Alternative TLS implementation in Go
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

tls_test.go 8.2 KiB

crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
crypto/tls: make Conn.Read return (n, io.EOF) when EOF is next in buffer Update #3514 An io.Reader is permitted to return either (n, nil) or (n, io.EOF) on EOF or other error. The tls package previously always returned (n, nil) for a read of size n if n bytes were available, not surfacing errors at the same time. Amazon's HTTPS frontends like to hang up on clients without sending the appropriate HTTP headers. (In their defense, they're allowed to hang up any time, but generally a server hangs up after a bit of inactivity, not immediately.) In any case, the Go HTTP client tries to re-use connections by looking at whether the response headers say to keep the connection open, and because the connection looks okay, under heavy load it's possible we'll reuse it immediately, writing the next request, just as the Transport's always-reading goroutine returns from tls.Conn.Read and sees (0, io.EOF). But because Amazon does send an AlertCloseNotify record before it hangs up on us, and the tls package does its own internal buffering (up to 1024 bytes) of pending data, we have the AlertCloseNotify in an unread buffer when our Conn.Read (to the HTTP Transport code) reads its final bit of data in the HTTP response body. This change makes that final Read return (n, io.EOF) when an AlertCloseNotify record is buffered right after, if we'd otherwise return (n, nil). A dependent change in the HTTP code then notes whether a client connection has seen an io.EOF and uses that as an additional signal to not reuse a HTTPS connection. With both changes, the majority of Amazon request failures go away. Without either one, 10-20 goroutines hitting the S3 API leads to such an error rate that empirically up to 5 retries are needed to complete an API call. LGTM=agl, rsc R=agl, rsc CC=golang-codereviews https://golang.org/cl/76400046
10 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282
  1. // Copyright 2012 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package tls
  5. import (
  6. "bytes"
  7. "fmt"
  8. "io"
  9. "net"
  10. "strings"
  11. "testing"
  12. "time"
  13. )
  14. var rsaCertPEM = `-----BEGIN CERTIFICATE-----
  15. MIIB0zCCAX2gAwIBAgIJAI/M7BYjwB+uMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV
  16. BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX
  17. aWRnaXRzIFB0eSBMdGQwHhcNMTIwOTEyMjE1MjAyWhcNMTUwOTEyMjE1MjAyWjBF
  18. MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50
  19. ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBANLJ
  20. hPHhITqQbPklG3ibCVxwGMRfp/v4XqhfdQHdcVfHap6NQ5Wok/4xIA+ui35/MmNa
  21. rtNuC+BdZ1tMuVCPFZcCAwEAAaNQME4wHQYDVR0OBBYEFJvKs8RfJaXTH08W+SGv
  22. zQyKn0H8MB8GA1UdIwQYMBaAFJvKs8RfJaXTH08W+SGvzQyKn0H8MAwGA1UdEwQF
