th5/key_agreement.go

403 lines
12 KiB
Go
Raw Normal View History

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
2019-05-12 18:42:15 +01:00
package trs
import (
"crypto"
"crypto/elliptic"
"crypto/md5"
"crypto/rsa"
"crypto/sha1"
"errors"
"io"
"math/big"
"golang.org/x/crypto/curve25519"
)
var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
// rsaKeyAgreement implements the standard TLS key agreement where the client
// encrypts the pre-master secret to the server's public key.
type rsaKeyAgreement struct{}
func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, sk crypto.PrivateKey, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
return nil, nil
}
func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, sk crypto.PrivateKey, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) < 2 {
return nil, errClientKeyExchange
}
ciphertext := ckx.ciphertext
if version != VersionSSL30 {
ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
if ciphertextLen != len(ckx.ciphertext)-2 {
return nil, errClientKeyExchange
}
ciphertext = ckx.ciphertext[2:]
}
priv, ok := sk.(crypto.Decrypter)
if !ok {
return nil, errors.New("tls: certificate private key does not implement crypto.Decrypter")
}
// Perform constant time RSA PKCS#1 v1.5 decryption
preMasterSecret, err := priv.Decrypt(config.rand(), ciphertext, &rsa.PKCS1v15DecryptOptions{SessionKeyLen: 48})
if err != nil {
return nil, err
}
// We don't check the version number in the premaster secret. For one,
// by checking it, we would leak information about the validity of the
// encrypted pre-master secret. Secondly, it provides only a small
// benefit against a downgrade attack and some implementations send the
// wrong version anyway. See the discussion at the end of section
// 7.4.7.1 of RFC 4346.
return preMasterSecret, nil
}
func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, pk crypto.PublicKey, skx *serverKeyExchangeMsg) error {
return errors.New("tls: unexpected ServerKeyExchange")
}
func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, pk crypto.PublicKey) ([]byte, *clientKeyExchangeMsg, error) {
preMasterSecret := make([]byte, 48)
preMasterSecret[0] = byte(clientHello.vers >> 8)
preMasterSecret[1] = byte(clientHello.vers)
_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
if err != nil {
return nil, nil, err
}
encrypted, err := rsa.EncryptPKCS1v15(config.rand(), pk.(*rsa.PublicKey), preMasterSecret)
if err != nil {
return nil, nil, err
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, len(encrypted)+2)
ckx.ciphertext[0] = byte(len(encrypted) >> 8)
ckx.ciphertext[1] = byte(len(encrypted))
copy(ckx.ciphertext[2:], encrypted)
return preMasterSecret, ckx, nil
}
// sha1Hash calculates a SHA1 hash over the given byte slices.
func sha1Hash(slices [][]byte) []byte {
hsha1 := sha1.New()
for _, slice := range slices {
hsha1.Write(slice)
}
return hsha1.Sum(nil)
}
// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
// concatenation of an MD5 and SHA1 hash.
func md5SHA1Hash(slices [][]byte) []byte {
md5sha1 := make([]byte, md5.Size+sha1.Size)
hmd5 := md5.New()
for _, slice := range slices {
hmd5.Write(slice)
}
copy(md5sha1, hmd5.Sum(nil))
copy(md5sha1[md5.Size:], sha1Hash(slices))
return md5sha1
}
// hashForServerKeyExchange hashes the given slices and returns their digest
// using the given hash function.
func hashForServerKeyExchange(sigType uint8, hashFunc crypto.Hash, version uint16, slices ...[]byte) ([]byte, error) {
if version >= VersionTLS12 {
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 17:13:38 +01:00
h := hashFunc.New()
for _, slice := range slices {
h.Write(slice)
}
digest := h.Sum(nil)
return digest, nil
}
if sigType == signatureECDSA {
return sha1Hash(slices), nil
}
return md5SHA1Hash(slices), nil
}
func curveForCurveID(id CurveID) (elliptic.Curve, bool) {
switch id {
case CurveP256:
return elliptic.P256(), true
case CurveP384:
return elliptic.P384(), true
case CurveP521:
return elliptic.P521(), true
default:
return nil, false
}
}
// ecdheKeyAgreement implements a TLS key agreement where the server
// generates an ephemeral EC public/private key pair and signs it. The
// pre-master secret is then calculated using ECDH. The signature may
// either be ECDSA or RSA.
