Alternative TLS implementation in Go
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

common.go 42 KiB

crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
il y a 9 ans
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
il y a 9 ans
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
il y a 9 ans
il y a 6 ans
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224
  1. // Copyright 2009 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package tls
  5. import (
  6. "container/list"
  7. "crypto"
  8. "crypto/internal/cipherhw"
  9. "crypto/rand"
  10. "crypto/sha512"
  11. "crypto/x509"
  12. "errors"
  13. "fmt"
  14. "io"
  15. "math/big"
  16. "net"
  17. "strings"
  18. "sync"
  19. "time"
  20. )
  21. const (
  22. VersionSSL30 = 0x0300
  23. VersionTLS10 = 0x0301
  24. VersionTLS11 = 0x0302
  25. VersionTLS12 = 0x0303
  26. VersionTLS13 = 0x0304
  27. )
  28. const (
  29. maxPlaintext = 16384 // maximum plaintext payload length
  30. maxCiphertext = 16384 + 2048 // maximum ciphertext payload length
  31. recordHeaderLen = 5 // record header length
  32. maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB)
  33. maxWarnAlertCount = 5 // maximum number of consecutive warning alerts
  34. minVersion = VersionTLS12
  35. maxVersion = VersionTLS13
  36. )
  37. // TLS record types.
  38. type recordType uint8
  39. const (
  40. recordTypeChangeCipherSpec recordType = 20
  41. recordTypeAlert recordType = 21
  42. recordTypeHandshake recordType = 22
  43. recordTypeApplicationData recordType = 23
  44. )
  45. // TLS handshake message types.
  46. const (
  47. typeHelloRequest uint8 = 0
  48. typeClientHello uint8 = 1
  49. typeServerHello uint8 = 2
  50. typeNewSessionTicket uint8 = 4
  51. typeEndOfEarlyData uint8 = 5
  52. typeEncryptedExtensions uint8 = 8
  53. typeCertificate uint8 = 11
  54. typeServerKeyExchange uint8 = 12
  55. typeCertificateRequest uint8 = 13
  56. typeServerHelloDone uint8 = 14
  57. typeCertificateVerify uint8 = 15
  58. typeClientKeyExchange uint8 = 16
  59. typeFinished uint8 = 20
  60. typeCertificateStatus uint8 = 22
  61. typeNextProtocol uint8 = 67 // Not IANA assigned
  62. )
  63. // TLS compression types.
  64. const (
  65. compressionNone uint8 = 0
  66. )
  67. // TLS extension numbers
  68. const (
  69. extensionServerName uint16 = 0
  70. extensionStatusRequest uint16 = 5
  71. extensionSupportedCurves uint16 = 10 // Supported Groups in 1.3 nomenclature
  72. extensionSupportedPoints uint16 = 11
  73. extensionSignatureAlgorithms uint16 = 13
  74. extensionALPN uint16 = 16
  75. extensionSCT uint16 = 18 // https://tools.ietf.org/html/rfc6962#section-6
  76. extensionEMS uint16 = 23
  77. extensionSessionTicket uint16 = 35
  78. extensionPreSharedKey uint16 = 41
  79. extensionEarlyData uint16 = 42
  80. extensionSupportedVersions uint16 = 43
  81. extensionPSKKeyExchangeModes uint16 = 45
  82. extensionCAs uint16 = 47
  83. extensionSignatureAlgorithmsCert uint16 = 50
  84. extensionKeyShare uint16 = 51
  85. extensionNextProtoNeg uint16 = 13172 // not IANA assigned
  86. extensionRenegotiationInfo uint16 = 0xff01
  87. extensionDelegatedCredential uint16 = 0xff02 // TODO(any) Get IANA assignment
  88. )
  89. // TLS signaling cipher suite values
  90. const (
  91. scsvRenegotiation uint16 = 0x00ff
  92. )
  93. // PSK Key Exchange Modes
  94. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.7
  95. const (
  96. pskDHEKeyExchange uint8 = 1
  97. )
  98. // CurveID is the type of a TLS identifier for an elliptic curve. See
  99. // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8
  100. //
  101. // TLS 1.3 refers to these as Groups, but this library implements only
  102. // curve-based ones anyway. See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.4.
  103. type CurveID uint16
  104. const (
  105. CurveP256 CurveID = 23
  106. CurveP384 CurveID = 24
  107. CurveP521 CurveID = 25
  108. X25519 CurveID = 29
  109. )
  110. // TLS 1.3 Key Share
  111. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.5
  112. type keyShare struct {
  113. group CurveID
  114. data []byte
  115. }
  116. // TLS 1.3 PSK Identity and Binder, as sent by the client
  117. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.6
  118. type psk struct {
  119. identity []byte
  120. obfTicketAge uint32
  121. binder []byte
  122. }
  123. // TLS Elliptic Curve Point Formats
  124. // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
  125. const (
  126. pointFormatUncompressed uint8 = 0
  127. )
  128. // TLS CertificateStatusType (RFC 3546)
  129. const (
  130. statusTypeOCSP uint8 = 1
  131. )
  132. // Certificate types (for certificateRequestMsg)
  133. const (
  134. certTypeRSASign = 1 // A certificate containing an RSA key
  135. certTypeDSSSign = 2 // A certificate containing a DSA key
  136. certTypeRSAFixedDH = 3 // A certificate containing a static DH key
  137. certTypeDSSFixedDH = 4 // A certificate containing a static DH key
  138. // See RFC 4492 sections 3 and 5.5.
  139. certTypeECDSASign = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA.
  140. certTypeRSAFixedECDH = 65 // A certificate containing an ECDH-capable public key, signed with RSA.
  141. certTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA.
  142. // Rest of these are reserved by the TLS spec
  143. )
  144. // Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1)
  145. const (
  146. signaturePKCS1v15 uint8 = iota + 1
  147. signatureECDSA
  148. signatureRSAPSS
  149. )
  150. // supportedSignatureAlgorithms contains the signature and hash algorithms that
  151. // the code advertises as supported in a TLS 1.2 ClientHello and in a TLS 1.2
  152. // CertificateRequest. The two fields are merged to match with TLS 1.3.
