crypto/tls: buffer handshake messages.

This change causes TLS handshake messages to be buffered and written in
a single Write to the underlying net.Conn.

There are two reasons to want to do this:

Firstly, it's slightly preferable to do this in order to save sending
several, small packets over the network where a single one will do.

Secondly, since 37c28759ca46cf381a466e32168a793165d9c9e9 errors from
Write have been returned from a handshake. This means that, if a peer
closes the connection during a handshake, a “broken pipe” error may
result from tls.Conn.Handshake(). This can mask any, more detailed,
fatal alerts that the peer may have sent because a read will never
happen.

Buffering handshake messages means that the peer will not receive, and
possibly reject, any of a flow while it's still being written.

Fixes #15709

Change-Id: I38dcff1abecc06e52b2de647ea98713ce0fb9a21
Reviewed-on: https://go-review.googlesource.com/23609
Reviewed-by: Andrew Gerrand <adg@golang.org>
Run-TryBot: Andrew Gerrand <adg@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
This commit is contained in:
Adam Langley 2016-06-01 14:41:09 -07:00 committed by Andrew Gerrand
parent a709e2d83c
commit 0d94116736
4 changed files with 93 additions and 7 deletions

37
conn.go
View File

@ -71,10 +71,12 @@ type Conn struct {
clientProtocolFallback bool
// input/output
in, out halfConn // in.Mutex < out.Mutex
rawInput *block // raw input, right off the wire
input *block // application data waiting to be read
hand bytes.Buffer // handshake data waiting to be read
in, out halfConn // in.Mutex < out.Mutex
rawInput *block // raw input, right off the wire
input *block // application data waiting to be read
hand bytes.Buffer // handshake data waiting to be read
buffering bool // whether records are buffered in sendBuf
sendBuf []byte // a buffer of records waiting to be sent
// bytesSent counts the bytes of application data sent.
// packetsSent counts packets.
@ -803,6 +805,30 @@ func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
return n
}
// c.out.Mutex <= L.
func (c *Conn) write(data []byte) (int, error) {
if c.buffering {
c.sendBuf = append(c.sendBuf, data...)
return len(data), nil
}
n, err := c.conn.Write(data)
c.bytesSent += int64(n)
return n, err
}
func (c *Conn) flush() (int, error) {
if len(c.sendBuf) == 0 {
return 0, nil
}
n, err := c.conn.Write(c.sendBuf)
c.bytesSent += int64(n)
c.sendBuf = nil
c.buffering = false
return n, err
}
// writeRecordLocked writes a TLS record with the given type and payload to the
// connection and updates the record layer state.
// c.out.Mutex <= L.
@ -862,10 +888,9 @@ func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
}
copy(b.data[recordHeaderLen+explicitIVLen:], data)
c.out.encrypt(b, explicitIVLen)
if _, err := c.conn.Write(b.data); err != nil {
if _, err := c.write(b.data); err != nil {
return n, err
}
c.bytesSent += int64(m)
n += m
data = data[m:]
}

View File

@ -206,6 +206,7 @@ NextCipherSuite:
hs.finishedHash.Write(hs.hello.marshal())
hs.finishedHash.Write(hs.serverHello.marshal())
c.buffering = true
if isResume {
if err := hs.establishKeys(); err != nil {
return err
@ -220,6 +221,9 @@ NextCipherSuite:
if err := hs.sendFinished(c.clientFinished[:]); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
} else {
if err := hs.doFullHandshake(); err != nil {
return err
@ -230,6 +234,9 @@ NextCipherSuite:
if err := hs.sendFinished(c.clientFinished[:]); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
c.clientFinishedIsFirst = true
if err := hs.readSessionTicket(); err != nil {
return err

View File

@ -983,7 +983,7 @@ func (b *brokenConn) Write(data []byte) (int, error) {
func TestFailedWrite(t *testing.T) {
// Test that a write error during the handshake is returned.
for _, breakAfter := range []int{0, 1, 2, 3} {
for _, breakAfter := range []int{0, 1} {
c, s := net.Pipe()
done := make(chan bool)
@ -1003,3 +1003,45 @@ func TestFailedWrite(t *testing.T) {
<-done
}
}
// writeCountingConn wraps a net.Conn and counts the number of Write calls.
type writeCountingConn struct {
net.Conn
// numWrites is the number of writes that have been done.
numWrites int
}
func (wcc *writeCountingConn) Write(data []byte) (int, error) {
wcc.numWrites++
return wcc.Conn.Write(data)
}
func TestBuffering(t *testing.T) {
c, s := net.Pipe()
done := make(chan bool)
clientWCC := &writeCountingConn{Conn: c}
serverWCC := &writeCountingConn{Conn: s}
go func() {
Server(serverWCC, testConfig).Handshake()
serverWCC.Close()
done <- true
}()
err := Client(clientWCC, testConfig).Handshake()
if err != nil {
t.Fatal(err)
}
clientWCC.Close()
<-done
if n := clientWCC.numWrites; n != 2 {
t.Errorf("expected client handshake to complete with only two writes, but saw %d", n)
}
if n := serverWCC.numWrites; n != 2 {
t.Errorf("expected server handshake to complete with only two writes, but saw %d", n)
}
}

View File

@ -52,6 +52,7 @@ func (c *Conn) serverHandshake() error {
}
// For an overview of TLS handshaking, see https://tools.ietf.org/html/rfc5246#section-7.3
c.buffering = true
if isResume {
// The client has included a session ticket and so we do an abbreviated handshake.
if err := hs.doResumeHandshake(); err != nil {
@ -71,6 +72,9 @@ func (c *Conn) serverHandshake() error {
if err := hs.sendFinished(c.serverFinished[:]); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
c.clientFinishedIsFirst = false
if err := hs.readFinished(nil); err != nil {
return err
@ -89,12 +93,16 @@ func (c *Conn) serverHandshake() error {
return err
}
c.clientFinishedIsFirst = true
c.buffering = true
if err := hs.sendSessionTicket(); err != nil {
return err
}
if err := hs.sendFinished(nil); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
}
c.handshakeComplete = true
@ -430,6 +438,10 @@ func (hs *serverHandshakeState) doFullHandshake() error {
return err
}
if _, err := c.flush(); err != nil {
return err
}
var pub crypto.PublicKey // public key for client auth, if any
msg, err := c.readHandshake()