type ecdheKeyAgreement struct {
version uint16
isRSA bool
privateKey []byte
curveid CurveID
// publicKey is used to store the peer's public value when X25519 is
// being used.
publicKey []byte
// x and y are used to store the peer's public value when one of the
// NIST curves is being used.
x, y *big.Int
}
func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, sk crypto.PrivateKey, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
preferredCurves := config.curvePreferences()
NextCandidate:
for _, candidate := range preferredCurves {
for _, c := range clientHello.supportedCurves {
if candidate == c {
ka.curveid = c
break NextCandidate
}
}
}
if ka.curveid == 0 {
return nil, errors.New("tls: no supported elliptic curves offered")
}
var ecdhePublic []byte
if ka.curveid == X25519 {
var scalar, public [32]byte
if _, err := io.ReadFull(config.rand(), scalar[:]); err != nil {
return nil, err
}
curve25519.ScalarBaseMult(&public, &scalar)
ka.privateKey = scalar[:]
ecdhePublic = public[:]
} else {
curve, ok := curveForCurveID(ka.curveid)
if !ok {
return nil, errors.New("tls: preferredCurves includes unsupported curve")
}
var x, y *big.Int
var err error
ka.privateKey, x, y, err = elliptic.GenerateKey(curve, config.rand())
if err != nil {
return nil, err
}
ecdhePublic = elliptic.Marshal(curve, x, y)
}
// http://tools.ietf.org/html/rfc4492#section-5.4
serverECDHParams := make([]byte, 1+2+1+len(ecdhePublic))
serverECDHParams[0] = 3 // named curve
serverECDHParams[1] = byte(ka.curveid >> 8)
serverECDHParams[2] = byte(ka.curveid)
serverECDHParams[3] = byte(len(ecdhePublic))
copy(serverECDHParams[4:], ecdhePublic)
priv, ok := sk.(crypto.Signer)
if !ok {
return nil, errors.New("tls: certificate private key does not implement crypto.Signer")
}
signatureAlgorithm, sigType, hashFunc, err := pickSignatureAlgorithm(priv.Public(), clientHello.supportedSignatureAlgorithms, supportedSignatureAlgorithms, ka.version)
if err != nil {
return nil, err
}
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
return nil, errors.New("tls: certificate cannot be used with the selected cipher suite")
}
digest, err := hashForServerKeyExchange(sigType, hashFunc, ka.version, clientHello.random, hello.random, serverECDHParams)
if err != nil {
return nil, err
}
var sig []byte
signOpts := crypto.SignerOpts(hashFunc)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: hashFunc}
}
sig, err = priv.Sign(config.rand(), digest, signOpts)
if err != nil {
return nil, errors.New("tls: failed to sign ECDHE parameters: " + err.Error())
}
skx := new(serverKeyExchangeMsg)
sigAndHashLen := 0
if ka.version >= VersionTLS12 {
sigAndHashLen = 2
}
skx.key = make([]byte, len(serverECDHParams)+sigAndHashLen+2+len(sig))
copy(skx.key, serverECDHParams)
k := skx.key[len(serverECDHParams):]
if ka.version >= VersionTLS12 {
k[0] = byte(signatureAlgorithm >> 8)
k[1] = byte(signatureAlgorithm)
k = k[2:]
}
k[0] = byte(len(sig) >> 8)
k[1] = byte(len(sig))
copy(k[2:], sig)
return skx, nil
}
func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, sk crypto.PrivateKey, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
return nil, errClientKeyExchange
}
if ka.curveid == X25519 {
if len(ckx.ciphertext) != 1+32 {
return nil, errClientKeyExchange
}
var theirPublic, sharedKey, scalar [32]byte
copy(theirPublic[:], ckx.ciphertext[1:])
copy(scalar[:], ka.privateKey)
curve25519.ScalarMult(&sharedKey, &scalar, &theirPublic)
return sharedKey[:], nil
}
curve, ok := curveForCurveID(ka.curveid)
if !ok {
panic("internal error")
}