  153. // Note that in TLS 1.2, the ECDSA algorithms are not constrained to P-256, etc.
  154. var supportedSignatureAlgorithms = []SignatureScheme{
  155. PKCS1WithSHA256,
  156. ECDSAWithP256AndSHA256,
  157. PKCS1WithSHA384,
  158. ECDSAWithP384AndSHA384,
  159. PKCS1WithSHA512,
  160. ECDSAWithP521AndSHA512,
  161. PKCS1WithSHA1,
  162. ECDSAWithSHA1,
  163. }
  164. // supportedSignatureAlgorithms13 lists the advertised signature algorithms
  165. // allowed for digital signatures. It includes TLS 1.2 + PSS.
  166. var supportedSignatureAlgorithms13 = []SignatureScheme{
  167. PSSWithSHA256,
  168. PKCS1WithSHA256,
  169. ECDSAWithP256AndSHA256,
  170. PSSWithSHA384,
  171. PKCS1WithSHA384,
  172. ECDSAWithP384AndSHA384,
  173. PSSWithSHA512,
  174. PKCS1WithSHA512,
  175. ECDSAWithP521AndSHA512,
  176. PKCS1WithSHA1,
  177. ECDSAWithSHA1,
  178. }
  179. // ConnectionState records basic TLS details about the connection.
  180. type ConnectionState struct {
  181. ConnectionID []byte // Random unique connection id
  182. Version uint16 // TLS version used by the connection (e.g. VersionTLS12)
  183. HandshakeComplete bool // TLS handshake is complete
  184. DidResume bool // connection resumes a previous TLS connection
  185. CipherSuite uint16 // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...)
  186. NegotiatedProtocol string // negotiated next protocol (not guaranteed to be from Config.NextProtos)
  187. NegotiatedProtocolIsMutual bool // negotiated protocol was advertised by server (client side only)
  188. ServerName string // server name requested by client, if any (server side only)
  189. PeerCertificates []*x509.Certificate // certificate chain presented by remote peer
  190. VerifiedChains [][]*x509.Certificate // verified chains built from PeerCertificates
  191. SignedCertificateTimestamps [][]byte // SCTs from the server, if any
  192. OCSPResponse []byte // stapled OCSP response from server, if any
  193. DelegatedCredential []byte // Delegated credential sent by the server, if any
  194. // TLSUnique contains the "tls-unique" channel binding value (see RFC
  195. // 5929, section 3). For resumed sessions this value will be nil
  196. // because resumption does not include enough context (see
  197. // https://mitls.org/pages/attacks/3SHAKE#channelbindings). This will
  198. // change in future versions of Go once the TLS master-secret fix has
  199. // been standardized and implemented.
  200. TLSUnique []byte
  201. // HandshakeConfirmed is true once all data returned by Read
  202. // (past and future) is guaranteed not to be replayed.
  203. HandshakeConfirmed bool
  204. // Unique0RTTToken is a value that never repeats, and can be used
  205. // to detect replay attacks against 0-RTT connections.
  206. // Unique0RTTToken is only present if HandshakeConfirmed is false.
  207. Unique0RTTToken []byte
  208. ClientHello []byte // ClientHello packet
  209. }
  210. // ClientAuthType declares the policy the server will follow for
  211. // TLS Client Authentication.
  212. type ClientAuthType int
  213. const (
  214. NoClientCert ClientAuthType = iota
  215. RequestClientCert
  216. RequireAnyClientCert
  217. VerifyClientCertIfGiven
  218. RequireAndVerifyClientCert
  219. )
  220. // ClientSessionState contains the state needed by clients to resume TLS
  221. // sessions.
  222. type ClientSessionState struct {
  223. sessionTicket []uint8 // Encrypted ticket used for session resumption with server
  224. vers uint16 // SSL/TLS version negotiated for the session
  225. cipherSuite uint16 // Ciphersuite negotiated for the session
  226. masterSecret []byte // MasterSecret generated by client on a full handshake
  227. serverCertificates []*x509.Certificate // Certificate chain presented by the server
  228. verifiedChains [][]*x509.Certificate // Certificate chains we built for verification
  229. useEMS bool // State of extended master secret
  230. }
  231. // ClientSessionCache is a cache of ClientSessionState objects that can be used
  232. // by a client to resume a TLS session with a given server. ClientSessionCache
  233. // implementations should expect to be called concurrently from different
  234. // goroutines. Only ticket-based resumption is supported, not SessionID-based
  235. // resumption.
  236. type ClientSessionCache interface {
  237. // Get searches for a ClientSessionState associated with the given key.
  238. // On return, ok is true if one was found.
  239. Get(sessionKey string) (session *ClientSessionState, ok bool)
  240. // Put adds the ClientSessionState to the cache with the given key.
  241. Put(sessionKey string, cs *ClientSessionState)
  242. }
  243. // SignatureScheme identifies a signature algorithm supported by TLS. See
  244. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.3.
  245. type SignatureScheme uint16
  246. const (
  247. PKCS1WithSHA1 SignatureScheme = 0x0201
  248. PKCS1WithSHA256 SignatureScheme = 0x0401
  249. PKCS1WithSHA384 SignatureScheme = 0x0501
  250. PKCS1WithSHA512 SignatureScheme = 0x0601
  251. PSSWithSHA256 SignatureScheme = 0x0804
  252. PSSWithSHA384 SignatureScheme = 0x0805
  253. PSSWithSHA512 SignatureScheme = 0x0806
  254. ECDSAWithP256AndSHA256 SignatureScheme = 0x0403
  255. ECDSAWithP384AndSHA384 SignatureScheme = 0x0503
  256. ECDSAWithP521AndSHA512 SignatureScheme = 0x0603
  257. // Legacy signature and hash algorithms for TLS 1.2.
  258. ECDSAWithSHA1 SignatureScheme = 0x0203
  259. )
  260. // ClientHelloInfo contains information from a ClientHello message in order to
  261. // guide certificate selection in the GetCertificate callback.