  23. MAMBAf8wDQYJKoZIhvcNAQEFBQADQQBJlffJHybjDGxRMqaRmDhX0+6v02TUKZsW
  24. r5QuVbpQhH6u+0UgcW0jp9QwpxoPTLTWGXEWBBBurxFwiCBhkQ+V
  25. -----END CERTIFICATE-----
  26. `
  27. var rsaKeyPEM = `-----BEGIN RSA PRIVATE KEY-----
  28. MIIBOwIBAAJBANLJhPHhITqQbPklG3ibCVxwGMRfp/v4XqhfdQHdcVfHap6NQ5Wo
  29. k/4xIA+ui35/MmNartNuC+BdZ1tMuVCPFZcCAwEAAQJAEJ2N+zsR0Xn8/Q6twa4G
  30. 6OB1M1WO+k+ztnX/1SvNeWu8D6GImtupLTYgjZcHufykj09jiHmjHx8u8ZZB/o1N
  31. MQIhAPW+eyZo7ay3lMz1V01WVjNKK9QSn1MJlb06h/LuYv9FAiEA25WPedKgVyCW
  32. SmUwbPw8fnTcpqDWE3yTO3vKcebqMSsCIBF3UmVue8YU3jybC3NxuXq3wNm34R8T
  33. xVLHwDXh/6NJAiEAl2oHGGLz64BuAfjKrqwz7qMYr9HCLIe/YsoWq/olzScCIQDi
  34. D2lWusoe2/nEqfDVVWGWlyJ7yOmqaVm/iNUN9B2N2g==
  35. -----END RSA PRIVATE KEY-----
  36. `
  37. // keyPEM is the same as rsaKeyPEM, but declares itself as just
  38. // "PRIVATE KEY", not "RSA PRIVATE KEY". http://golang.org/issue/4477
  39. var keyPEM = `-----BEGIN PRIVATE KEY-----
  40. MIIBOwIBAAJBANLJhPHhITqQbPklG3ibCVxwGMRfp/v4XqhfdQHdcVfHap6NQ5Wo
  41. k/4xIA+ui35/MmNartNuC+BdZ1tMuVCPFZcCAwEAAQJAEJ2N+zsR0Xn8/Q6twa4G
  42. 6OB1M1WO+k+ztnX/1SvNeWu8D6GImtupLTYgjZcHufykj09jiHmjHx8u8ZZB/o1N
  43. MQIhAPW+eyZo7ay3lMz1V01WVjNKK9QSn1MJlb06h/LuYv9FAiEA25WPedKgVyCW
  44. SmUwbPw8fnTcpqDWE3yTO3vKcebqMSsCIBF3UmVue8YU3jybC3NxuXq3wNm34R8T
  45. xVLHwDXh/6NJAiEAl2oHGGLz64BuAfjKrqwz7qMYr9HCLIe/YsoWq/olzScCIQDi
  46. D2lWusoe2/nEqfDVVWGWlyJ7yOmqaVm/iNUN9B2N2g==
  47. -----END PRIVATE KEY-----
  48. `
  49. var ecdsaCertPEM = `-----BEGIN CERTIFICATE-----
  50. MIIB/jCCAWICCQDscdUxw16XFDAJBgcqhkjOPQQBMEUxCzAJBgNVBAYTAkFVMRMw
  51. EQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0
  52. eSBMdGQwHhcNMTIxMTE0MTI0MDQ4WhcNMTUxMTE0MTI0MDQ4WjBFMQswCQYDVQQG
  53. EwJBVTETMBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lk
  54. Z2l0cyBQdHkgTHRkMIGbMBAGByqGSM49AgEGBSuBBAAjA4GGAAQBY9+my9OoeSUR
  55. lDQdV/x8LsOuLilthhiS1Tz4aGDHIPwC1mlvnf7fg5lecYpMCrLLhauAc1UJXcgl
  56. 01xoLuzgtAEAgv2P/jgytzRSpUYvgLBt1UA0leLYBy6mQQbrNEuqT3INapKIcUv8
  57. XxYP0xMEUksLPq6Ca+CRSqTtrd/23uTnapkwCQYHKoZIzj0EAQOBigAwgYYCQXJo
  58. A7Sl2nLVf+4Iu/tAX/IF4MavARKC4PPHK3zfuGfPR3oCCcsAoz3kAzOeijvd0iXb
  59. H5jBImIxPL4WxQNiBTexAkF8D1EtpYuWdlVQ80/h/f4pBcGiXPqX5h2PQSQY7hP1
  60. +jwM1FGS4fREIOvlBYr/SzzQRtwrvrzGYxDEDbsC0ZGRnA==
  61. -----END CERTIFICATE-----
  62. `
  63. var ecdsaKeyPEM = `-----BEGIN EC PARAMETERS-----
  64. BgUrgQQAIw==
  65. -----END EC PARAMETERS-----
  66. -----BEGIN EC PRIVATE KEY-----
  67. MIHcAgEBBEIBrsoKp0oqcv6/JovJJDoDVSGWdirrkgCWxrprGlzB9o0X8fV675X0
  68. NwuBenXFfeZvVcwluO7/Q9wkYoPd/t3jGImgBwYFK4EEACOhgYkDgYYABAFj36bL
  69. 06h5JRGUNB1X/Hwuw64uKW2GGJLVPPhoYMcg/ALWaW+d/t+DmV5xikwKssuFq4Bz
  70. VQldyCXTXGgu7OC0AQCC/Y/+ODK3NFKlRi+AsG3VQDSV4tgHLqZBBus0S6pPcg1q
  71. kohxS/xfFg/TEwRSSws+roJr4JFKpO2t3/be5OdqmQ==
  72. -----END EC PRIVATE KEY-----
  73. `
  74. var keyPairTests = []struct {
