsulate
|
||||||
|
// CF Decapsulate
|
||||||
|
func test_cfK_msrE_cfD() {
|
||||||
|
// C variables
|
||||||
|
var cSS [SSsz]C.uchar
|
||||||
|
var cCT [CTsz]C.uchar
|
||||||
|
var cPK [PKsz]C.uchar
|
||||||
|
// GO variables
|
||||||
|
var gCT [CTsz]byte
|
||||||
|
pubKey, prvKey := keygenCf()
|
||||||
|
|
||||||
|
convBytesGoToC(pubKey.Export(), cPK[:])
|
||||||
|
C.crypto_kem_enc_SIKEp751(&cCT[0], &cSS[0], &cPK[0])
|
||||||
|
|
||||||
|
convBytesCToGo(cCT[:], gCT[:])
|
||||||
|
gSS, err := sike.Decapsulate(prvKey, pubKey, gCT[:])
|
||||||
|
if err != nil {
|
||||||
|
panic("Decapsulation failed")
|
||||||
|
}
|
||||||
|
|
||||||
|
for i,_:=range(gSS) {
|
||||||
|
if gSS[i] != byte(cSS[i]) {
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(gSS), gSS)
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(cSS), cSS)
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(gCT), gCT)
|
||||||
|
fmt.Println("ERR: shared secrets differ")
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func test_cfK_msrK_msrD() {
|
||||||
|
// C variables
|
||||||
|
var cSS [SSsz]C.uchar
|
||||||
|
var cSS2 [SSsz]C.uchar
|
||||||
|
var cCT [CTsz]C.uchar
|
||||||
|
var cPK [PKsz]C.uchar
|
||||||
|
var cSK [CSKsz]C.uchar
|
||||||
|
// GO variables
|
||||||
|
pubKey, prvKey := keygenCf()
|
||||||
|
|
||||||
|
convBytesGoToC(pubKey.Export(), cPK[:])
|
||||||
|
C.crypto_kem_enc_SIKEp751(&cCT[0], &cSS[0], &cPK[0])
|
||||||
|
|
||||||
|
convBytesGoToC(prvKey.Export(), cSK[:])
|
||||||
|
convBytesGoToC(pubKey.Export(), cSK[80:])
|
||||||
|
C.crypto_kem_dec_SIKEp751(&cSS2[0], &cCT[0], &cSK[0])
|
||||||
|
|
||||||
|
for i,_:=range(cSS) {
|
||||||
|
if cSS[i] != cSS2[i] {//gSS[i] != byte(cSS[i]) {
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(cSS2), cSS2)
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(cSS), cSS)
|
||||||
|
fmt.Println("ERR: shared secrets differ")
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// MSR keygen
|
||||||
|
// CF Encapsulate
|
||||||
|
// MSR Decapsulate
|
||||||
|
func test_msrK_cfE_msrD() {
|
||||||
|
var cCT [CTsz]C.uchar
|
||||||
|
var cSS [SSsz]C.uchar
|
||||||
|
var cSK [CSKsz]C.uchar
|
||||||
|
|
||||||
|
pubKey, prvKey := keygenMsr()
|
||||||
|
gCT, gSS, err := sike.Encapsulate(rand.Reader, pubKey)
|
||||||
|
if err != nil {
|
||||||
|
panic(0)
|
||||||
|
}
|
||||||
|
convBytesGoToC(gCT, cCT[:])
|
||||||
|
convBytesGoToC(prvKey.Export(), cSK[:])
|
||||||
|
convBytesGoToC(pubKey.Export(), cSK[80:])
|
||||||
|
if C.crypto_kem_dec_SIKEp751(&cSS[0], &cCT[0], &cSK[0]) != 0 {
|
||||||
|
panic(0)
|
||||||
|
}
|
||||||
|
for i:=0; i<SSsz; i++ {
|
||||||
|
if byte(cSS[i]) != gSS[i] {
|
||||||
|
fmt.Println("ERR: shared secrets differ")
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// MSR keygen
|
||||||
|
// MSR Encapsulate
|
||||||
|
// CF Decapsulate
|
||||||
|
func test_msrK_msrK_cfD() {
|
||||||
|
// C variables
|
||||||
|
var cSS [SSsz]C.uchar
|
||||||
|
var cCT [CTsz]C.uchar
|
||||||
|
var cPK [PKsz]C.uchar
|
||||||
|
var cSK [CSKsz]C.uchar
|
||||||
|
var gCT [CTsz]byte
|
||||||
|
|
||||||
|
// GO variables
|
||||||
|
pubKey, prvKey := keygenMsr()
|
||||||
|