  262. type ClientHelloInfo struct {
  263. // CipherSuites lists the CipherSuites supported by the client (e.g.
  264. // TLS_RSA_WITH_RC4_128_SHA).
  265. CipherSuites []uint16
  266. // ServerName indicates the name of the server requested by the client
  267. // in order to support virtual hosting. ServerName is only set if the
  268. // client is using SNI (see
  269. // http://tools.ietf.org/html/rfc4366#section-3.1).
  270. ServerName string
  271. // SupportedCurves lists the elliptic curves supported by the client.
  272. // SupportedCurves is set only if the Supported Elliptic Curves
  273. // Extension is being used (see
  274. // http://tools.ietf.org/html/rfc4492#section-5.1.1).
  275. SupportedCurves []CurveID
  276. // SupportedPoints lists the point formats supported by the client.
  277. // SupportedPoints is set only if the Supported Point Formats Extension
  278. // is being used (see
  279. // http://tools.ietf.org/html/rfc4492#section-5.1.2).
  280. SupportedPoints []uint8
  281. // SignatureSchemes lists the signature and hash schemes that the client
  282. // is willing to verify. SignatureSchemes is set only if the Signature
  283. // Algorithms Extension is being used (see
  284. // https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1).
  285. SignatureSchemes []SignatureScheme
  286. // SupportedProtos lists the application protocols supported by the client.
  287. // SupportedProtos is set only if the Application-Layer Protocol
  288. // Negotiation Extension is being used (see
  289. // https://tools.ietf.org/html/rfc7301#section-3.1).
  290. //
  291. // Servers can select a protocol by setting Config.NextProtos in a
  292. // GetConfigForClient return value.
  293. SupportedProtos []string
  294. // SupportedVersions lists the TLS versions supported by the client.
  295. // For TLS versions less than 1.3, this is extrapolated from the max
  296. // version advertised by the client, so values other than the greatest
  297. // might be rejected if used.
  298. SupportedVersions []uint16
  299. // Conn is the underlying net.Conn for the connection. Do not read
  300. // from, or write to, this connection; that will cause the TLS
  301. // connection to fail.
  302. Conn net.Conn
  303. // Offered0RTTData is true if the client announced that it will send
  304. // 0-RTT data. If the server Config.Accept0RTTData is true, and the
  305. // client offered a session ticket valid for that purpose, it will
  306. // be notified that the 0-RTT data is accepted and it will be made
  307. // immediately available for Read.
  308. Offered0RTTData bool
  309. // AcceptsDelegatedCredential is true if the client indicated willingness
  310. // to negotiate the delegated credential extension.
  311. AcceptsDelegatedCredential bool
  312. // The Fingerprint is an sequence of bytes unique to this Client Hello.
  313. // It can be used to prevent or mitigate 0-RTT data replays as it's
  314. // guaranteed that a replayed connection will have the same Fingerprint.
  315. Fingerprint []byte
  316. }
  317. // CertificateRequestInfo contains information from a server's
  318. // CertificateRequest message, which is used to demand a certificate and proof
  319. // of control from a client.
  320. type CertificateRequestInfo struct {
  321. // AcceptableCAs contains zero or more, DER-encoded, X.501
  322. // Distinguished Names. These are the names of root or intermediate CAs
  323. // that the server wishes the returned certificate to be signed by. An
  324. // empty slice indicates that the server has no preference.
  325. AcceptableCAs [][]byte
  326. // SignatureSchemes lists the signature schemes that the server is
  327. // willing to verify.
  328. SignatureSchemes []SignatureScheme
  329. }
  330. // RenegotiationSupport enumerates the different levels of support for TLS
  331. // renegotiation. TLS renegotiation is the act of performing subsequent
  332. // handshakes on a connection after the first. This significantly complicates
  333. // the state machine and has been the source of numerous, subtle security
  334. // issues. Initiating a renegotiation is not supported, but support for
  335. // accepting renegotiation requests may be enabled.
  336. //
  337. // Even when enabled, the server may not change its identity between handshakes
  338. // (i.e. the leaf certificate must be the same). Additionally, concurrent
  339. // handshake and application data flow is not permitted so renegotiation can
  340. // only be used with protocols that synchronise with the renegotiation, such as
  341. // HTTPS.
  342. type RenegotiationSupport int
  343. const (
  344. // RenegotiateNever disables renegotiation.
  345. RenegotiateNever RenegotiationSupport = iota
  346. // RenegotiateOnceAsClient allows a remote server to request
  347. // renegotiation once per connection.
  348. RenegotiateOnceAsClient
  349. // RenegotiateFreelyAsClient allows a remote server to repeatedly
  350. // request renegotiation.
  351. RenegotiateFreelyAsClient
  352. )
  353. // A Config structure is used to configure a TLS client or server.
  354. // After one has been passed to a TLS function it must not be
  355. // modified. A Config may be reused; the tls package will also not
  356. // modify it.
  357. type Config struct {
  358. // Rand provides the source of entropy for nonces and RSA blinding.
  359. // If Rand is nil, TLS uses the cryptographic random reader in package
  360. // crypto/rand.
  361. // The Reader must be safe for use by multiple goroutines.
  362. Rand io.Reader
  363. // Time returns the current time as the number of seconds since the epoch.
  364. // If Time is nil, TLS uses time.Now.
  365. Time func() time.Time
  366. // Certificates contains one or more certificate chains to present to
  367. // the other side of the connection. Server configurations must include
  368. // at least one certificate or else set GetCertificate. Clients doing
  369. // client-authentication may set either Certificates or
  370. // GetClientCertificate.
  371. Certificates []Certificate
  372. // NameToCertificate maps from a certificate name to an element of
  373. // Certificates. Note that a certificate name can be of the form
  374. // '*.example.com' and so doesn't have to be a domain name as such.
  375. // See Config.BuildNameToCertificate
  376. // The nil value causes the first element of Certificates to be used
  377. // for all connections.
