2010-12-15 16:49:55 +00:00
|
|
|
// Copyright 2010 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
// TLS low level connection and record layer
|
|
|
|
|
|
|
|
package tls
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
2010-12-15 16:49:55 +00:00
|
|
|
"crypto/cipher"
|
2010-04-27 06:19:04 +01:00
|
|
|
"crypto/subtle"
|
2010-07-21 16:36:01 +01:00
|
|
|
"crypto/x509"
|
2011-11-02 02:04:37 +00:00
|
|
|
"errors"
|
2014-02-12 16:20:01 +00:00
|
|
|
"fmt"
|
2010-04-27 06:19:04 +01:00
|
|
|
"io"
|
|
|
|
"net"
|
|
|
|
"sync"
|
2012-01-19 00:24:06 +00:00
|
|
|
"time"
|
2010-04-27 06:19:04 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
// A Conn represents a secured connection.
|
|
|
|
// It implements the net.Conn interface.
|
|
|
|
type Conn struct {
|
|
|
|
// constant
|
|
|
|
conn net.Conn
|
|
|
|
isClient bool
|
|
|
|
|
|
|
|
// constant after handshake; protected by handshakeMutex
|
|
|
|
handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
|
2014-03-03 14:01:44 +00:00
|
|
|
handshakeErr error // error resulting from handshake
|
2010-04-27 06:19:04 +01:00
|
|
|
vers uint16 // TLS version
|
|
|
|
haveVers bool // version has been negotiated
|
|
|
|
config *Config // configuration passed to constructor
|
|
|
|
handshakeComplete bool
|
2012-09-24 21:52:43 +01:00
|
|
|
didResume bool // whether this connection was a session resumption
|
2010-04-27 06:19:04 +01:00
|
|
|
cipherSuite uint16
|
2010-07-14 15:40:15 +01:00
|
|
|
ocspResponse []byte // stapled OCSP response
|
2010-07-21 16:36:01 +01:00
|
|
|
peerCertificates []*x509.Certificate
|
2011-05-18 18:14:56 +01:00
|
|
|
// verifiedChains contains the certificate chains that we built, as
|
2011-04-19 14:57:58 +01:00
|
|
|
// opposed to the ones presented by the server.
|
|
|
|
verifiedChains [][]*x509.Certificate
|
2011-10-08 15:11:38 +01:00
|
|
|
// serverName contains the server name indicated by the client, if any.
|
|
|
|
serverName string
|
2014-08-12 00:40:42 +01:00
|
|
|
// firstFinished contains the first Finished hash sent during the
|
|
|
|
// handshake. This is the "tls-unique" channel binding value.
|
|
|
|
firstFinished [12]byte
|
2010-04-27 06:19:04 +01:00
|
|
|
|
2011-03-29 22:53:09 +01:00
|
|
|
clientProtocol string
|
|
|
|
clientProtocolFallback bool
|
2010-04-27 06:19:04 +01:00
|
|
|
|
|
|
|
// input/output
|
|
|
|
in, out halfConn // in.Mutex < out.Mutex
|
|
|
|
rawInput *block // raw input, right off the wire
|
|
|
|
input *block // application data waiting to be read
|
|
|
|
hand bytes.Buffer // handshake data waiting to be read
|
|
|
|
|
|
|
|
tmp [16]byte
|
|
|
|
}
|
|
|
|
|
|
|
|
// Access to net.Conn methods.
|
|
|
|
// Cannot just embed net.Conn because that would
|
|
|
|
// export the struct field too.
|
|
|
|
|
|
|
|
// LocalAddr returns the local network address.
|
|
|
|
func (c *Conn) LocalAddr() net.Addr {
|
|
|
|
return c.conn.LocalAddr()
|
|
|
|
}
|
|
|
|
|
|
|
|
// RemoteAddr returns the remote network address.
|
|
|
|
func (c *Conn) RemoteAddr() net.Addr {
|
|
|
|
return c.conn.RemoteAddr()
|
|
|
|
}
|
|
|
|
|
2012-02-13 17:38:45 +00:00
|
|
|
// SetDeadline sets the read and write deadlines associated with the connection.
|
|
|
|
// A zero value for t means Read and Write will not time out.
|
|
|
|
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
|
2012-01-19 00:24:06 +00:00
|
|
|
func (c *Conn) SetDeadline(t time.Time) error {
|
|
|
|
return c.conn.SetDeadline(t)
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
2012-01-19 00:24:06 +00:00
|
|
|
// SetReadDeadline sets the read deadline on the underlying connection.
|
|
|
|
// A zero value for t means Read will not time out.
|
|
|
|
func (c *Conn) SetReadDeadline(t time.Time) error {
|
|
|
|
return c.conn.SetReadDeadline(t)
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
2014-04-29 17:44:40 +01:00
|
|
|
// SetWriteDeadline sets the write deadline on the underlying connection.
|
2012-02-13 17:38:45 +00:00
|
|
|
// A zero value for t means Write will not time out.
|
|
|
|
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
|
2012-01-19 00:24:06 +00:00
|
|
|
func (c *Conn) SetWriteDeadline(t time.Time) error {
|
2012-02-13 17:38:45 +00:00
|
|
|
return c.conn.SetWriteDeadline(t)
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// A halfConn represents one direction of the record layer
|
|
|
|
// connection, either sending or receiving.
|
|
|
|
type halfConn struct {
|
|
|
|
sync.Mutex
|
2014-03-03 14:01:44 +00:00
|
|
|
|
|
|
|
err error // first permanent error
|
2011-09-14 20:32:19 +01:00
|
|
|
version uint16 // protocol version
|
|
|
|
cipher interface{} // cipher algorithm
|
|
|
|
mac macFunction
|
|
|
|
seq [8]byte // 64-bit sequence number
|
|
|
|
bfree *block // list of free blocks
|
2010-04-27 06:19:04 +01:00
|
|
|
|
2010-12-15 16:49:55 +00:00
|
|
|
nextCipher interface{} // next encryption state
|
2011-09-14 20:32:19 +01:00
|
|
|
nextMac macFunction // next MAC algorithm
|
2011-12-06 23:25:14 +00:00
|
|
|
|
|
|
|
// used to save allocating a new buffer for each MAC.
|
|
|
|
inDigestBuf, outDigestBuf []byte
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
2014-03-03 14:01:44 +00:00
|
|
|
func (hc *halfConn) setErrorLocked(err error) error {
|
|
|
|
hc.err = err
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
func (hc *halfConn) error() error {
|
|
|
|
hc.Lock()
|
|
|
|
err := hc.err
|
|
|
|
hc.Unlock()
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
// prepareCipherSpec sets the encryption and MAC states
|
|
|
|
// that a subsequent changeCipherSpec will use.