convBytesGoToC(prvKey.Export(), cSK[:])
|
||||||
|
convBytesGoToC(pubKey.Export(), cSK[80:])
|
||||||
|
convBytesGoToC(pubKey.Export(), cPK[:])
|
||||||
|
C.crypto_kem_enc_SIKEp751(&cCT[0], &cSS[0], &cPK[0])
|
||||||
|
|
||||||
|
convBytesCToGo(cCT[:], gCT[:])
|
||||||
|
gSS, err := sike.Decapsulate(prvKey, pubKey, gCT[:])
|
||||||
|
if err!=nil {
|
||||||
|
panic(0)
|
||||||
|
}
|
||||||
|
for i,_:=range(cSS) {
|
||||||
|
if byte(cSS[i]) != gSS[i] {
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(gSS), gSS)
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(cSS), cSS)
|
||||||
|
fmt.Println("ERR: shared secrets differ")
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// MSR keygen
|
||||||
|
// CF Encapsulate
|
||||||
|
// CF Decapsulate
|
||||||
|
func test_msrK_cfE_cfD() {
|
||||||
|
pubKey, prvKey := keygenMsr()
|
||||||
|
gCT, gSS1, err := sike.Encapsulate(rand.Reader, pubKey)
|
||||||
|
if err != nil {
|
||||||
|
panic("err: SIKE CF encapsulation")
|
||||||
|
}
|
||||||
|
|
||||||
|
gSS2, err := sike.Decapsulate(prvKey, pubKey, gCT)
|
||||||
|
if err!=nil || len(gSS1) != len(gSS2) {
|
||||||
|
panic("Decapsulation failed")
|
||||||
|
}
|
||||||
|
|
||||||
|
for i,_:=range(gSS1) {
|
||||||
|
if gSS1[i] != gSS2[i] {
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(gSS1), gSS1)
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(gSS2), gSS2)
|
||||||
|
fmt.Println("ERR: shared secrets differ")
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// For CGO testing really
|
||||||
|
// ----------------------
|
||||||
|
func test_msrK_msrK_msrD() {
|
||||||
|
// C variables
|
||||||
|
var cSS [SSsz]C.uchar
|
||||||
|
var cSS2 [SSsz]C.uchar
|
||||||
|
var cCT [CTsz]C.uchar
|
||||||
|
var cPK [PKsz]C.uchar
|
||||||
|
var cSK [CSKsz]C.uchar
|
||||||
|
|
||||||
|
// GO variables
|
||||||
|
pubKey, prvKey := keygenMsr()
|
||||||
|
convBytesGoToC(prvKey.Export(), cSK[:])
|
||||||
|
convBytesGoToC(pubKey.Export(), cSK[80:])
|
||||||
|
convBytesGoToC(pubKey.Export(), cPK[:])
|
||||||
|
C.crypto_kem_enc_SIKEp751(&cCT[0], &cSS[0], &cPK[0])
|
||||||
|
C.crypto_kem_dec_SIKEp751(&cSS2[0], &cCT[0], &cSK[0])
|
||||||
|
|
||||||
|
for i,_:=range(cSS) {
|
||||||
|
if cSS[i] != cSS2[i] {
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(cSS2), cSS2)
|
||||||
|
fmt.Printf("LEN=%d %X\n", len(cSS), cSS)
|
||||||
|
fmt.Println("ERR: shared secrets differ")
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func debug() {
|
||||||
|
// fmt.Println("MSR+MSR+MSR")
|
||||||
|
// test_msrK_msrK_msrD()
|
||||||
|
// fmt.Println("CF+MSR+CF")
|
||||||
|
// test_cfK_msrE_cfD()
|
||||||
|
// fmt.Println("MSR+CF+MSR")
|
||||||
|
// test_msrK_cfE_msrD()
|
||||||
|
// fmt.Println("MSR+MSR+CF")
|
||||||
|
// test_msrK_msrK_cfD()
|
||||||
|
// fmt.Println("MSR+CF+CF")
|
||||||
|
// test_msrK_cfE_cfD()
|
||||||
|
|
||||||
|
fmt.Println("CF+CF+MSR")
|
||||||
|
test_cfK_cfE_msrD()
|
||||||
|
fmt.Println("CF+MSR+MSR")
|
||||||
|
test_cfK_msrK_msrD()
|
||||||
|
}
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
for i:=0; i<1000; i++ {
|
||||||
|
debug()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user