  378. NameToCertificate map[string]*Certificate
  379. // GetCertificate returns a Certificate based on the given
  380. // ClientHelloInfo. It will only be called if the client supplies SNI
  381. // information or if Certificates is empty.
  382. //
  383. // If GetCertificate is nil or returns nil, then the certificate is
  384. // retrieved from NameToCertificate. If NameToCertificate is nil, the
  385. // first element of Certificates will be used.
  386. GetCertificate func(*ClientHelloInfo) (*Certificate, error)
  387. // GetClientCertificate, if not nil, is called when a server requests a
  388. // certificate from a client. If set, the contents of Certificates will
  389. // be ignored.
  390. //
  391. // If GetClientCertificate returns an error, the handshake will be
  392. // aborted and that error will be returned. Otherwise
  393. // GetClientCertificate must return a non-nil Certificate. If
  394. // Certificate.Certificate is empty then no certificate will be sent to
  395. // the server. If this is unacceptable to the server then it may abort
  396. // the handshake.
  397. //
  398. // GetClientCertificate may be called multiple times for the same
  399. // connection if renegotiation occurs or if TLS 1.3 is in use.
  400. GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error)
  401. // GetConfigForClient, if not nil, is called after a ClientHello is
  402. // received from a client. It may return a non-nil Config in order to
  403. // change the Config that will be used to handle this connection. If
  404. // the returned Config is nil, the original Config will be used. The
  405. // Config returned by this callback may not be subsequently modified.
  406. //
  407. // If GetConfigForClient is nil, the Config passed to Server() will be
  408. // used for all connections.
  409. //
  410. // Uniquely for the fields in the returned Config, session ticket keys
  411. // will be duplicated from the original Config if not set.
  412. // Specifically, if SetSessionTicketKeys was called on the original
  413. // config but not on the returned config then the ticket keys from the
  414. // original config will be copied into the new config before use.
  415. // Otherwise, if SessionTicketKey was set in the original config but
  416. // not in the returned config then it will be copied into the returned
  417. // config before use. If neither of those cases applies then the key
  418. // material from the returned config will be used for session tickets.
  419. GetConfigForClient func(*ClientHelloInfo) (*Config, error)
  420. // VerifyPeerCertificate, if not nil, is called after normal
  421. // certificate verification by either a TLS client or server. It
  422. // receives the raw ASN.1 certificates provided by the peer and also
  423. // any verified chains that normal processing found. If it returns a
  424. // non-nil error, the handshake is aborted and that error results.
  425. //
  426. // If normal verification fails then the handshake will abort before
  427. // considering this callback. If normal verification is disabled by
  428. // setting InsecureSkipVerify, or (for a server) when ClientAuth is
  429. // RequestClientCert or RequireAnyClientCert, then this callback will
  430. // be considered but the verifiedChains argument will always be nil.
  431. VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error
  432. // RootCAs defines the set of root certificate authorities
  433. // that clients use when verifying server certificates.
  434. // If RootCAs is nil, TLS uses the host's root CA set.
  435. RootCAs *x509.CertPool
  436. // NextProtos is a list of supported, application level protocols.
  437. NextProtos []string
  438. // ServerName is used to verify the hostname on the returned
  439. // certificates unless InsecureSkipVerify is given. It is also included
  440. // in the client's handshake to support virtual hosting unless it is
  441. // an IP address.
  442. ServerName string
  443. // ClientAuth determines the server's policy for
  444. // TLS Client Authentication. The default is NoClientCert.
  445. ClientAuth ClientAuthType
  446. // ClientCAs defines the set of root certificate authorities
  447. // that servers use if required to verify a client certificate
  448. // by the policy in ClientAuth.
  449. ClientCAs *x509.CertPool
  450. // InsecureSkipVerify controls whether a client verifies the
  451. // server's certificate chain and host name.
  452. // If InsecureSkipVerify is true, TLS accepts any certificate
  453. // presented by the server and any host name in that certificate.
  454. // In this mode, TLS is susceptible to man-in-the-middle attacks.
  455. // This should be used only for testing.
  456. InsecureSkipVerify bool
  457. // CipherSuites is a list of supported cipher suites to be used in
  458. // TLS 1.0-1.2. If CipherSuites is nil, TLS uses a list of suites
  459. // supported by the implementation.
  460. CipherSuites []uint16
  461. // PreferServerCipherSuites controls whether the server selects the
  462. // client's most preferred ciphersuite, or the server's most preferred
  463. // ciphersuite. If true then the server's preference, as expressed in
  464. // the order of elements in CipherSuites, is used.
  465. PreferServerCipherSuites bool
  466. // SessionTicketsDisabled may be set to true to disable session ticket
  467. // (resumption) support.
  468. SessionTicketsDisabled bool
  469. // SessionTicketKey is used by TLS servers to provide session
  470. // resumption. See RFC 5077. If zero, it will be filled with
  471. // random data before the first server handshake.
  472. //
  473. // If multiple servers are terminating connections for the same host
  474. // they should all have the same SessionTicketKey. If the
  475. // SessionTicketKey leaks, previously recorded and future TLS
  476. // connections using that key are compromised.
  477. SessionTicketKey [32]byte
  478. // ClientSessionCache is a cache of ClientSessionState entries for TLS
  479. // session resumption.
  480. ClientSessionCache ClientSessionCache
  481. // MinVersion contains the minimum SSL/TLS version that is acceptable.
  482. // If zero, then TLS 1.0 is taken as the minimum.
  483. MinVersion uint16
  484. // MaxVersion contains the maximum SSL/TLS version that is acceptable.
  485. // If zero, then the maximum version supported by this package is used,
  486. // which is currently TLS 1.2.
  487. MaxVersion uint16
  488. // CurvePreferences contains the elliptic curves that will be used in
  489. // an ECDHE handshake, in preference order. If empty, the default will
  490. // be used.
  491. CurvePreferences []CurveID
  492. // DynamicRecordSizingDisabled disables adaptive sizing of TLS records.
  493. // When true, the largest possible TLS record size is always used. When
  494. // false, the size of TLS records may be adjusted in an attempt to
  495. // improve latency.