|
2011-09-14 20:32:19 +01:00
|
|
|
func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
|
|
|
|
hc.version = version
|
2010-12-15 16:49:55 +00:00
|
|
|
hc.nextCipher = cipher
|
2010-04-27 06:19:04 +01:00
|
|
|
hc.nextMac = mac
|
|
|
|
}
|
|
|
|
|
|
|
|
// changeCipherSpec changes the encryption and MAC states
|
|
|
|
// to the ones previously passed to prepareCipherSpec.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (hc *halfConn) changeCipherSpec() error {
|
2010-12-15 16:49:55 +00:00
|
|
|
if hc.nextCipher == nil {
|
2010-04-27 06:19:04 +01:00
|
|
|
return alertInternalError
|
|
|
|
}
|
2010-12-15 16:49:55 +00:00
|
|
|
hc.cipher = hc.nextCipher
|
2010-04-27 06:19:04 +01:00
|
|
|
hc.mac = hc.nextMac
|
2010-12-15 16:49:55 +00:00
|
|
|
hc.nextCipher = nil
|
2010-04-27 06:19:04 +01:00
|
|
|
hc.nextMac = nil
|
2013-08-29 22:18:59 +01:00
|
|
|
for i := range hc.seq {
|
|
|
|
hc.seq[i] = 0
|
|
|
|
}
|
2010-04-27 06:19:04 +01:00
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// incSeq increments the sequence number.
|
|
|
|
func (hc *halfConn) incSeq() {
|
|
|
|
for i := 7; i >= 0; i-- {
|
|
|
|
hc.seq[i]++
|
|
|
|
if hc.seq[i] != 0 {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Not allowed to let sequence number wrap.
|
|
|
|
// Instead, must renegotiate before it does.
|
|
|
|
// Not likely enough to bother.
|
|
|
|
panic("TLS: sequence number wraparound")
|
|
|
|
}
|
|
|
|
|
|
|
|
// resetSeq resets the sequence number to zero.
|
|
|
|
func (hc *halfConn) resetSeq() {
|
|
|
|
for i := range hc.seq {
|
|
|
|
hc.seq[i] = 0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-12-15 16:49:55 +00:00
|
|
|
// removePadding returns an unpadded slice, in constant time, which is a prefix
|
|
|
|
// of the input. It also returns a byte which is equal to 255 if the padding
|
|
|
|
// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
|
|
|
|
func removePadding(payload []byte) ([]byte, byte) {
|
|
|
|
if len(payload) < 1 {
|
|
|
|
return payload, 0
|
|
|
|
}
|
|
|
|
|
|
|
|
paddingLen := payload[len(payload)-1]
|
|
|
|
t := uint(len(payload)-1) - uint(paddingLen)
|
|
|
|
// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
|
|
|
|
good := byte(int32(^t) >> 31)
|
|
|
|
|
|
|
|
toCheck := 255 // the maximum possible padding length
|
|
|
|
// The length of the padded data is public, so we can use an if here
|
|
|
|
if toCheck+1 > len(payload) {
|
|
|
|
toCheck = len(payload) - 1
|
|
|
|
}
|
|
|
|
|
|
|
|
for i := 0; i < toCheck; i++ {
|
|
|
|
t := uint(paddingLen) - uint(i)
|
|
|
|
// if i <= paddingLen then the MSB of t is zero
|
|
|
|
mask := byte(int32(^t) >> 31)
|
|
|
|
b := payload[len(payload)-1-i]
|
|
|
|
good &^= mask&paddingLen ^ mask&b
|
|
|
|
}
|
|
|
|
|
|
|
|
// We AND together the bits of good and replicate the result across
|
|
|
|
// all the bits.
|
|
|
|
good &= good << 4
|
|
|
|
good &= good << 2
|
|
|
|
good &= good << 1
|
|
|
|
good = uint8(int8(good) >> 7)
|
|
|
|
|
|
|
|
toRemove := good&paddingLen + 1
|
|
|
|
return payload[:len(payload)-int(toRemove)], good
|
|
|
|
}
|
|
|
|
|
2011-09-14 20:32:19 +01:00
|
|
|
// removePaddingSSL30 is a replacement for removePadding in the case that the
|
|
|
|
// protocol version is SSLv3. In this version, the contents of the padding
|
|
|
|
// are random and cannot be checked.
|
|
|
|
func removePaddingSSL30(payload []byte) ([]byte, byte) {
|
|
|
|
if len(payload) < 1 {
|
|
|
|
return payload, 0
|
|
|
|
}
|
|
|
|
|
|
|
|
paddingLen := int(payload[len(payload)-1]) + 1
|
|
|
|
if paddingLen > len(payload) {
|
|
|
|
return payload, 0
|
|
|
|
}
|
|
|
|
|
|
|
|
return payload[:len(payload)-paddingLen], 255
|
|
|
|
}
|
|
|
|
|
2010-12-15 16:49:55 +00:00
|
|
|
func roundUp(a, b int) int {
|
|
|
|
return a + (b-a%b)%b
|
|
|
|
}
|
|
|
|
|
2013-06-05 01:02:22 +01:00
|
|
|
// cbcMode is an interface for block ciphers using cipher block chaining.
|
|
|
|
type cbcMode interface {
|
|
|
|
cipher.BlockMode
|
|
|
|
SetIV([]byte)
|
|
|
|
}
|
|
|
|
|
|
|
|
// decrypt checks and strips the mac and decrypts the data in b. Returns a
|
|
|
|
// success boolean, the number of bytes to skip from the start of the record in
|
|
|
|
// order to get the application payload, and an optional alert value.
