Merge upstream go post-1.9 crypto/tls changes from master:
d8ee5d11e5 crypto/tls: limit number of consecutive warning alerts
96cd66b266 crypto/tls: advertise support for SHA-512 signatures in 1.2
f265f5db5d archive/zip, crypto/tls: use rand.Read instead of casting ints to bytes
54d04c2fcb crypto/tls: remove bookkeeping code from pHash function
d1bbdbe760 crypto/tls: replace signatureAndHash by SignatureScheme.
cb3b345209 crypto/tls: fix first byte test for 255 CBC padding bytes
d153df8e4b all: revert "all: prefer strings.LastIndexByte over strings.LastIndex"
5e42658fc0 all: prefer bytes.IndexByte over bytes.Index
d2826d3e06 all: prefer strings.LastIndexByte over strings.LastIndex
5a986eca86 all: fix article typos
0f9a2cf2c4 crypto/tls: fix clientHelloMsg fuzzer not to generate the RI SCSV
e7d46cee2f crypto/tls: fix and expand TestVerifyPeerCertificate and TestGetClientCertificate
85deaf6077 crypto/tls: fix docstring of Config.ClientSessionCache
4a5f85babb crypto/tls: disallow handshake messages fragmented across CCS
b3465646ff crypto/tls: add BenchmarkHandshakeServer
d38d357c78 crypto/tls: don't check whether an ec point is on a curve twice
e085a891f0 crypto/tls: split clientHandshake into multiple methods
Conflicts:
* handshake_client.go: conflict between our ("crypto/tls: allow client to
pick TLS 1.3, do not enable it by default.") and upstream
("crypto/tls: split clientHandshake into multiple methods"), resolve
by applying the mutualVersion->pickVersion change in pickTLSVersion.
* handshake_server.go: trivial conflict due to upstreamed patch
("crypto/tls: replace signatureAndHash by SignatureScheme.") and
("crypto/tls: implement TLS 1.3 server 0-RTT") which added pskBinder.
Other merge changes:
* tls13.go: signatureAndHashes as added in ("crypto/tls: implement TLS
1.3 minimal server") was renamed as required by ("crypto/tls: replace
signatureAndHash by SignatureScheme.").
* handshake_client.go: moved check from ("crypto/tls: check that client
cipher suite matches version") to pickCipherSuite as required by
("crypto/tls: split clientHandshake into multiple methods").
Consolidate the signature and hash fields (SignatureAndHashAlgorithm in
TLS 1.2) into a single uint16 (SignatureScheme in TLS 1.3 draft 21).
This makes it easier to add RSASSA-PSS for TLS 1.2 in the future.
Fields were named like "signatureAlgorithm" rather than
"signatureScheme" since that name is also used throughout the 1.3 draft.
The only new public symbol is ECDSAWithSHA1, other than that this is an
internal change with no new functionality.
Change-Id: Iba63d262ab1af895420583ac9e302d9705a7e0f0
Reviewed-on: https://go-review.googlesource.com/62210
Reviewed-by: Adam Langley <agl@golang.org>
The processClientKeyExchange and processServerKeyExchange functions unmarshal an
encoded EC point and explicitly check whether the point is on the curve. The explicit
check can be omitted because elliptic.Unmarshal fails if the point is not on the curve
and the returned error would always be the same.
Fixes#20496
Change-Id: I5231a655eace79acee2737dd036a0c255ed42dbb
Reviewed-on: https://go-review.googlesource.com/44311
Reviewed-by: Adam Langley <agl@golang.org>
Reviewed-by: Avelino <t@avelino.xxx>
Run-TryBot: Adam Langley <agl@golang.org>
X25519 (RFC 7748) is now commonly used for key agreement in TLS
connections, as specified in
https://tools.ietf.org/html/draft-ietf-tls-curve25519-01.
This change adds support for that in crypto/tls, but does not enabled it
by default so that there's less test noise. A future change will enable
it by default and will update all the test data at the same time.
Change-Id: I91802ecd776d73aae5c65bcb653d12e23c413ed4
Reviewed-on: https://go-review.googlesource.com/30824
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Error strings in this package were all over the place: some were
prefixed with “tls:”, some with “crypto/tls:” and some didn't have a
prefix.
This change makes everything use the prefix “tls:”.