  496. DynamicRecordSizingDisabled bool
  497. // Renegotiation controls what types of renegotiation are supported.
  498. // The default, none, is correct for the vast majority of applications.
  499. Renegotiation RenegotiationSupport
  500. // KeyLogWriter optionally specifies a destination for TLS master secrets
  501. // in NSS key log format that can be used to allow external programs
  502. // such as Wireshark to decrypt TLS connections.
  503. // See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format.
  504. // Use of KeyLogWriter compromises security and should only be
  505. // used for debugging.
  506. KeyLogWriter io.Writer
  507. // If Max0RTTDataSize is not zero, the client will be allowed to use
  508. // session tickets to send at most this number of bytes of 0-RTT data.
  509. // 0-RTT data is subject to replay and has memory DoS implications.
  510. // The server will later be able to refuse the 0-RTT data with
  511. // Accept0RTTData, or wait for the client to prove that it's not
  512. // replayed with Conn.ConfirmHandshake.
  513. //
  514. // It has no meaning on the client.
  515. //
  516. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
  517. Max0RTTDataSize uint32
  518. // Accept0RTTData makes the 0-RTT data received from the client
  519. // immediately available to Read. 0-RTT data is subject to replay.
  520. // Use Conn.ConfirmHandshake to wait until the data is known not
  521. // to be replayed after reading it.
  522. //
  523. // It has no meaning on the client.
  524. //
  525. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
  526. Accept0RTTData bool
  527. // SessionTicketSealer, if not nil, is used to wrap and unwrap
  528. // session tickets, instead of SessionTicketKey.
  529. SessionTicketSealer SessionTicketSealer
  530. // AcceptDelegatedCredential is true if the client is willing to negotiate
  531. // the delegated credential extension.
  532. //
  533. // This value has no meaning for the server.
  534. //
  535. // See https://tools.ietf.org/html/draft-ietf-tls-subcerts-02.
  536. AcceptDelegatedCredential bool
  537. // GetDelegatedCredential returns a DC and its private key for use in the
  538. // delegated credential extension. The inputs to the callback are some
  539. // information parsed from the ClientHello, as well as the protocol version
  540. // selected by the server. This is necessary because the DC is bound to the
  541. // protocol version in which it's used. The return value is the raw DC
  542. // encoded in the wire format specified in
  543. // https://tools.ietf.org/html/draft-ietf-tls-subcerts-02. If the return
  544. // value is nil, then the server will not offer negotiate the extension.
  545. //
  546. // This value has no meaning for the client.
  547. GetDelegatedCredential func(*ClientHelloInfo, uint16) ([]byte, crypto.PrivateKey, error)
  548. serverInitOnce sync.Once // guards calling (*Config).serverInit
  549. // mutex protects sessionTicketKeys.
  550. mutex sync.RWMutex
  551. // sessionTicketKeys contains zero or more ticket keys. If the length
  552. // is zero, SessionTicketsDisabled must be true. The first key is used
  553. // for new tickets and any subsequent keys can be used to decrypt old
  554. // tickets.
  555. sessionTicketKeys []ticketKey
  556. // UseExtendedMasterSecret indicates whether or not the connection
  557. // should use the extended master secret computation if available
  558. UseExtendedMasterSecret bool
  559. }
  560. // ticketKeyNameLen is the number of bytes of identifier that is prepended to
  561. // an encrypted session ticket in order to identify the key used to encrypt it.
  562. const ticketKeyNameLen = 16
  563. // ticketKey is the internal representation of a session ticket key.
  564. type ticketKey struct {
  565. // keyName is an opaque byte string that serves to identify the session
  566. // ticket key. It's exposed as plaintext in every session ticket.
  567. keyName [ticketKeyNameLen]byte
  568. aesKey [16]byte
  569. hmacKey [16]byte
  570. }
  571. // ticketKeyFromBytes converts from the external representation of a session
  572. // ticket key to a ticketKey. Externally, session ticket keys are 32 random
  573. // bytes and this function expands that into sufficient name and key material.
  574. func ticketKeyFromBytes(b [32]byte) (key ticketKey) {
  575. hashed := sha512.Sum512(b[:])
  576. copy(key.keyName[:], hashed[:ticketKeyNameLen])
  577. copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16])
  578. copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32])
  579. return key
  580. }
  581. // Clone returns a shallow clone of c. It is safe to clone a Config that is
  582. // being used concurrently by a TLS client or server.
  583. func (c *Config) Clone() *Config {
  584. // Running serverInit ensures that it's safe to read
  585. // SessionTicketsDisabled.
  586. c.serverInitOnce.Do(func() { c.serverInit(nil) })
  587. var sessionTicketKeys []ticketKey
  588. c.mutex.RLock()
  589. sessionTicketKeys = c.sessionTicketKeys
  590. c.mutex.RUnlock()
  591. return &Config{
  592. Rand: c.Rand,
  593. Time: c.Time,
  594. Certificates: c.Certificates,
  595. NameToCertificate: c.NameToCertificate,
  596. GetCertificate: c.GetCertificate,
  597. GetClientCertificate: c.GetClientCertificate,
  598. GetConfigForClient: c.GetConfigForClient,
  599. VerifyPeerCertificate: c.VerifyPeerCertificate,
  600. RootCAs: c.RootCAs,
  601. NextProtos: c.NextProtos,
  602. ServerName: c.ServerName,
  603. ClientAuth: c.ClientAuth,
  604. ClientCAs: c.ClientCAs,
  605. InsecureSkipVerify: c.InsecureSkipVerify,
  606. CipherSuites: c.CipherSuites,
  607. PreferServerCipherSuites: c.PreferServerCipherSuites,
  608. SessionTicketsDisabled: c.SessionTicketsDisabled,
  609. SessionTicketKey: c.SessionTicketKey,
  610. ClientSessionCache: c.ClientSessionCache,
  611. MinVersion: c.MinVersion,
  612. MaxVersion: c.MaxVersion,
  613. CurvePreferences: c.CurvePreferences,
  614. DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
  615. Renegotiation: c.Renegotiation,
  616. KeyLogWriter: c.KeyLogWriter,
  617. Accept0RTTData: c.Accept0RTTData,
  618. Max0RTTDataSize: c.Max0RTTDataSize,
  619. SessionTicketSealer: c.SessionTicketSealer,
  620. AcceptDelegatedCredential: c.AcceptDelegatedCredential,
  621. GetDelegatedCredential: c.GetDelegatedCredential,
  622. sessionTicketKeys: sessionTicketKeys,
  623. UseExtendedMasterSecret: c.UseExtendedMasterSecret,
  624. }
  625. }
  626. // serverInit is run under c.serverInitOnce to do initialization of c. If c was
  627. // returned by a GetConfigForClient callback then the argument should be the
  628. // Config that was passed to Server, otherwise it should be nil.