|
|
|
|
func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
|
2010-04-27 06:19:04 +01:00
|
|
|
// pull out payload
|
|
|
|
payload := b.data[recordHeaderLen:]
|
|
|
|
|
2010-12-15 16:49:55 +00:00
|
|
|
macSize := 0
|
|
|
|
if hc.mac != nil {
|
|
|
|
macSize = hc.mac.Size()
|
|
|
|
}
|
|
|
|
|
|
|
|
paddingGood := byte(255)
|
2013-06-05 01:02:22 +01:00
|
|
|
explicitIVLen := 0
|
2010-12-15 16:49:55 +00:00
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
// decrypt
|
2010-12-15 16:49:55 +00:00
|
|
|
if hc.cipher != nil {
|
|
|
|
switch c := hc.cipher.(type) {
|
|
|
|
case cipher.Stream:
|
|
|
|
c.XORKeyStream(payload, payload)
|
2013-08-29 22:18:59 +01:00
|
|
|
case cipher.AEAD:
|
|
|
|
explicitIVLen = 8
|
|
|
|
if len(payload) < explicitIVLen {
|
|
|
|
return false, 0, alertBadRecordMAC
|
|
|
|
}
|
|
|
|
nonce := payload[:8]
|
|
|
|
payload = payload[8:]
|
|
|
|
|
|
|
|
var additionalData [13]byte
|
|
|
|
copy(additionalData[:], hc.seq[:])
|
|
|
|
copy(additionalData[8:], b.data[:3])
|
|
|
|
n := len(payload) - c.Overhead()
|
|
|
|
additionalData[11] = byte(n >> 8)
|
|
|
|
additionalData[12] = byte(n)
|
|
|
|
var err error
|
|
|
|
payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
|
|
|
|
if err != nil {
|
|
|
|
return false, 0, alertBadRecordMAC
|
|
|
|
}
|
|
|
|
b.resize(recordHeaderLen + explicitIVLen + len(payload))
|
2013-06-05 01:02:22 +01:00
|
|
|
case cbcMode:
|
2010-12-15 16:49:55 +00:00
|
|
|
blockSize := c.BlockSize()
|
2013-06-05 01:02:22 +01:00
|
|
|
if hc.version >= VersionTLS11 {
|
|
|
|
explicitIVLen = blockSize
|
|
|
|
}
|
2010-12-15 16:49:55 +00:00
|
|
|
|
2013-06-05 01:02:22 +01:00
|
|
|
if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
|
|
|
|
return false, 0, alertBadRecordMAC
|
2010-12-15 16:49:55 +00:00
|
|
|
}
|
|
|
|
|
2013-06-05 01:02:22 +01:00
|
|
|
if explicitIVLen > 0 {
|
|
|
|
c.SetIV(payload[:explicitIVLen])
|
|
|
|
payload = payload[explicitIVLen:]
|
|
|
|
}
|
2010-12-15 16:49:55 +00:00
|
|
|
c.CryptBlocks(payload, payload)
|
2013-06-05 01:02:22 +01:00
|
|
|
if hc.version == VersionSSL30 {
|
2011-09-14 20:32:19 +01:00
|
|
|
payload, paddingGood = removePaddingSSL30(payload)
|
|
|
|
} else {
|
|
|
|
payload, paddingGood = removePadding(payload)
|
|
|
|
}
|
2013-06-05 01:02:22 +01:00
|
|
|
b.resize(recordHeaderLen + explicitIVLen + len(payload))
|
2010-12-15 16:49:55 +00:00
|
|
|
|
|
|
|
// note that we still have a timing side-channel in the
|
|
|
|
// MAC check, below. An attacker can align the record
|
|
|
|
// so that a correct padding will cause one less hash
|
|
|
|
// block to be calculated. Then they can iteratively
|
|
|
|
// decrypt a record by breaking each byte. See
|
|
|
|
// "Password Interception in a SSL/TLS Channel", Brice
|
|
|
|
// Canvel et al.
|
|
|
|
//
|
2011-05-18 18:14:56 +01:00
|
|
|
// However, our behavior matches OpenSSL, so we leak
|
2010-12-15 16:49:55 +00:00
|
|
|
// only as much as they do.
|
|
|
|
default:
|
|
|
|
panic("unknown cipher type")
|
|
|
|
}
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// check, strip mac
|
|
|
|
if hc.mac != nil {
|
2010-12-15 16:49:55 +00:00
|
|
|
if len(payload) < macSize {
|
2013-06-05 01:02:22 +01:00
|
|
|
return false, 0, alertBadRecordMAC
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// strip mac off payload, b.data
|
2010-12-15 16:49:55 +00:00
|
|
|
n := len(payload) - macSize
|
2010-04-27 06:19:04 +01:00
|
|
|
b.data[3] = byte(n >> 8)
|
|
|
|
b.data[4] = byte(n)
|
2013-06-05 01:02:22 +01:00
|
|
|
b.resize(recordHeaderLen + explicitIVLen + n)
|
2010-04-27 06:19:04 +01:00
|
|
|
remoteMAC := payload[n:]
|
2013-06-05 01:02:22 +01:00
|
|
|
localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
|
2010-04-27 06:19:04 +01:00
|
|
|
|
2011-09-14 20:32:19 +01:00
|
|
|
if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
|
2013-06-05 01:02:22 +01:00
|
|
|
return false, 0, alertBadRecordMAC
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
2011-12-06 23:25:14 +00:00
|
|
|
hc.inDigestBuf = localMAC
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
2013-08-29 22:18:59 +01:00
|
|
|
hc.incSeq()
|
2010-04-27 06:19:04 +01:00
|
|
|
|
2013-06-05 01:02:22 +01:00
|
|
|
return true, recordHeaderLen + explicitIVLen, 0
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
2010-12-15 16:49:55 +00:00
|
|
|
// padToBlockSize calculates the needed padding block, if any, for a payload.
|
|
|
|
// On exit, prefix aliases payload and extends to the end of the last full
|
|
|
|
// block of payload. finalBlock is a fresh slice which contains the contents of
|
|
|
|
// any suffix of payload as well as the needed padding to make finalBlock a
|
|
|
|
// full block.
|
|
|
|
func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
|
|
|
|
overrun := len(payload) % blockSize
|
|
|
|
paddingLen := blockSize - overrun
|
|
|
|
prefix = payload[:len(payload)-overrun]
|
|
|
|
finalBlock = make([]byte, blockSize)
|
|
|
|
copy(finalBlock, payload[len(payload)-overrun:])
|
|
|
|
for i := overrun; i < blockSize; i++ {
|
|
|
|
finalBlock[i] = byte(paddingLen - 1)
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
// encrypt encrypts and macs the data in b.
|
2013-06-05 01:02:22 +01:00
|
|
|
func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
|
2010-04-27 06:19:04 +01:00
|
|
|
// mac
|
|
|
|
if hc.mac != nil {
|
2013-06-05 01:02:22 +01:00
|
|
|
mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
|
2011-09-14 20:32:19 +01:00
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
n := len(b.data)
|
|
|
|
b.resize(n + len(mac))
|
|
|
|
copy(b.data[n:], mac)
|
2011-12-06 23:25:14 +00:00
|
|
|
hc.outDigestBuf = mac
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
2010-12-15 16:49:55 +00:00
|
|
|
payload := b.data[recordHeaderLen:]
|
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
// encrypt
|
2010-12-15 16:49:55 +00:00
|
|
|
if hc.cipher != nil {
|
|
|
|
switch c := hc.cipher.(type) {
|
|
|
|
case cipher.Stream:
|
|
|
|
c.XORKeyStream(payload, payload)
|
2013-08-29 22:18:59 +01:00
|
|
|
case cipher.AEAD:
|
|
|
|
payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
|
|
|
|
b.resize(len(b.data) + c.Overhead())
|
|
|
|
nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
|
|
|
|
payload := b.data[recordHeaderLen+explicitIVLen:]
|
|
|
|
payload = payload[:payloadLen]
|
|
|
|
|
|
|
|
var additionalData [13]byte
|
|
|
|
copy(additionalData[:], hc.seq[:])
|
|
|
|
copy(additionalData[8:], b.data[:3])
|
|
|
|
additionalData[11] = byte(payloadLen >> 8)
|
|
|
|
additionalData[12] = byte(payloadLen)
|
|
|
|
|
|
|
|
c.Seal(payload[:0], nonce, payload, additionalData[:])
|
2013-06-05 01:02:22 +01:00
|
|
|
case cbcMode:
|
|
|
|
blockSize := c.BlockSize()
|
|
|
|
if explicitIVLen > 0 {
|
|
|
|
c.SetIV(payload[:explicitIVLen])
|
|
|
|
payload = payload[explicitIVLen:]
|
|
|
|
}
|
|
|
|
prefix, finalBlock := padToBlockSize(payload, blockSize)
|
|
|
|
b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
|
|
|
|
c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
|
|
|
|
c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
|
2010-12-15 16:49:55 +00:00
|
|
|
default:
|
|
|
|
panic("unknown cipher type")
|
|
|
|
}
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
2010-12-15 16:49:55 +00:00
|
|
|
// update length to include MAC and any block padding needed.