x, y := elliptic.Unmarshal(curve, ckx.ciphertext[1:]) // Unmarshal also checks whether the given point is on the curve
if x == nil {
return nil, errClientKeyExchange
}
x, _ = curve.ScalarMult(x, y, ka.privateKey)
curveSize := (curve.Params().BitSize + 7) >> 3
xBytes := x.Bytes()
if len(xBytes) == curveSize {
return xBytes, nil
}
preMasterSecret := make([]byte, curveSize)
copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
return preMasterSecret, nil
}
func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, pk crypto.PublicKey, skx *serverKeyExchangeMsg) error {
if len(skx.key) < 4 {
return errServerKeyExchange
}
if skx.key[0] != 3 { // named curve
return errors.New("tls: server selected unsupported curve")
}
ka.curveid = CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
publicLen := int(skx.key[3])
if publicLen+4 > len(skx.key) {
return errServerKeyExchange
}
serverECDHParams := skx.key[:4+publicLen]
publicKey := serverECDHParams[4:]
sig := skx.key[4+publicLen:]
if len(sig) < 2 {
return errServerKeyExchange
}
if ka.curveid == X25519 {
if len(publicKey) != 32 {
return errors.New("tls: bad X25519 public value")
}
ka.publicKey = publicKey
} else {
curve, ok := curveForCurveID(ka.curveid)
if !ok {
return errors.New("tls: server selected unsupported curve")
}
ka.x, ka.y = elliptic.Unmarshal(curve, publicKey) // Unmarshal also checks whether the given point is on the curve
if ka.x == nil {
return errServerKeyExchange
}
}
var signatureAlgorithm SignatureScheme
if ka.version >= VersionTLS12 {
// handle SignatureAndHashAlgorithm
signatureAlgorithm = SignatureScheme(sig[0])<<8 | SignatureScheme(sig[1])
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
2015-04-28 17:13:38 +01:00
sig = sig[2:]
if len(sig) < 2 {
return errServerKeyExchange
}
}
_, sigType, hashFunc, err := pickSignatureAlgorithm(pk, []SignatureScheme{signatureAlgorithm}, clientHello.supportedSignatureAlgorithms, ka.version)
if err != nil {
return err
}
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
return errServerKeyExchange
}
sigLen := int(sig[0])<<8 | int(sig[1])
if sigLen+2 != len(sig) {
return errServerKeyExchange
}
sig = sig[2:]
digest, err := hashForServerKeyExchange(sigType, hashFunc, ka.version, clientHello.random, serverHello.random, serverECDHParams)
if err != nil {
return err
}
return verifyHandshakeSignature(sigType, pk, hashFunc, digest, sig)
}
func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, pk crypto.PublicKey) ([]byte, *clientKeyExchangeMsg, error) {
if ka.curveid == 0 {
return nil, nil, errors.New("tls: missing ServerKeyExchange message")
}
var serialized, preMasterSecret []byte
if ka.curveid == X25519 {
var ourPublic, theirPublic, sharedKey, scalar [32]byte
if _, err := io.ReadFull(config.rand(), scalar[:]); err != nil {
return nil, nil, err
}
copy(theirPublic[:], ka.publicKey)
curve25519.ScalarBaseMult(&ourPublic, &scalar)
curve25519.ScalarMult(&sharedKey, &scalar, &theirPublic)
serialized = ourPublic[:]
preMasterSecret = sharedKey[:]
} else {
curve, ok := curveForCurveID(ka.curveid)
if !ok {
panic("internal error")
}
priv, mx, my, err := elliptic.GenerateKey(curve, config.rand())
if err != nil {
return nil, nil, err
}
x, _ := curve.ScalarMult(ka.x, ka.y, priv)
preMasterSecret = make([]byte, (curve.Params().BitSize+7)>>3)
xBytes := x.Bytes()
copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
serialized = elliptic.Marshal(curve, mx, my)
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, 1+len(serialized))
ckx.ciphertext[0] = byte(len(serialized))
copy(ckx.ciphertext[1:], serialized)
return preMasterSecret, ckx, nil
}