  629. func (c *Config) serverInit(originalConfig *Config) {
  630. if c.SessionTicketsDisabled || len(c.ticketKeys()) != 0 || c.SessionTicketSealer != nil {
  631. return
  632. }
  633. alreadySet := false
  634. for _, b := range c.SessionTicketKey {
  635. if b != 0 {
  636. alreadySet = true
  637. break
  638. }
  639. }
  640. if !alreadySet {
  641. if originalConfig != nil {
  642. copy(c.SessionTicketKey[:], originalConfig.SessionTicketKey[:])
  643. } else if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
  644. c.SessionTicketsDisabled = true
  645. return
  646. }
  647. }
  648. if originalConfig != nil {
  649. originalConfig.mutex.RLock()
  650. c.sessionTicketKeys = originalConfig.sessionTicketKeys
  651. originalConfig.mutex.RUnlock()
  652. } else {
  653. c.sessionTicketKeys = []ticketKey{ticketKeyFromBytes(c.SessionTicketKey)}
  654. }
  655. }
  656. func (c *Config) ticketKeys() []ticketKey {
  657. c.mutex.RLock()
  658. // c.sessionTicketKeys is constant once created. SetSessionTicketKeys
  659. // will only update it by replacing it with a new value.
  660. ret := c.sessionTicketKeys
  661. c.mutex.RUnlock()
  662. return ret
  663. }
  664. // SetSessionTicketKeys updates the session ticket keys for a server. The first
  665. // key will be used when creating new tickets, while all keys can be used for
  666. // decrypting tickets. It is safe to call this function while the server is
  667. // running in order to rotate the session ticket keys. The function will panic
  668. // if keys is empty.
  669. func (c *Config) SetSessionTicketKeys(keys [][32]byte) {
  670. if len(keys) == 0 {
  671. panic("tls: keys must have at least one key")
  672. }
  673. newKeys := make([]ticketKey, len(keys))
  674. for i, bytes := range keys {
  675. newKeys[i] = ticketKeyFromBytes(bytes)
  676. }
  677. c.mutex.Lock()
  678. c.sessionTicketKeys = newKeys
  679. c.mutex.Unlock()
  680. }
  681. func (c *Config) rand() io.Reader {
  682. r := c.Rand
  683. if r == nil {
  684. return rand.Reader
  685. }
  686. return r
  687. }
  688. func (c *Config) time() time.Time {
  689. t := c.Time
  690. if t == nil {
  691. t = time.Now
  692. }
  693. return t()
  694. }
  695. func hasOverlappingCipherSuites(cs1, cs2 []uint16) bool {
  696. for _, c1 := range cs1 {
  697. for _, c2 := range cs2 {
  698. if c1 == c2 {
  699. return true
  700. }
  701. }
  702. }
  703. return false
  704. }
  705. func (c *Config) cipherSuites() []uint16 {
  706. s := c.CipherSuites
  707. if s == nil {
  708. s = defaultCipherSuites()
  709. } else if c.maxVersion() >= VersionTLS13 {
  710. // Ensure that TLS 1.3 suites are always present, but respect
  711. // the application cipher suite preferences.
  712. s13 := defaultTLS13CipherSuites()
  713. if !hasOverlappingCipherSuites(s, s13) {
  714. allSuites := make([]uint16, len(s13)+len(s))
  715. allSuites = append(allSuites, s13...)
  716. s = append(allSuites, s...)
  717. }
  718. }
  719. return s
  720. }
  721. func (c *Config) minVersion() uint16 {
  722. if c == nil || c.MinVersion == 0 {
  723. return minVersion
  724. }
  725. return c.MinVersion
  726. }
  727. func (c *Config) maxVersion() uint16 {
  728. if c == nil || c.MaxVersion == 0 {
  729. return maxVersion
  730. }
  731. return c.MaxVersion
  732. }
  733. var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521}
  734. func (c *Config) curvePreferences() []CurveID {
  735. if c == nil || len(c.CurvePreferences) == 0 {
  736. return defaultCurvePreferences
  737. }
  738. return c.CurvePreferences
  739. }
  740. // mutualVersion returns the protocol version to use given the advertised
  741. // version of the peer using the legacy non-extension methods.
  742. func (c *Config) mutualVersion(vers uint16) (uint16, bool) {
  743. minVersion := c.minVersion()
  744. maxVersion := c.maxVersion()
  745. // Version 1.3 and higher are not negotiated via this mechanism.
  746. if maxVersion > VersionTLS12 {
  747. maxVersion = VersionTLS12
  748. }
  749. if vers < minVersion {
  750. return 0, false
  751. }
  752. if vers > maxVersion {
  753. vers = maxVersion
  754. }
  755. return vers, true
  756. }
  757. // pickVersion returns the protocol version to use given the advertised
  758. // versions of the peer using the Supported Versions extension.