|
|
|
|
n := len(b.data) - recordHeaderLen
|
|
|
|
b.data[3] = byte(n >> 8)
|
|
|
|
b.data[4] = byte(n)
|
2013-08-29 22:18:59 +01:00
|
|
|
hc.incSeq()
|
2010-12-15 16:49:55 +00:00
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
return true, 0
|
|
|
|
}
|
|
|
|
|
|
|
|
// A block is a simple data buffer.
|
|
|
|
type block struct {
|
|
|
|
data []byte
|
|
|
|
off int // index for Read
|
|
|
|
link *block
|
|
|
|
}
|
|
|
|
|
|
|
|
// resize resizes block to be n bytes, growing if necessary.
|
|
|
|
func (b *block) resize(n int) {
|
|
|
|
if n > cap(b.data) {
|
|
|
|
b.reserve(n)
|
|
|
|
}
|
|
|
|
b.data = b.data[0:n]
|
|
|
|
}
|
|
|
|
|
|
|
|
// reserve makes sure that block contains a capacity of at least n bytes.
|
|
|
|
func (b *block) reserve(n int) {
|
|
|
|
if cap(b.data) >= n {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
m := cap(b.data)
|
|
|
|
if m == 0 {
|
|
|
|
m = 1024
|
|
|
|
}
|
|
|
|
for m < n {
|
|
|
|
m *= 2
|
|
|
|
}
|
|
|
|
data := make([]byte, len(b.data), m)
|
|
|
|
copy(data, b.data)
|
|
|
|
b.data = data
|
|
|
|
}
|
|
|
|
|
|
|
|
// readFromUntil reads from r into b until b contains at least n bytes
|
|
|
|
// or else returns an error.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (b *block) readFromUntil(r io.Reader, n int) error {
|
2010-04-27 06:19:04 +01:00
|
|
|
// quick case
|
|
|
|
if len(b.data) >= n {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// read until have enough.
|
|
|
|
b.reserve(n)
|
|
|
|
for {
|
|
|
|
m, err := r.Read(b.data[len(b.data):cap(b.data)])
|
|
|
|
b.data = b.data[0 : len(b.data)+m]
|
|
|
|
if len(b.data) >= n {
|
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer
Update #3514
An io.Reader is permitted to return either (n, nil)
or (n, io.EOF) on EOF or other error.
The tls package previously always returned (n, nil) for a read
of size n if n bytes were available, not surfacing errors at
the same time.
Amazon's HTTPS frontends like to hang up on clients without
sending the appropriate HTTP headers. (In their defense,
they're allowed to hang up any time, but generally a server
hangs up after a bit of inactivity, not immediately.) In any
case, the Go HTTP client tries to re-use connections by
looking at whether the response headers say to keep the
connection open, and because the connection looks okay, under
heavy load it's possible we'll reuse it immediately, writing
the next request, just as the Transport's always-reading
goroutine returns from tls.Conn.Read and sees (0, io.EOF).
But because Amazon does send an AlertCloseNotify record before
it hangs up on us, and the tls package does its own internal
buffering (up to 1024 bytes) of pending data, we have the
AlertCloseNotify in an unread buffer when our Conn.Read (to
the HTTP Transport code) reads its final bit of data in the
HTTP response body.
This change makes that final Read return (n, io.EOF) when
an AlertCloseNotify record is buffered right after, if we'd
otherwise return (n, nil).
A dependent change in the HTTP code then notes whether a
client connection has seen an io.EOF and uses that as an
additional signal to not reuse a HTTPS connection. With both
changes, the majority of Amazon request failures go
away. Without either one, 10-20 goroutines hitting the S3 API
leads to such an error rate that empirically up to 5 retries
are needed to complete an API call.
LGTM=agl, rsc
R=agl, rsc
CC=golang-codereviews
https://golang.org/cl/76400046
2014-03-25 17:58:35 +00:00
|
|
|
// TODO(bradfitz,agl): slightly suspicious
|
|
|
|
// that we're throwing away r.Read's err here.
|
2010-04-27 06:19:04 +01:00
|
|
|
break
|
|
|
|
}
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
2011-11-02 02:04:37 +00:00
|
|
|
func (b *block) Read(p []byte) (n int, err error) {
|
2010-04-27 06:19:04 +01:00
|
|
|
n = copy(p, b.data[b.off:])
|
|
|
|
b.off += n
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// newBlock allocates a new block, from hc's free list if possible.
|
|
|
|
func (hc *halfConn) newBlock() *block {
|
|
|
|
b := hc.bfree
|
|
|
|
if b == nil {
|
|
|
|
return new(block)
|
|
|
|
}
|
|
|
|
hc.bfree = b.link
|
|
|
|
b.link = nil
|
|
|
|
b.resize(0)
|
|
|
|
return b
|
|
|
|
}
|
|
|
|
|
|
|
|
// freeBlock returns a block to hc's free list.
|
|
|
|
// The protocol is such that each side only has a block or two on
|
|
|
|
// its free list at a time, so there's no need to worry about
|
|
|
|
// trimming the list, etc.
|
|
|
|
func (hc *halfConn) freeBlock(b *block) {
|
|
|
|
b.link = hc.bfree
|
|
|
|
hc.bfree = b
|
|
|
|
}
|
|
|
|
|
|
|
|
// splitBlock splits a block after the first n bytes,
|
|
|
|
// returning a block with those n bytes and a
|
2011-05-18 18:14:56 +01:00
|
|
|
// block with the remainder. the latter may be nil.
|
2010-04-27 06:19:04 +01:00
|
|
|
func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
|
|
|
|
if len(b.data) <= n {
|
|
|
|
return b, nil
|
|
|
|
}
|
|
|
|
bb := hc.newBlock()
|
|
|
|
bb.resize(len(b.data) - n)
|
|
|
|
copy(bb.data, b.data[n:])
|
|
|
|
b.data = b.data[0:n]
|
|
|
|
return b, bb
|
|
|
|
}
|
|
|
|
|
|
|
|
// readRecord reads the next TLS record from the connection
|
|
|
|
// and updates the record layer state.
|
|
|
|
// c.in.Mutex <= L; c.input == nil.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (c *Conn) readRecord(want recordType) error {
|
2010-04-27 06:19:04 +01:00
|
|
|
// Caller must be in sync with connection:
|
|
|
|
// handshake data if handshake not yet completed,
|
|
|
|
// else application data. (We don't support renegotiation.)
