th5/testdata/Server-TLSv12-CipherSuiteCertPreferenceRSA

90 lines
6.6 KiB
Plaintext
Raw Permalink Normal View History

>>> Flow 1 (client to server)
00000000 16 03 01 00 a7 01 00 00 a3 03 03 df fc 06 29 d8 |..............).|
00000010 a1 69 bd 2c d2 21 97 39 e8 4f 81 94 fa b9 58 6d |.i.,.!.9.O....Xm|
00000020 aa 15 ae f7 bc 03 7a fa e3 33 bf 00 00 38 c0 2c |......z..3...8.,|
00000030 c0 30 00 9f cc a9 cc a8 cc aa c0 2b c0 2f 00 9e |.0.........+./..|
00000040 c0 24 c0 28 00 6b c0 23 c0 27 00 67 c0 0a c0 14 |.$.(.k.#.'.g....|
00000050 00 39 c0 09 c0 13 00 33 00 9d 00 9c 00 3d 00 3c |.9.....3.....=.<|
00000060 00 35 00 2f 00 ff 01 00 00 42 00 0b 00 04 03 00 |.5./.....B......|
00000070 01 02 00 0a 00 0a 00 08 00 1d 00 17 00 19 00 18 |................|
00000080 00 0d 00 20 00 1e 06 01 06 02 06 03 05 01 05 02 |... ............|
00000090 05 03 04 01 04 02 04 03 03 01 03 02 03 03 02 01 |................|
000000a0 02 02 02 03 00 16 00 00 00 17 00 00 |............|
>>> Flow 2 (server to client)
crypto/ecdsa: make Sign safe with broken entropy sources ECDSA is unsafe to use if an entropy source produces predictable output for the ephemeral nonces. E.g., [Nguyen]. A simple countermeasure is to hash the secret key, the message, and entropy together to seed a CSPRNG, from which the ephemeral key is derived. Fixes #9452 -- This is a minimalist (in terms of patch size) solution, though not the most parsimonious in its use of primitives: - csprng_key = ChopMD-256(SHA2-512(priv.D||entropy||hash)) - reader = AES-256-CTR(k=csprng_key) This, however, provides at most 128-bit collision-resistance, so that Adv will have a term related to the number of messages signed that is significantly worse than plain ECDSA. This does not seem to be of any practical importance. ChopMD-256(SHA2-512(x)) is used, rather than SHA2-256(x), for two sets of reasons: *Practical:* SHA2-512 has a larger state and 16 more rounds; it is likely non-generically stronger than SHA2-256. And, AFAIK, cryptanalysis backs this up. (E.g., [Biryukov] gives a distinguisher on 47-round SHA2-256 with cost < 2^85.) This is well below a reasonable security-strength target. *Theoretical:* [Coron] and [Chang] show that Chop-MD(F(x)) is indifferentiable from a random oracle for slightly beyond the birthday barrier. It seems likely that this makes a generic security proof that this construction remains UF-CMA is possible in the indifferentiability framework. -- Many thanks to Payman Mohassel for reviewing this construction; any mistakes are mine, however. And, as he notes, reusing the private key in this way means that the generic-group (non-RO) proof of ECDSA's security given in [Brown] no longer directly applies. -- [Brown]: http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-54.ps "Brown. The exact security of ECDSA. 2000" [Coron]: https://www.cs.nyu.edu/~puniya/papers/merkle.pdf "Coron et al. Merkle-Damgard revisited. 2005" [Chang]: https://www.iacr.org/archive/fse2008/50860436/50860436.pdf "Chang and Nandi. Improved indifferentiability security analysis of chopMD hash function. 