th5/handshake_server.go

236 lines
6.4 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
// The handshake goroutine reads handshake messages from the record processor
// and outputs messages to be written on another channel. It updates the record
// processor with the state of the connection via the control channel. In the
// case of handshake messages that need synchronous processing (because they
// affect the handling of the next record) the record processor knows about
// them and either waits for a control message (Finished) or includes a reply
// channel in the message (ChangeCipherSpec).
import (
"crypto/hmac";
"crypto/rc4";
"crypto/rsa";
"crypto/sha1";
"crypto/subtle";
"io";
)
type cipherSuite struct {
id uint16; // The number of this suite on the wire.
hashLength, cipherKeyLength int;
// TODO(agl): need a method to create the cipher and hash interfaces.
}
var cipherSuites = []cipherSuite{
cipherSuite{TLS_RSA_WITH_RC4_128_SHA, 20, 16},
}
// A serverHandshake performs the server side of the TLS 1.1 handshake protocol.
type serverHandshake struct {
writeChan chan<- interface{};
controlChan chan<- interface{};
msgChan <-chan interface{};
config *Config;
}
func (h *serverHandshake) loop(writeChan chan<- interface{}, controlChan chan<- interface{}, msgChan <-chan interface{}, config *Config) {
h.writeChan = writeChan;
h.controlChan = controlChan;
h.msgChan = msgChan;
h.config = config;
defer close(writeChan);
defer close(controlChan);
clientHello, ok := h.readHandshakeMsg().(*clientHelloMsg);
if !ok {
h.error(alertUnexpectedMessage);
return;
}
major, minor, ok := mutualVersion(clientHello.major, clientHello.minor);
if !ok {
h.error(alertProtocolVersion);
return;
}
finishedHash := newFinishedHash();
finishedHash.Write(clientHello.marshal());
hello := new(serverHelloMsg);
// We only support a single ciphersuite so we look for it in the list
// of client supported suites.
//
// TODO(agl): Add additional cipher suites.
var suite *cipherSuite;
for _, id := range clientHello.cipherSuites {
for _, supported := range cipherSuites {
if supported.id == id {
suite = &supported;
break;
}
}
}
foundCompression := false;
// We only support null compression, so check that the client offered it.
for _, compression := range clientHello.compressionMethods {
if compression == compressionNone {
foundCompression = true;
break;
}
}
if suite == nil || !foundCompression {
h.error(alertHandshakeFailure);
return;
}
hello.major = major;
hello.minor = minor;
hello.cipherSuite = suite.id;
currentTime := uint32(config.Time());
hello.random = make([]byte, 32);
hello.random[0] = byte(currentTime >> 24);
hello.random[1] = byte(currentTime >> 16);
hello.random[2] = byte(currentTime >> 8);
hello.random[3] = byte(currentTime);
_, err := io.ReadFull(config.Rand, hello.random[4:]);
if err != nil {
h.error(alertInternalError);
return;
}
hello.compressionMethod = compressionNone;
finishedHash.Write(hello.marshal());
writeChan <- writerSetVersion{major, minor};
writeChan <- hello;
if len(config.Certificates) == 0 {
h.error(alertInternalError);
return;
}
certMsg := new(certificateMsg);
certMsg.certificates = config.Certificates[0].Certificate;
finishedHash.Write(certMsg.marshal());
writeChan <- certMsg;
helloDone := new(serverHelloDoneMsg);
finishedHash.Write(helloDone.marshal());
writeChan <- helloDone;
ckx, ok := h.readHandshakeMsg().(*clientKeyExchangeMsg);
if !ok {
h.error(alertUnexpectedMessage);
return;
}
finishedHash.Write(ckx.marshal());
preMasterSecret := make([]byte, 48);
_, err = io.ReadFull(config.Rand, preMasterSecret[2:]);
if err != nil {
h.error(alertInternalError);
return;
}
err = rsa.DecryptPKCS1v15SessionKey(config.Rand, config.Certificates[0].PrivateKey, ckx.ciphertext, preMasterSecret);
if err != nil {
h.error(alertHandshakeFailure);
return;
}
// We don't check the version number in the premaster secret. For one,
// by checking it, we would leak information about the validity of the
// encrypted pre-master secret. Secondly, it provides only a small
// benefit against a downgrade attack and some implementations send the
// wrong version anyway. See the discussion at the end of section
// 7.4.7.1 of RFC 4346.
masterSecret, clientMAC, serverMAC, clientKey, serverKey :=
keysFromPreMasterSecret11(preMasterSecret, clientHello.random, hello.random, suite.hashLength, suite.cipherKeyLength);
_, ok = h.readHandshakeMsg().(changeCipherSpec);
if !ok {
h.error(alertUnexpectedMessage);
return;
}
cipher, _ := rc4.NewCipher(clientKey);
controlChan <- &newCipherSpec{cipher, hmac.New(sha1.New(), clientMAC)};
clientFinished, ok := h.readHandshakeMsg().(*finishedMsg);
if !ok {
h.error(alertUnexpectedMessage);
return;
}
verify := finishedHash.clientSum(masterSecret);
if len(verify) != len(clientFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 {
h.error(alertHandshakeFailure);
return;
}
controlChan <- ConnectionState{true, "TLS_RSA_WITH_RC4_128_SHA", 0};
finishedHash.Write(clientFinished.marshal());
cipher2, _ := rc4.NewCipher(serverKey);
writeChan <- writerChangeCipherSpec{cipher2, hmac.New(sha1.New(), serverMAC)};
finished := new(finishedMsg);
finished.verifyData = finishedHash.serverSum(masterSecret);
writeChan <- finished;
writeChan <- writerEnableApplicationData{};
for {
_, ok := h.readHandshakeMsg().(*clientHelloMsg);
if !ok {
h.error(alertUnexpectedMessage);
return;
}
// We reject all renegotication requests.
writeChan <- alert{alertLevelWarning, alertNoRenegotiation};
}
}
func (h *serverHandshake) readHandshakeMsg() interface{} {
v := <-h.msgChan;
if closed(h.msgChan) {
// If the channel closed then the processor received an error
// from the peer and we don't want to echo it back to them.
h.msgChan = nil;
return 0;
}
if _, ok := v.(alert); ok {
// We got an alert from the processor. We forward to the writer
// and shutdown.
h.writeChan <- v;
h.msgChan = nil;
return 0;
}
return v;
}
func (h *serverHandshake) error(e alertType) {
if h.msgChan != nil {
// If we didn't get an error from the processor, then we need
// to tell it about the error.
h.controlChan <- ConnectionState{false, "", e};
close(h.controlChan);
go func() {
for _ = range h.msgChan {
}
}();
h.writeChan <- alert{alertLevelError, e};
}
}