|
|
|
|
switch want {
|
|
|
|
default:
|
2014-02-12 16:20:01 +00:00
|
|
|
c.sendAlert(alertInternalError)
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
|
2010-04-27 06:19:04 +01:00
|
|
|
case recordTypeHandshake, recordTypeChangeCipherSpec:
|
|
|
|
if c.handshakeComplete {
|
2014-02-12 16:20:01 +00:00
|
|
|
c.sendAlert(alertInternalError)
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
case recordTypeApplicationData:
|
|
|
|
if !c.handshakeComplete {
|
2014-02-12 16:20:01 +00:00
|
|
|
c.sendAlert(alertInternalError)
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Again:
|
|
|
|
if c.rawInput == nil {
|
|
|
|
c.rawInput = c.in.newBlock()
|
|
|
|
}
|
|
|
|
b := c.rawInput
|
|
|
|
|
|
|
|
// Read header, payload.
|
|
|
|
if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
|
|
|
|
// RFC suggests that EOF without an alertCloseNotify is
|
|
|
|
// an error, but popular web sites seem to do this,
|
|
|
|
// so we can't make it an error.
|
2011-11-03 21:01:30 +00:00
|
|
|
// if err == io.EOF {
|
2010-04-27 06:19:04 +01:00
|
|
|
// err = io.ErrUnexpectedEOF
|
|
|
|
// }
|
|
|
|
if e, ok := err.(net.Error); !ok || !e.Temporary() {
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(err)
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
typ := recordType(b.data[0])
|
2012-08-23 21:44:44 +01:00
|
|
|
|
|
|
|
// No valid TLS record has a type of 0x80, however SSLv2 handshakes
|
|
|
|
// start with a uint16 length where the MSB is set and the first record
|
|
|
|
// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
|
|
|
|
// an SSLv2 client.
|
|
|
|
if want == recordTypeHandshake && typ == 0x80 {
|
|
|
|
c.sendAlert(alertProtocolVersion)
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
|
2012-08-23 21:44:44 +01:00
|
|
|
}
|
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
vers := uint16(b.data[1])<<8 | uint16(b.data[2])
|
|
|
|
n := int(b.data[3])<<8 | int(b.data[4])
|
|
|
|
if c.haveVers && vers != c.vers {
|
2014-02-12 16:20:01 +00:00
|
|
|
c.sendAlert(alertProtocolVersion)
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
if n > maxCiphertext {
|
2014-02-12 16:20:01 +00:00
|
|
|
c.sendAlert(alertRecordOverflow)
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
2011-09-12 21:52:49 +01:00
|
|
|
if !c.haveVers {
|
2015-02-23 22:51:40 +00:00
|
|
|
// First message, be extra suspicious: this might not be a TLS
|
|
|
|
// client. Bail out before reading a full 'body', if possible.
|
|
|
|
// The current max version is 3.3 so if the version is >= 16.0,
|
2011-09-12 21:52:49 +01:00
|
|
|
// it's probably not real.
|
2015-02-23 22:51:40 +00:00
|
|
|
if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
|
2014-02-12 16:20:01 +00:00
|
|
|
c.sendAlert(alertUnexpectedMessage)
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
|
2011-09-12 21:52:49 +01:00
|
|
|
}
|
|
|
|
}
|
2010-04-27 06:19:04 +01:00
|
|
|
if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
|
2011-11-02 02:04:37 +00:00
|
|
|
if err == io.EOF {
|
2010-04-27 06:19:04 +01:00
|
|
|
err = io.ErrUnexpectedEOF
|
|
|
|
}
|
|
|
|
if e, ok := err.(net.Error); !ok || !e.Temporary() {
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(err)
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
// Process message.
|
|
|
|
b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
|
2013-06-05 01:02:22 +01:00
|
|
|
ok, off, err := c.in.decrypt(b)
|
|
|
|
if !ok {
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(c.sendAlert(err))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
2013-06-05 01:02:22 +01:00
|
|
|
b.off = off
|
2010-04-27 06:19:04 +01:00
|
|
|
data := b.data[b.off:]
|
|
|
|
if len(data) > maxPlaintext {
|
2014-03-03 14:01:44 +00:00
|
|
|
err := c.sendAlert(alertRecordOverflow)
|
2010-04-27 06:19:04 +01:00
|
|
|
c.in.freeBlock(b)
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.setErrorLocked(err)
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
switch typ {
|
|
|
|
default:
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
2010-04-27 06:19:04 +01:00
|
|
|
|
|
|
|
case recordTypeAlert:
|
|
|
|
if len(data) != 2 {
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
2010-04-27 06:19:04 +01:00
|
|
|
break
|
|
|
|
}
|
|
|
|
if alert(data[1]) == alertCloseNotify {
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(io.EOF)
|
2010-04-27 06:19:04 +01:00
|
|
|
break
|
|
|
|
}
|
|
|
|
switch data[0] {
|
|
|
|
case alertLevelWarning:
|
|
|
|
// drop on the floor
|
|
|
|
c.in.freeBlock(b)
|
|
|
|
goto Again
|
|
|
|
case alertLevelError:
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
|
2010-04-27 06:19:04 +01:00
|
|
|
default:
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
case recordTypeChangeCipherSpec:
|
|
|
|
if typ != want || len(data) != 1 || data[0] != 1 {
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
2010-04-27 06:19:04 +01:00
|
|
|
break
|
|
|
|
}
|
|
|
|
err := c.in.changeCipherSpec()
|
|
|
|
if err != nil {
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(c.sendAlert(err.(alert)))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
case recordTypeApplicationData:
|
|
|
|
if typ != want {
|
2014-03-03 14:01:44 +00:00
|
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
2010-04-27 06:19:04 +01:00
|
|
|
break
|
|
|
|
}
|
|
|
|
c.input = b
|
|
|
|
b = nil
|
|
|
|
|
|
|
|
case recordTypeHandshake:
|
|
|
|
// TODO(rsc): Should at least pick off connection close.
|
|
|
|
if typ != want {
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
c.hand.Write(data)
|
|
|
|
}
|
|
|
|
|
|
|
|
if b != nil {
|
|
|
|
c.in.freeBlock(b)
|
|
|
|
}
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.in.err
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// sendAlert sends a TLS alert message.
|
|
|
|
// c.out.Mutex <= L.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (c *Conn) sendAlertLocked(err alert) error {
|
2012-10-16 20:40:37 +01:00
|
|
|
switch err {
|
|
|
|
case alertNoRenegotiation, alertCloseNotify:
|
2010-04-27 06:19:04 +01:00
|
|
|
c.tmp[0] = alertLevelWarning
|
2012-10-16 20:40:37 +01:00
|
|
|
default:
|
|
|
|
c.tmp[0] = alertLevelError
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
c.tmp[1] = byte(err)
|
|
|
|
c.writeRecord(recordTypeAlert, c.tmp[0:2])
|
2010-09-10 20:55:35 +01:00
|
|
|
// closeNotify is a special case in that it isn't an error:
|
|
|
|
if err != alertCloseNotify {
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
|
2010-09-10 20:55:35 +01:00
|
|
|
}
|
|
|
|
return nil
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// sendAlert sends a TLS alert message.