2008" [Biryukov]: http://www.iacr.org/archive/asiacrypt2011/70730269/70730269.pdf "Biryukov et al. Second-order differential collisions for reduced SHA-256. 2011" [Nguyen]: ftp://ftp.di.ens.fr/pub/users/pnguyen/PubECDSA.ps "Nguyen and Shparlinski. The insecurity of the elliptic curve digital signature algorithm with partially known nonces. 2003" New tests: TestNonceSafety: Check that signatures are safe even with a broken entropy source. TestINDCCA: Check that signatures remain non-deterministic with a functional entropy source. Updated "golden" KATs in crypto/tls/testdata that use ECDSA suites. Change-Id: I55337a2fbec2e42a36ce719bd2184793682d678a Reviewed-on: https://go-review.googlesource.com/3340 Reviewed-by: Adam Langley <agl@golang.org>
2015-01-27 07:00:21 +00:00
00000000 16 03 03 00 31 02 00 00 2d 03 03 00 00 00 00 00 |....1...-.......|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
crypto/ecdsa: make Sign safe with broken entropy sources ECDSA is unsafe to use if an entropy source produces predictable output for the ephemeral nonces. E.g., [Nguyen]. A simple countermeasure is to hash the secret key, the message, and entropy together to seed a CSPRNG, from which the ephemeral key is derived. Fixes #9452 -- This is a minimalist (in terms of patch size) solution, though not the most parsimonious in its use of primitives: - csprng_key = ChopMD-256(SHA2-512(priv.D||entropy||hash)) - reader = AES-256-CTR(k=csprng_key) This, however, provides at most 128-bit collision-resistance, so that Adv will have a term related to the number of messages signed that is significantly worse than plain ECDSA. This does not seem to be of any practical importance. ChopMD-256(SHA2-512(x)) is used, rather than SHA2-256(x), for two sets of reasons: *Practical:* SHA2-512 has a larger state and 16 more rounds; it is likely non-generically stronger than SHA2-256. And, AFAIK, cryptanalysis backs this up. (E.g., [Biryukov] gives a distinguisher on 47-round SHA2-256 with cost < 2^85.) This is well below a reasonable security-strength target. *Theoretical:* [Coron] and [Chang] show that Chop-MD(F(x)) is indifferentiable from a random oracle for slightly beyond the birthday barrier. It seems likely that this makes a generic security proof that this construction remains UF-CMA is possible in the indifferentiability framework. -- Many thanks to Payman Mohassel for reviewing this construction; any mistakes are mine, however. And, as he notes, reusing the private key in this way means that the generic-group (non-RO) proof of ECDSA's security given in [Brown] no longer directly applies. -- [Brown]: http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-54.ps "Brown. The exact security of ECDSA. 2000" [Coron]: https://www.cs.nyu.edu/~puniya/papers/merkle.pdf "Coron et al. Merkle-Damgard revisited. 2005" [Chang]: https://www.iacr.org/archive/fse2008/50860436/50860436.pdf "Chang and Nandi. Improved indifferentiability security analysis of chopMD hash function. 