  759. func (c *Config) pickVersion(peerSupportedVersions []uint16) (uint16, bool) {
  760. supportedVersions := c.getSupportedVersions()
  761. for _, supportedVersion := range supportedVersions {
  762. for _, version := range peerSupportedVersions {
  763. if version == supportedVersion {
  764. return version, true
  765. }
  766. }
  767. }
  768. return 0, false
  769. }
  770. // configSuppVersArray is the backing array of Config.getSupportedVersions
  771. var configSuppVersArray = [...]uint16{VersionTLS13, VersionTLS12, VersionTLS11, VersionTLS10, VersionSSL30}
  772. // getSupportedVersions returns the protocol versions that are supported by the
  773. // current configuration.
  774. func (c *Config) getSupportedVersions() []uint16 {
  775. minVersion := c.minVersion()
  776. maxVersion := c.maxVersion()
  777. // Sanity check to avoid advertising unsupported versions.
  778. if minVersion < VersionSSL30 {
  779. minVersion = VersionSSL30
  780. }
  781. if maxVersion > VersionTLS13 {
  782. maxVersion = VersionTLS13
  783. }
  784. if maxVersion < minVersion {
  785. return nil
  786. }
  787. return configSuppVersArray[VersionTLS13-maxVersion : VersionTLS13-minVersion+1]
  788. }
  789. // getCertificate returns the best certificate for the given ClientHelloInfo,
  790. // defaulting to the first element of c.Certificates.
  791. func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) {
  792. if c.GetCertificate != nil &&
  793. (len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) {
  794. cert, err := c.GetCertificate(clientHello)
  795. if cert != nil || err != nil {
  796. return cert, err
  797. }
  798. }
  799. if len(c.Certificates) == 0 {
  800. return nil, errors.New("tls: no certificates configured")
  801. }
  802. if len(c.Certificates) == 1 || c.NameToCertificate == nil {
  803. // There's only one choice, so no point doing any work.
  804. return &c.Certificates[0], nil
  805. }
  806. name := strings.ToLower(clientHello.ServerName)
  807. for len(name) > 0 && name[len(name)-1] == '.' {
  808. name = name[:len(name)-1]
  809. }
  810. if cert, ok := c.NameToCertificate[name]; ok {
  811. return cert, nil
  812. }
  813. // try replacing labels in the name with wildcards until we get a
  814. // match.
  815. labels := strings.Split(name, ".")
  816. for i := range labels {
  817. labels[i] = "*"
  818. candidate := strings.Join(labels, ".")
  819. if cert, ok := c.NameToCertificate[candidate]; ok {
  820. return cert, nil
  821. }
  822. }
  823. // If nothing matches, return the first certificate.
  824. return &c.Certificates[0], nil
  825. }
  826. // BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
  827. // from the CommonName and SubjectAlternateName fields of each of the leaf
  828. // certificates.
  829. func (c *Config) BuildNameToCertificate() {
  830. c.NameToCertificate = make(map[string]*Certificate)
  831. for i := range c.Certificates {
  832. cert := &c.Certificates[i]
  833. x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
  834. if err != nil {
  835. continue
  836. }
  837. if len(x509Cert.Subject.CommonName) > 0 {
  838. c.NameToCertificate[x509Cert.Subject.CommonName] = cert
  839. }
  840. for _, san := range x509Cert.DNSNames {
  841. c.NameToCertificate[san] = cert
  842. }
  843. }
  844. }
  845. // writeKeyLog logs client random and master secret if logging was enabled by
  846. // setting c.KeyLogWriter.
  847. func (c *Config) writeKeyLog(what string, clientRandom, masterSecret []byte) error {
  848. if c.KeyLogWriter == nil {
  849. return nil
  850. }
  851. logLine := []byte(fmt.Sprintf("%s %x %x\n", what, clientRandom, masterSecret))
  852. writerMutex.Lock()
  853. _, err := c.KeyLogWriter.Write(logLine)
  854. writerMutex.Unlock()
  855. return err
  856. }
  857. // writerMutex protects all KeyLogWriters globally. It is rarely enabled,
  858. // and is only for debugging, so a global mutex saves space.
  859. var writerMutex sync.Mutex
  860. // A Certificate is a chain of one or more certificates, leaf first.
  861. type Certificate struct {
  862. Certificate [][]byte
  863. // PrivateKey contains the private key corresponding to the public key
  864. // in Leaf. For a server, this must implement crypto.Signer and/or
  865. // crypto.Decrypter, with an RSA or ECDSA PublicKey. For a client
  866. // (performing client authentication), this must be a crypto.Signer
  867. // with an RSA or ECDSA PublicKey.
  868. PrivateKey crypto.PrivateKey
  869. // OCSPStaple contains an optional OCSP response which will be served
  870. // to clients that request it.
  871. OCSPStaple []byte
  872. // SignedCertificateTimestamps contains an optional list of Signed
  873. // Certificate Timestamps which will be served to clients that request it.
  874. SignedCertificateTimestamps [][]byte
  875. // Leaf is the parsed form of the leaf certificate, which may be
  876. // initialized using x509.ParseCertificate to reduce per-handshake
  877. // processing for TLS clients doing client authentication. If nil, the
  878. // leaf certificate will be parsed as needed.
  879. Leaf *x509.Certificate
  880. }
  881. type handshakeMessage interface {
  882. marshal() []byte
  883. unmarshal([]byte) alert
  884. }
  885. // lruSessionCache is a ClientSessionCache implementation that uses an LRU
  886. // caching strategy.
  887. type lruSessionCache struct {
  888. sync.Mutex
  889. m map[string]*list.Element
  890. q *list.List
  891. capacity int
  892. }
  893. type lruSessionCacheEntry struct {
  894. sessionKey string
  895. state *ClientSessionState
  896. }
  897. // NewLRUClientSessionCache returns a ClientSessionCache with the given
  898. // capacity that uses an LRU strategy. If capacity is < 1, a default capacity
  899. // is used instead.
  900. func NewLRUClientSessionCache(capacity int) ClientSessionCache {
  901. const defaultSessionCacheCapacity = 64
  902. if capacity < 1 {
  903. capacity = defaultSessionCacheCapacity
  904. }
  905. return &lruSessionCache{
  906. m: make(map[string]*list.Element),
  907. q: list.New(),
  908. capacity: capacity,
  909. }
  910. }
  911. // Put adds the provided (sessionKey, cs) pair to the cache.