  75. algo string
  76. cert string
  77. key string
  78. }{
  79. {"ECDSA", ecdsaCertPEM, ecdsaKeyPEM},
  80. {"RSA", rsaCertPEM, rsaKeyPEM},
  81. {"RSA-untyped", rsaCertPEM, keyPEM}, // golang.org/issue/4477
  82. }
  83. func TestX509KeyPair(t *testing.T) {
  84. var pem []byte
  85. for _, test := range keyPairTests {
  86. pem = []byte(test.cert + test.key)
  87. if _, err := X509KeyPair(pem, pem); err != nil {
  88. t.Errorf("Failed to load %s cert followed by %s key: %s", test.algo, test.algo, err)
  89. }
  90. pem = []byte(test.key + test.cert)
  91. if _, err := X509KeyPair(pem, pem); err != nil {
  92. t.Errorf("Failed to load %s key followed by %s cert: %s", test.algo, test.algo, err)
  93. }
  94. }
  95. }
  96. func TestX509MixedKeyPair(t *testing.T) {
  97. if _, err := X509KeyPair([]byte(rsaCertPEM), []byte(ecdsaKeyPEM)); err == nil {
  98. t.Error("Load of RSA certificate succeeded with ECDSA private key")
  99. }
  100. if _, err := X509KeyPair([]byte(ecdsaCertPEM), []byte(rsaKeyPEM)); err == nil {
  101. t.Error("Load of ECDSA certificate succeeded with RSA private key")
  102. }
  103. }
  104. func newLocalListener(t *testing.T) net.Listener {
  105. ln, err := net.Listen("tcp", "127.0.0.1:0")
  106. if err != nil {
  107. ln, err = net.Listen("tcp6", "[::1]:0")
  108. }
  109. if err != nil {
  110. t.Fatal(err)
  111. }
  112. return ln
  113. }
  114. func TestDialTimeout(t *testing.T) {
  115. if testing.Short() {
  116. t.Skip("skipping in short mode")
  117. }
  118. listener := newLocalListener(t)
  119. addr := listener.Addr().String()
  120. defer listener.Close()
  121. complete := make(chan bool)
  122. defer close(complete)
  123. go func() {
  124. conn, err := listener.Accept()
  125. if err != nil {
  126. t.Error(err)
  127. return
  128. }
  129. <-complete
  130. conn.Close()
  131. }()
  132. dialer := &net.Dialer{
  133. Timeout: 10 * time.Millisecond,
  134. }
  135. var err error
  136. if _, err = DialWithDialer(dialer, "tcp", addr, nil); err == nil {
  137. t.Fatal("DialWithTimeout completed successfully")
  138. }
  139. if !strings.Contains(err.Error(), "timed out") {
  140. t.Errorf("resulting error not a timeout: %s", err)
  141. }
  142. }
  143. // tests that Conn.Read returns (non-zero, io.EOF) instead of
  144. // (non-zero, nil) when a Close (alertCloseNotify) is sitting right
  145. // behind the application data in the buffer.
  146. func TestConnReadNonzeroAndEOF(t *testing.T) {
  147. // This test is racy: it assumes that after a write to a
  148. // localhost TCP connection, the peer TCP connection can
  149. // immediately read it. Because it's racy, we skip this test
  150. // in short mode, and then retry it several times with an
  151. // increasing sleep in between our final write (via srv.Close
  152. // below) and the following read.