2008" [Biryukov]: http://www.iacr.org/archive/asiacrypt2011/70730269/70730269.pdf "Biryukov et al. Second-order differential collisions for reduced SHA-256. 2011" [Nguyen]: ftp://ftp.di.ens.fr/pub/users/pnguyen/PubECDSA.ps "Nguyen and Shparlinski. The insecurity of the elliptic curve digital signature algorithm with partially known nonces. 2003" New tests: TestNonceSafety: Check that signatures are safe even with a broken entropy source. TestINDCCA: Check that signatures remain non-deterministic with a functional entropy source. Updated "golden" KATs in crypto/tls/testdata that use ECDSA suites. Change-Id: I55337a2fbec2e42a36ce719bd2184793682d678a Reviewed-on: https://go-review.googlesource.com/3340 Reviewed-by: Adam Langley <agl@golang.org>
2015-01-27 07:00:21 +00:00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 c0 14 00 00 |................|
00000030 05 ff 01 00 01 00 16 03 03 02 59 0b 00 02 55 00 |..........Y...U.|
00000040 02 52 00 02 4f 30 82 02 4b 30 82 01 b4 a0 03 02 |.R..O0..K0......|
00000050 01 02 02 09 00 e8 f0 9d 3f e2 5b ea a6 30 0d 06 |........?.[..0..|
00000060 09 2a 86 48 86 f7 0d 01 01 0b 05 00 30 1f 31 0b |.*.H........0.1.|
00000070 30 09 06 03 55 04 0a 13 02 47 6f 31 10 30 0e 06 |0...U....Go1.0..|
00000080 03 55 04 03 13 07 47 6f 20 52 6f 6f 74 30 1e 17 |.U....Go Root0..|
00000090 0d 31 36 30 31 30 31 30 30 30 30 30 30 5a 17 0d |.160101000000Z..|
000000a0 32 35 30 31 30 31 30 30 30 30 30 30 5a 30 1a 31 |250101000000Z0.1|
000000b0 0b 30 09 06 03 55 04 0a 13 02 47 6f 31 0b 30 09 |.0...U....Go1.0.|
000000c0 06 03 55 04 03 13 02 47 6f 30 81 9f 30 0d 06 09 |..U....Go0..0...|
000000d0 2a 86 48 86 f7 0d 01 01 01 05 00 03 81 8d 00 30 |*.H............0|
000000e0 81 89 02 81 81 00 db 46 7d 93 2e 12 27 06 48 bc |.......F}...'.H.|
000000f0 06 28 21 ab 7e c4 b6 a2 5d fe 1e 52 45 88 7a 36 |.(!.~...]..RE.z6|
00000100 47 a5 08 0d 92 42 5b c2 81 c0 be 97 79 98 40 fb |G....B[.....y.@.|
00000110 4f 6d 14 fd 2b 13 8b c2 a5 2e 67 d8 d4 09 9e d6 |Om..+.....g.....|
00000120 22 38 b7 4a 0b 74 73 2b c2 34 f1 d1 93 e5 96 d9 |"8.J.ts+.4......|
00000130 74 7b f3 58 9f 6c 61 3c c0 b0 41 d4 d9 2b 2b 24 |t{.X.la<..A..++$|
00000140 23 77 5b 1c 3b bd 75 5d ce 20 54 cf a1 63 87 1d |#w[.;.u]. T..c..|
00000150 1e 24 c4 f3 1d 1a 50 8b aa b6 14 43 ed 97 a7 75 |.$....P....C...u|
00000160 62 f4 14 c8 52 d7 02 03 01 00 01 a3 81 93 30 81 |b...R.........0.|
00000170 90 30 0e 06 03 55 1d 0f 01 01 ff 04 04 03 02 05 |.0...U..........|
00000180 a0 30 1d 06 03 55 1d 25 04 16 30 14 06 08 2b 06 |.0...U.%..0...+.|
00000190 01 05 05 07 03 01 06 08 2b 06 01 05 05 07 03 02 |........+.......|
000001a0 30 0c 06 03 55 1d 13 01 01 ff 04 02 30 00 30 19 |0...U.......0.0.|
000001b0 06 03 55 1d 0e 04 12 04 10 9f 91 16 1f 43 43 3e |..U..........CC>|
000001c0 49 a6 de 6d b6 80 d7 9f 60 30 1b 06 03 55 1d 23 |I..m....`0...U.#|
000001d0 04 14 30 12 80 10 48 13 49 4d 13 7e 16 31 bb a3 |..0...H.IM.~.1..|
000001e0 01 d5 ac ab 6e 7b 30 19 06 03 55 1d 11 04 12 30 |....n{0...U....0|
000001f0 10 82 0e 65 78 61 6d 70 6c 65 2e 67 6f 6c 61 6e |...example.golan|
00000200 67 30 0d 06 09 2a 86 48 86 f7 0d 01 01 0b 05 00 |g0...*.H........|