|
|
|
|
// L < c.out.Mutex.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (c *Conn) sendAlert(err alert) error {
|
2010-04-27 06:19:04 +01:00
|
|
|
c.out.Lock()
|
|
|
|
defer c.out.Unlock()
|
|
|
|
return c.sendAlertLocked(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// writeRecord writes a TLS record with the given type and payload
|
|
|
|
// to the connection and updates the record layer state.
|
|
|
|
// c.out.Mutex <= L.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
|
2010-04-27 06:19:04 +01:00
|
|
|
b := c.out.newBlock()
|
|
|
|
for len(data) > 0 {
|
|
|
|
m := len(data)
|
|
|
|
if m > maxPlaintext {
|
|
|
|
m = maxPlaintext
|
|
|
|
}
|
2013-06-05 01:02:22 +01:00
|
|
|
explicitIVLen := 0
|
2013-08-29 22:18:59 +01:00
|
|
|
explicitIVIsSeq := false
|
2013-06-05 01:02:22 +01:00
|
|
|
|
|
|
|
var cbc cbcMode
|
|
|
|
if c.out.version >= VersionTLS11 {
|
|
|
|
var ok bool
|
|
|
|
if cbc, ok = c.out.cipher.(cbcMode); ok {
|
|
|
|
explicitIVLen = cbc.BlockSize()
|
|
|
|
}
|
|
|
|
}
|
2013-08-29 22:18:59 +01:00
|
|
|
if explicitIVLen == 0 {
|
|
|
|
if _, ok := c.out.cipher.(cipher.AEAD); ok {
|
|
|
|
explicitIVLen = 8
|
|
|
|
// The AES-GCM construction in TLS has an
|
|
|
|
// explicit nonce so that the nonce can be
|
|
|
|
// random. However, the nonce is only 8 bytes
|
|
|
|
// which is too small for a secure, random
|
|
|
|
// nonce. Therefore we use the sequence number
|
|
|
|
// as the nonce.
|
|
|
|
explicitIVIsSeq = true
|
|
|
|
}
|
|
|
|
}
|
2013-06-05 01:02:22 +01:00
|
|
|
b.resize(recordHeaderLen + explicitIVLen + m)
|
2010-04-27 06:19:04 +01:00
|
|
|
b.data[0] = byte(typ)
|
|
|
|
vers := c.vers
|
|
|
|
if vers == 0 {
|
2013-06-05 01:02:22 +01:00
|
|
|
// Some TLS servers fail if the record version is
|
|
|
|
// greater than TLS 1.0 for the initial ClientHello.
|
|
|
|
vers = VersionTLS10
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
b.data[1] = byte(vers >> 8)
|
|
|
|
b.data[2] = byte(vers)
|
|
|
|
b.data[3] = byte(m >> 8)
|
|
|
|
b.data[4] = byte(m)
|
2013-06-05 01:02:22 +01:00
|
|
|
if explicitIVLen > 0 {
|
|
|
|
explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
|
2013-08-29 22:18:59 +01:00
|
|
|
if explicitIVIsSeq {
|
|
|
|
copy(explicitIV, c.out.seq[:])
|
|
|
|
} else {
|
|
|
|
if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
|
|
|
|
break
|
|
|
|
}
|
2013-06-05 01:02:22 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
copy(b.data[recordHeaderLen+explicitIVLen:], data)
|
|
|
|
c.out.encrypt(b, explicitIVLen)
|
2010-04-27 06:19:04 +01:00
|
|
|
_, err = c.conn.Write(b.data)
|
|
|
|
if err != nil {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
n += m
|
|
|
|
data = data[m:]
|
|
|
|
}
|
|
|
|
c.out.freeBlock(b)
|
|
|
|
|
|
|
|
if typ == recordTypeChangeCipherSpec {
|
|
|
|
err = c.out.changeCipherSpec()
|
|
|
|
if err != nil {
|
|
|
|
// Cannot call sendAlert directly,
|
|
|
|
// because we already hold c.out.Mutex.
|
|
|
|
c.tmp[0] = alertLevelError
|
|
|
|
c.tmp[1] = byte(err.(alert))
|
|
|
|
c.writeRecord(recordTypeAlert, c.tmp[0:2])
|
2014-03-03 14:01:44 +00:00
|
|
|
return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// readHandshake reads the next handshake message from
|
|
|
|
// the record layer.
|
|
|
|
// c.in.Mutex < L; c.out.Mutex < L.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (c *Conn) readHandshake() (interface{}, error) {
|
2010-04-27 06:19:04 +01:00
|
|
|
for c.hand.Len() < 4 {
|
2014-03-03 14:01:44 +00:00
|
|
|
if err := c.in.err; err != nil {
|
2012-09-06 08:50:26 +01:00
|
|
|
return nil, err
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
2011-10-18 17:59:32 +01:00
|
|
|
if err := c.readRecord(recordTypeHandshake); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
data := c.hand.Bytes()
|
|
|
|
n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
|
|
|
|
if n > maxHandshake {
|
2014-03-03 14:01:44 +00:00
|
|
|
return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
for c.hand.Len() < 4+n {
|
2014-03-03 14:01:44 +00:00
|
|
|
if err := c.in.err; err != nil {
|
2012-09-06 08:50:26 +01:00
|
|
|
return nil, err
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
2011-10-18 17:59:32 +01:00
|
|
|
if err := c.readRecord(recordTypeHandshake); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
data = c.hand.Next(4 + n)
|
|
|
|
var m handshakeMessage
|
|
|
|
switch data[0] {
|
|
|
|
case typeClientHello:
|
|
|
|
m = new(clientHelloMsg)
|
|
|
|
case typeServerHello:
|
|
|
|
m = new(serverHelloMsg)
|
2014-01-22 23:24:03 +00:00
|
|
|
case typeNewSessionTicket:
|
|
|
|
m = new(newSessionTicketMsg)
|
2010-04-27 06:19:04 +01:00
|
|
|
case typeCertificate:
|
|
|
|
m = new(certificateMsg)
|
2010-08-16 16:22:22 +01:00
|
|
|
case typeCertificateRequest:
|
2013-07-03 00:58:56 +01:00
|
|
|
m = &certificateRequestMsg{
|
|
|
|
hasSignatureAndHash: c.vers >= VersionTLS12,
|
|
|
|
}
|
2010-07-14 15:40:15 +01:00
|
|
|
case typeCertificateStatus:
|
|
|
|
m = new(certificateStatusMsg)
|
2010-12-16 22:10:50 +00:00
|
|
|
case typeServerKeyExchange:
|
|
|
|
m = new(serverKeyExchangeMsg)
|
2010-04-27 06:19:04 +01:00
|
|
|
case typeServerHelloDone:
|
|
|
|
m = new(serverHelloDoneMsg)
|
|
|
|
case typeClientKeyExchange:
|
|
|
|
m = new(clientKeyExchangeMsg)
|
2010-08-16 16:22:22 +01:00
|
|
|
case typeCertificateVerify:
|
2013-07-03 00:58:56 +01:00
|
|
|
m = &certificateVerifyMsg{
|
|
|
|
hasSignatureAndHash: c.vers >= VersionTLS12,
|
|
|
|
}
|
2010-04-27 06:19:04 +01:00
|
|
|
case typeNextProtocol:
|
|
|
|
m = new(nextProtoMsg)
|
|
|
|
case typeFinished:
|
|
|
|
m = new(finishedMsg)
|
|
|
|
default:
|
2014-03-03 14:01:44 +00:00
|
|
|
return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// The handshake message unmarshallers
|
|
|
|
// expect to be able to keep references to data,
|
|
|
|
// so pass in a fresh copy that won't be overwritten.