  153. if testing.Short() {
  154. t.Skip("skipping in short mode")
  155. }
  156. var err error
  157. for delay := time.Millisecond; delay <= 64*time.Millisecond; delay *= 2 {
  158. if err = testConnReadNonzeroAndEOF(t, delay); err == nil {
  159. return
  160. }
  161. }
  162. t.Error(err)
  163. }
  164. func testConnReadNonzeroAndEOF(t *testing.T, delay time.Duration) error {
  165. ln := newLocalListener(t)
  166. defer ln.Close()
  167. srvCh := make(chan *Conn, 1)
  168. var serr error
  169. go func() {
  170. sconn, err := ln.Accept()
  171. if err != nil {
  172. serr = err
  173. srvCh <- nil
  174. return
  175. }
  176. serverConfig := *testConfig
  177. srv := Server(sconn, &serverConfig)
  178. if err := srv.Handshake(); err != nil {
  179. serr = fmt.Errorf("handshake: %v", err)
  180. srvCh <- nil
  181. return
  182. }
  183. srvCh <- srv
  184. }()
  185. clientConfig := *testConfig
  186. conn, err := Dial("tcp", ln.Addr().String(), &clientConfig)
  187. if err != nil {
  188. t.Fatal(err)
  189. }
  190. defer conn.Close()
  191. srv := <-srvCh
  192. if srv == nil {
  193. return serr
  194. }
  195. buf := make([]byte, 6)
  196. srv.Write([]byte("foobar"))
  197. n, err := conn.Read(buf)
  198. if n != 6 || err != nil || string(buf) != "foobar" {
  199. return fmt.Errorf("Read = %d, %v, data %q; want 6, nil, foobar", n, err, buf)
  200. }
  201. srv.Write([]byte("abcdef"))
  202. srv.Close()
  203. time.Sleep(delay)
  204. n, err = conn.Read(buf)
  205. if n != 6 || string(buf) != "abcdef" {
  206. return fmt.Errorf("Read = %d, buf= %q; want 6, abcdef", n, buf)
  207. }
  208. if err != io.EOF {
  209. return fmt.Errorf("Second Read error = %v; want io.EOF", err)
  210. }
  211. return nil
  212. }
  213. func TestTLSUniqueMatches(t *testing.T) {
  214. ln := newLocalListener(t)
  215. defer ln.Close()
  216. serverTLSUniques := make(chan []byte)
  217. go func() {
  218. for i := 0; i < 2; i++ {
  219. sconn, err := ln.Accept()
  220. if err != nil {
  221. t.Fatal(err)
  222. }
  223. serverConfig := *testConfig
  224. srv := Server(sconn, &serverConfig)
  225. if err := srv.Handshake(); err != nil {
  226. t.Fatal(err)
  227. }
  228. serverTLSUniques <- srv.ConnectionState().TLSUnique
  229. }
  230. }()
  231. clientConfig := *testConfig
  232. clientConfig.ClientSessionCache = NewLRUClientSessionCache(1)
  233. conn, err := Dial("tcp", ln.Addr().String(), &clientConfig)
  234. if err != nil {
  235. t.Fatal(err)
  236. }
  237. if !bytes.Equal(conn.ConnectionState().TLSUnique, <-serverTLSUniques) {
  238. t.Error("client and server channel bindings differ")
  239. }
  240. conn.Close()
  241. conn, err = Dial("tcp", ln.Addr().String(), &clientConfig)
  242. if err != nil {
  243. t.Fatal(err)
  244. }
  245. defer conn.Close()
  246. if !conn.ConnectionState().DidResume {
  247. t.Error("second session did not use resumption")
  248. }
  249. if !bytes.Equal(conn.ConnectionState().TLSUnique, <-serverTLSUniques) {
  250. t.Error("client and server channel bindings differ when session resumption is used")
  251. }
  252. }