  912. func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
  913. c.Lock()
  914. defer c.Unlock()
  915. if elem, ok := c.m[sessionKey]; ok {
  916. entry := elem.Value.(*lruSessionCacheEntry)
  917. entry.state = cs
  918. c.q.MoveToFront(elem)
  919. return
  920. }
  921. if c.q.Len() < c.capacity {
  922. entry := &lruSessionCacheEntry{sessionKey, cs}
  923. c.m[sessionKey] = c.q.PushFront(entry)
  924. return
  925. }
  926. elem := c.q.Back()
  927. entry := elem.Value.(*lruSessionCacheEntry)
  928. delete(c.m, entry.sessionKey)
  929. entry.sessionKey = sessionKey
  930. entry.state = cs
  931. c.q.MoveToFront(elem)
  932. c.m[sessionKey] = elem
  933. }
  934. // Get returns the ClientSessionState value associated with a given key. It
  935. // returns (nil, false) if no value is found.
  936. func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
  937. c.Lock()
  938. defer c.Unlock()
  939. if elem, ok := c.m[sessionKey]; ok {
  940. c.q.MoveToFront(elem)
  941. return elem.Value.(*lruSessionCacheEntry).state, true
  942. }
  943. return nil, false
  944. }
  945. // TODO(jsing): Make these available to both crypto/x509 and crypto/tls.
  946. type dsaSignature struct {
  947. R, S *big.Int
  948. }
  949. type ecdsaSignature dsaSignature
  950. var emptyConfig Config
  951. func defaultConfig() *Config {
  952. return &emptyConfig
  953. }
  954. var (
  955. once sync.Once
  956. varDefaultCipherSuites []uint16
  957. varDefaultTLS13CipherSuites []uint16
  958. )
  959. func defaultCipherSuites() []uint16 {
  960. once.Do(initDefaultCipherSuites)
  961. return varDefaultCipherSuites
  962. }
  963. func defaultTLS13CipherSuites() []uint16 {
  964. once.Do(initDefaultCipherSuites)
  965. return varDefaultTLS13CipherSuites
  966. }
  967. func initDefaultCipherSuites() {
  968. var topCipherSuites, topTLS13CipherSuites []uint16
  969. if cipherhw.AESGCMSupport() {
  970. // If AES-GCM hardware is provided then prioritise AES-GCM
  971. // cipher suites.
  972. topTLS13CipherSuites = []uint16{
  973. TLS_AES_128_GCM_SHA256,
  974. TLS_AES_256_GCM_SHA384,
  975. TLS_CHACHA20_POLY1305_SHA256,
  976. }
  977. topCipherSuites = []uint16{
  978. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  979. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  980. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  981. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  982. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  983. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  984. }
  985. } else {
  986. // Without AES-GCM hardware, we put the ChaCha20-Poly1305
  987. // cipher suites first.
  988. topTLS13CipherSuites = []uint16{
  989. TLS_CHACHA20_POLY1305_SHA256,
  990. TLS_AES_128_GCM_SHA256,
  991. TLS_AES_256_GCM_SHA384,
  992. }
  993. topCipherSuites = []uint16{
  994. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  995. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  996. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  997. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  998. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  999. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  1000. }
  1001. }
  1002. varDefaultTLS13CipherSuites = make([]uint16, 0, len(cipherSuites))
  1003. varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, topTLS13CipherSuites...)
  1004. varDefaultCipherSuites = make([]uint16, 0, len(cipherSuites))
  1005. varDefaultCipherSuites = append(varDefaultCipherSuites, topCipherSuites...)
  1006. NextCipherSuite:
  1007. for _, suite := range cipherSuites {
  1008. if suite.flags&suiteDefaultOff != 0 {
  1009. continue
  1010. }
  1011. if suite.flags&suiteTLS13 != 0 {
  1012. for _, existing := range varDefaultTLS13CipherSuites {
  1013. if existing == suite.id {
  1014. continue NextCipherSuite
  1015. }
  1016. }
  1017. varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, suite.id)
  1018. } else {
  1019. for _, existing := range varDefaultCipherSuites {
  1020. if existing == suite.id {
  1021. continue NextCipherSuite
  1022. }
  1023. }
  1024. varDefaultCipherSuites = append(varDefaultCipherSuites, suite.id)
  1025. }
  1026. }
  1027. varDefaultCipherSuites = append(varDefaultTLS13CipherSuites, varDefaultCipherSuites...)
  1028. }
  1029. func unexpectedMessageError(wanted, got interface{}) error {
  1030. return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
  1031. }
  1032. func isSupportedSignatureAlgorithm(sigAlg SignatureScheme, supportedSignatureAlgorithms []SignatureScheme) bool {
  1033. for _, s := range supportedSignatureAlgorithms {
  1034. if s == sigAlg {
  1035. return true
  1036. }
  1037. }
  1038. return false
  1039. }
  1040. // signatureFromSignatureScheme maps a signature algorithm to the underlying
  1041. // signature method (without hash function).
  1042. func signatureFromSignatureScheme(signatureAlgorithm SignatureScheme) uint8 {
  1043. switch signatureAlgorithm {
  1044. case PKCS1WithSHA1, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512:
  1045. return signaturePKCS1v15
  1046. case PSSWithSHA256, PSSWithSHA384, PSSWithSHA512:
  1047. return signatureRSAPSS
  1048. case ECDSAWithSHA1, ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512:
  1049. return signatureECDSA
  1050. default:
  1051. return 0
  1052. }
  1053. }
  1054. // TODO(kk): Use variable length encoding?
  1055. func getUint24(b []byte) int {
  1056. n := int(b[2])
  1057. n += int(b[1] << 8)
  1058. n += int(b[0] << 16)
  1059. return n
  1060. }
  1061. func putUint24(b []byte, n int) {
  1062. b[0] = byte(n >> 16)
  1063. b[1] = byte(n >> 8)
  1064. b[2] = byte(n & 0xff)
  1065. }