|
2010-12-01 19:59:13 +00:00
|
|
|
data = append([]byte(nil), data...)
|
2010-04-27 06:19:04 +01:00
|
|
|
|
|
|
|
if !m.unmarshal(data) {
|
2014-03-03 14:01:44 +00:00
|
|
|
return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
return m, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Write writes data to the connection.
|
2012-02-13 17:38:45 +00:00
|
|
|
func (c *Conn) Write(b []byte) (int, error) {
|
2012-09-06 08:50:26 +01:00
|
|
|
if err := c.Handshake(); err != nil {
|
2014-03-03 14:01:44 +00:00
|
|
|
return 0, err
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
c.out.Lock()
|
|
|
|
defer c.out.Unlock()
|
|
|
|
|
2014-03-03 14:01:44 +00:00
|
|
|
if err := c.out.err; err != nil {
|
|
|
|
return 0, err
|
|
|
|
}
|
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
if !c.handshakeComplete {
|
|
|
|
return 0, alertInternalError
|
|
|
|
}
|
2012-02-13 17:38:45 +00:00
|
|
|
|
2012-11-26 18:56:39 +00:00
|
|
|
// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
|
|
|
|
// attack when using block mode ciphers due to predictable IVs.
|
|
|
|
// This can be prevented by splitting each Application Data
|
|
|
|
// record into two records, effectively randomizing the IV.
|
|
|
|
//
|
|
|
|
// http://www.openssl.org/~bodo/tls-cbc.txt
|
|
|
|
// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
|
|
|
|
// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
|
|
|
|
|
|
|
|
var m int
|
2013-06-05 01:02:22 +01:00
|
|
|
if len(b) > 1 && c.vers <= VersionTLS10 {
|
2012-11-26 18:56:39 +00:00
|
|
|
if _, ok := c.out.cipher.(cipher.BlockMode); ok {
|
|
|
|
n, err := c.writeRecord(recordTypeApplicationData, b[:1])
|
|
|
|
if err != nil {
|
2014-03-03 14:01:44 +00:00
|
|
|
return n, c.out.setErrorLocked(err)
|
2012-11-26 18:56:39 +00:00
|
|
|
}
|
|
|
|
m, b = 1, b[1:]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-09-06 08:50:26 +01:00
|
|
|
n, err := c.writeRecord(recordTypeApplicationData, b)
|
2014-03-03 14:01:44 +00:00
|
|
|
return n + m, c.out.setErrorLocked(err)
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
2011-11-14 03:42:42 +00:00
|
|
|
// Read can be made to time out and return a net.Error with Timeout() == true
|
2012-01-19 00:24:06 +00:00
|
|
|
// after a fixed time limit; see SetDeadline and SetReadDeadline.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (c *Conn) Read(b []byte) (n int, err error) {
|
2010-04-27 06:19:04 +01:00
|
|
|
if err = c.Handshake(); err != nil {
|
|
|
|
return
|
|
|
|
}
|
2014-04-16 03:40:00 +01:00
|
|
|
if len(b) == 0 {
|
|
|
|
// Put this after Handshake, in case people were calling
|
|
|
|
// Read(nil) for the side effect of the Handshake.
|
|
|
|
return
|
|
|
|
}
|
2010-04-27 06:19:04 +01:00
|
|
|
|
|
|
|
c.in.Lock()
|
|
|
|
defer c.in.Unlock()
|
|
|
|
|
2013-05-15 15:25:54 +01:00
|
|
|
// Some OpenSSL servers send empty records in order to randomize the
|
|
|
|
// CBC IV. So this loop ignores a limited number of empty records.
|
|
|
|
const maxConsecutiveEmptyRecords = 100
|
|
|
|
for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
|
2014-03-03 14:01:44 +00:00
|
|
|
for c.input == nil && c.in.err == nil {
|
2013-05-15 15:25:54 +01:00
|
|
|
if err := c.readRecord(recordTypeApplicationData); err != nil {
|
|
|
|
// Soft error, like EAGAIN
|
|
|
|
return 0, err
|
|
|
|
}
|
|
|
|
}
|
2014-03-03 14:01:44 +00:00
|
|
|
if err := c.in.err; err != nil {
|
2010-10-11 15:41:01 +01:00
|
|
|
return 0, err
|
|
|
|
}
|
2013-05-15 15:25:54 +01:00
|
|
|
|
|
|
|
n, err = c.input.Read(b)
|
|
|
|
if c.input.off >= len(c.input.data) {
|
|
|
|
c.in.freeBlock(c.input)
|
|
|
|
c.input = nil
|
|
|
|
}
|
|
|
|
|
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer
Update #3514
An io.Reader is permitted to return either (n, nil)
or (n, io.EOF) on EOF or other error.
The tls package previously always returned (n, nil) for a read
of size n if n bytes were available, not surfacing errors at
the same time.
Amazon's HTTPS frontends like to hang up on clients without
sending the appropriate HTTP headers. (In their defense,
they're allowed to hang up any time, but generally a server
hangs up after a bit of inactivity, not immediately.) In any
case, the Go HTTP client tries to re-use connections by
looking at whether the response headers say to keep the
connection open, and because the connection looks okay, under
heavy load it's possible we'll reuse it immediately, writing
the next request, just as the Transport's always-reading
goroutine returns from tls.Conn.Read and sees (0, io.EOF).
But because Amazon does send an AlertCloseNotify record before
it hangs up on us, and the tls package does its own internal
buffering (up to 1024 bytes) of pending data, we have the
AlertCloseNotify in an unread buffer when our Conn.Read (to
the HTTP Transport code) reads its final bit of data in the
HTTP response body.
This change makes that final Read return (n, io.EOF) when
an AlertCloseNotify record is buffered right after, if we'd
otherwise return (n, nil).
A dependent change in the HTTP code then notes whether a
client connection has seen an io.EOF and uses that as an
additional signal to not reuse a HTTPS connection. With both
changes, the majority of Amazon request failures go
away. Without either one, 10-20 goroutines hitting the S3 API
leads to such an error rate that empirically up to 5 retries
are needed to complete an API call.