00000210 03 81 81 00 9d 30 cc 40 2b 5b 50 a0 61 cb ba e5 |.....0.@+[P.a...|
00000220 53 58 e1 ed 83 28 a9 58 1a a9 38 a4 95 a1 ac 31 |SX...(.X..8....1|
00000230 5a 1a 84 66 3d 43 d3 2d d9 0b f2 97 df d3 20 64 |Z..f=C.-...... d|
00000240 38 92 24 3a 00 bc cf 9c 7d b7 40 20 01 5f aa d3 |8.$:....}.@ ._..|
00000250 16 61 09 a2 76 fd 13 c3 cc e1 0c 5c ee b1 87 82 |.a..v......\....|
00000260 f1 6c 04 ed 73 bb b3 43 77 8d 0c 1c f1 0f a1 d8 |.l..s..Cw.......|
00000270 40 83 61 c9 4c 72 2b 9d ae db 46 06 06 4d f4 c1 |@.a.Lr+...F..M..|
00000280 b3 3e c0 d1 bd 42 d4 db fe 3d 13 60 84 5c 21 d3 |.>...B...=.`.\!.|
00000290 3b e9 fa e7 16 03 03 00 ac 0c 00 00 a8 03 00 1d |;...............|
000002a0 20 2f e5 7d a3 47 cd 62 43 15 28 da ac 5f bb 29 | /.}.G.bC.(.._.)|
000002b0 07 30 ff f6 84 af c4 cf c2 ed 90 99 5f 58 cb 3b |.0.........._X.;|
000002c0 74 06 01 00 80 a3 e7 63 ff 8a 7e 1c cb 9b ab 8a |t......c..~.....|
000002d0 7e f3 d1 fe c0 34 23 10 5e 0c e3 60 0d c5 cc 11 |~....4#.^..`....|
000002e0 49 37 37 b6 ad b1 9a 29 b7 e4 1f 90 29 bf b3 bd |I77....)....)...|
000002f0 31 ed e6 20 4d 4c 2a a1 64 d8 cb 44 5e b1 5d b5 |1.. ML*.d..D^.].|
00000300 a5 d5 67 de 29 e4 89 29 a9 51 bd b9 1f 01 de 72 |..g.)..).Q.....r|
00000310 8b c1 b2 d0 fd 96 ec 94 29 4d 2e ee da 08 58 81 |........)M....X.|
00000320 3b db 53 26 26 0e cb 57 37 f4 d0 fe 19 3e 41 a0 |;.S&&..W7....>A.|
00000330 d5 0e a8 7a bf 29 56 a9 d4 84 da 33 bb bf f9 ba |...z.)V....3....|
00000340 54 7b d0 4a 95 16 03 03 00 04 0e 00 00 00 |T{.J..........|
>>> Flow 3 (client to server)
00000000 16 03 03 00 25 10 00 00 21 20 36 84 23 91 d3 76 |....%...! 6.#..v|
00000010 b3 ea 4a a6 39 f6 c9 1a 99 2c 69 c0 70 2d b2 72 |..J.9....,i.p-.r|
00000020 72 be b3 24 4b d3 72 a1 eb 76 14 03 03 00 01 01 |r..$K.r..v......|
00000030 16 03 03 00 40 e9 a5 32 9d 72 3d 9d 38 f3 0b fa |....@..2.r=.8...|
00000040 38 95 0f de 7d 99 42 b2 5b 1c f0 fe e4 66 2b 5a |8...}.B.[....f+Z|
00000050 98 1c e5 0e bf d9 37 d4 4c 72 29 a3 eb 8a f5 0e |......7.Lr).....|
00000060 44 ee 1e 21 c7 8c 10 23 dc 41 6d ac ee 72 5b d5 |D..!...#.Am..r[.|
00000070 4b 3f 66 f3 d1 |K?f..|
>>> Flow 4 (server to client)
00000000 14 03 03 00 01 01 16 03 03 00 40 00 00 00 00 00 |..........@.....|
00000010 00 00 00 00 00 00 00 00 00 00 00 f8 fb 0a 12 f2 |................|
00000020 ee 27 b0 88 5d c9 02 c0 16 3c b8 a5 54 86 4b cb |.'..]....<..T.K.|
00000030 01 ef d1 6e 31 a8 88 86 e3 9f 71 f5 fb 2a a9 12 |...n1.....q..*..|
00000040 72 76 98 30 1e 59 49 64 b1 6b e5 17 03 03 00 40 |rv.0.YId.k.....@|
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000060 da fe c6 34 b0 e7 8d 34 78 11 b1 94 43 da 85 21 |...4...4x...C..!|
00000070 28 9a f3 f8 f0 7f 14 9a 59 be 4e c4 a0 81 17 1b |(.......Y.N.....|
00000080 08 cd 6d 47 57 73 f1 10 e4 df 25 1b 8b 9d 87 98 |..mGWs....%.....|
00000090 15 03 03 00 30 00 00 00 00 00 00 00 00 00 00 00 |....0...........|
000000a0 00 00 00 00 00 41 b6 ed ca 43 0d 83 67 da 4b 0e |.....A...C..g.K.|
000000b0 5a f4 a8 90 85 7f d6 d7 76 03 62 2e 49 7e 4a 62 |Z.......v.b.I~Jb|
000000c0 32 03 a8 7c a0 |2..|.|