LGTM=agl, rsc
R=agl, rsc
CC=golang-codereviews
https://golang.org/cl/76400046
2014-03-25 17:58:35 +00:00
|
|
|
// If a close-notify alert is waiting, read it so that
|
|
|
|
// we can return (n, EOF) instead of (n, nil), to signal
|
|
|
|
// to the HTTP response reading goroutine that the
|
|
|
|
// connection is now closed. This eliminates a race
|
|
|
|
// where the HTTP response reading goroutine would
|
|
|
|
// otherwise not observe the EOF until its next read,
|
|
|
|
// by which time a client goroutine might have already
|
|
|
|
// tried to reuse the HTTP connection for a new
|
|
|
|
// request.
|
|
|
|
// See https://codereview.appspot.com/76400046
|
|
|
|
// and http://golang.org/issue/3514
|
|
|
|
if ri := c.rawInput; ri != nil &&
|
|
|
|
n != 0 && err == nil &&
|
|
|
|
c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
|
|
|
|
if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
|
|
|
|
err = recErr // will be io.EOF on closeNotify
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-05-15 15:25:54 +01:00
|
|
|
if n != 0 || err != nil {
|
|
|
|
return n, err
|
|
|
|
}
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
2013-05-15 15:25:54 +01:00
|
|
|
|
|
|
|
return 0, io.ErrNoProgress
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Close closes the connection.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (c *Conn) Close() error {
|
|
|
|
var alertErr error
|
2011-10-18 17:59:32 +01:00
|
|
|
|
|
|
|
c.handshakeMutex.Lock()
|
|
|
|
defer c.handshakeMutex.Unlock()
|
|
|
|
if c.handshakeComplete {
|
|
|
|
alertErr = c.sendAlert(alertCloseNotify)
|
|
|
|
}
|
|
|
|
|
|
|
|
if err := c.conn.Close(); err != nil {
|
2010-04-27 06:19:04 +01:00
|
|
|
return err
|
|
|
|
}
|
2011-10-18 17:59:32 +01:00
|
|
|
return alertErr
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Handshake runs the client or server handshake
|
|
|
|
// protocol if it has not yet been run.
|
2010-08-30 00:59:59 +01:00
|
|
|
// Most uses of this package need not call Handshake
|
2010-04-27 06:19:04 +01:00
|
|
|
// explicitly: the first Read or Write will call it automatically.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (c *Conn) Handshake() error {
|
2010-04-27 06:19:04 +01:00
|
|
|
c.handshakeMutex.Lock()
|
|
|
|
defer c.handshakeMutex.Unlock()
|
2014-03-03 14:01:44 +00:00
|
|
|
if err := c.handshakeErr; err != nil {
|
2010-04-27 06:19:04 +01:00
|
|
|
return err
|
|
|
|
}
|
|
|
|
if c.handshakeComplete {
|
|
|
|
return nil
|
|
|
|
}
|
2014-03-03 14:01:44 +00:00
|
|
|
|
2010-04-27 06:19:04 +01:00
|
|
|
if c.isClient {
|
2014-03-03 14:01:44 +00:00
|
|
|
c.handshakeErr = c.clientHandshake()
|
|
|
|
} else {
|
|
|
|
c.handshakeErr = c.serverHandshake()
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
2014-03-03 14:01:44 +00:00
|
|
|
return c.handshakeErr
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
|
|
|
|
2010-07-14 15:40:15 +01:00
|
|
|
// ConnectionState returns basic TLS details about the connection.
|
|
|
|
func (c *Conn) ConnectionState() ConnectionState {
|
2010-04-27 06:19:04 +01:00
|
|
|
c.handshakeMutex.Lock()
|
|
|
|
defer c.handshakeMutex.Unlock()
|
2010-07-14 15:40:15 +01:00
|
|
|
|
|
|
|
var state ConnectionState
|
|
|
|
state.HandshakeComplete = c.handshakeComplete
|
|
|
|
if c.handshakeComplete {
|
2014-02-24 23:01:28 +00:00
|
|
|
state.Version = c.vers
|
2010-07-14 15:40:15 +01:00
|
|
|
state.NegotiatedProtocol = c.clientProtocol
|
2012-09-24 21:52:43 +01:00
|
|
|
state.DidResume = c.didResume
|
2011-03-29 22:53:09 +01:00
|
|
|
state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
|
2010-07-14 15:40:15 +01:00
|
|
|
state.CipherSuite = c.cipherSuite
|
2011-03-10 15:22:53 +00:00
|
|
|
state.PeerCertificates = c.peerCertificates
|
2011-05-05 18:44:36 +01:00
|
|
|
state.VerifiedChains = c.verifiedChains
|
2011-10-08 15:11:38 +01:00
|
|
|
state.ServerName = c.serverName
|
2014-08-12 00:40:42 +01:00
|
|
|
if !c.didResume {
|
|
|
|
state.TLSUnique = c.firstFinished[:]
|
|
|
|
}
|
2010-07-14 15:40:15 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
return state
|
|
|
|
}
|
|
|
|
|
|
|
|
// OCSPResponse returns the stapled OCSP response from the TLS server, if
|
|
|
|
// any. (Only valid for client connections.)
|
|
|
|
func (c *Conn) OCSPResponse() []byte {
|
|
|
|
c.handshakeMutex.Lock()
|
|
|
|
defer c.handshakeMutex.Unlock()
|
|
|
|
|
|
|
|
return c.ocspResponse
|
2010-04-27 06:19:04 +01:00
|
|
|
}
|
2010-07-21 16:36:01 +01:00
|
|
|
|
2010-09-12 04:41:12 +01:00
|
|
|
// VerifyHostname checks that the peer certificate chain is valid for
|
2011-11-02 02:58:09 +00:00
|
|
|
// connecting to host. If so, it returns nil; if not, it returns an error
|
2010-09-12 04:41:12 +01:00
|
|
|
// describing the problem.
|
2011-11-02 02:04:37 +00:00
|
|
|
func (c *Conn) VerifyHostname(host string) error {
|
2010-09-20 15:32:08 +01:00
|
|
|
c.handshakeMutex.Lock()
|
|
|
|
defer c.handshakeMutex.Unlock()
|
|
|
|
if !c.isClient {
|
2014-02-12 16:20:01 +00:00
|
|
|
return errors.New("tls: VerifyHostname called on TLS server connection")
|
2010-09-20 15:32:08 +01:00
|
|
|
}
|
|
|
|
if !c.handshakeComplete {
|
2014-02-12 16:20:01 +00:00
|
|
|
return errors.New("tls: handshake has not yet been performed")
|
2010-09-20 15:32:08 +01:00
|
|
|
}
|
|
|
|
return c.peerCertificates[0].VerifyHostname(host)
|
2010-09-12 04:41:12 +01:00
|
|
|
}
|