Change-Id: Ie8b073c897764b691140412ecd6613da8c4e33a2
Reviewed-on: https://go-review.googlesource.com/21893
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
The tree's pretty inconsistent about single space vs double space
after a period in documentation. Make it consistently a single space,
per earlier decisions. This means contributors won't be confused by
misleading precedence.
This CL doesn't use go/doc to parse. It only addresses // comments.
It was generated with:
$ perl -i -npe 's,^(\s*// .+[a-z]\.) +([A-Z]),$1 $2,' $(git grep -l -E '^\s*//(.+\.) +([A-Z])')
$ go test go/doc -update
Change-Id: Iccdb99c37c797ef1f804a94b22ba5ee4b500c4f7
Reviewed-on: https://go-review.googlesource.com/20022
Reviewed-by: Rob Pike <r@golang.org>
Reviewed-by: Dave Day <djd@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
These were found by grepping the comments from the go code and feeding
the output to aspell.
Change-Id: Id734d6c8d1938ec3c36bd94a4dbbad577e3ad395
Reviewed-on: https://go-review.googlesource.com/10941
Reviewed-by: Aamir Khan <syst3m.w0rm@gmail.com>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Prior to TLS 1.2, the handshake had a pleasing property that one could
incrementally hash it and, from that, get the needed hashes for both
the CertificateVerify and Finished messages.
TLS 1.2 introduced negotiation for the signature and hash and it became
possible for the handshake hash to be, say, SHA-384, but for the
CertificateVerify to sign the handshake with SHA-1. The problem is that
one doesn't know in advance which hashes will be needed and thus the
handshake needs to be buffered.
Go ignored this, always kept a single handshake hash, and any signatures
over the handshake had to use that hash.
However, there are a set of servers that inspect the client's offered
signature hash functions and will abort the handshake if one of the
server's certificates is signed with a hash function outside of that
set. https://robertsspaceindustries.com/ is an example of such a server.
Clearly not a lot of thought happened when that server code was written,
but its out there and we have to deal with it.
This change decouples the handshake hash from the CertificateVerify
hash. This lays the groundwork for advertising support for SHA-384 but
doesn't actually make that change in the interests of reviewability.
Updating the advertised hash functions will cause changes in many of the
testdata/ files and some errors might get lost in the noise. This change
only needs to update four testdata/ files: one because a SHA-384-based
handshake is now being signed with SHA-256 and the others because the
TLS 1.2 CertificateRequest message now includes SHA-1.
This change also has the effect of adding support for
client-certificates in SSLv3 servers. However, SSLv3 is now disabled by
default so this should be moot.
It would be possible to avoid much of this change and just support
SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces
and SKX params (a design mistake in TLS). However, that would leave Go
in the odd situation where it advertised support for SHA-384, but would
only use the handshake hash when signing client certificates. I fear
that'll just cause problems in the future.
Much of this code was written by davidben@ for the purposes of testing
BoringSSL.
Partly addresses #9757
Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485
Reviewed-on: https://go-review.googlesource.com/9415
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
This change replaces all direct ECDSA/RSA sign and decrypt operations
with calls through the crypto.Signer and crypto.Decrypter interfaces.
This is a follow-up to https://go-review.googlesource.com/#/c/3900/
which added crypto.Decrypter and implemented it for RSA.
Change-Id: Ie0f3928448b285f329efcd3a93ca3fd5e3b3e42d
Reviewed-on: https://go-review.googlesource.com/7804
Reviewed-by: Adam Langley <agl@golang.org>
This change causes a TLS client and server to verify that received
elliptic curve points are on the expected curve. This isn't actually
necessary in the Go TLS stack, but Watson Ladd has convinced me that
it's worthwhile because it's pretty cheap and it removes the
possibility that some change in the future (e.g. tls-unique) will
depend on it without the author checking that precondition.
LGTM=bradfitz
R=bradfitz
CC=golang-codereviews
https://golang.org/cl/115290046
Where the spelling changed from British to
US norm (e.g., optimise -> optimize) it follows
the style in that file.
LGTM=adonovan
R=golang-codereviews, adonovan
CC=golang-codereviews
https://golang.org/cl/96980043
Currently an ECDHE handshake uses the client's curve preference. This
generally means that we use P-521. However, P-521's strength is
mismatched with the rest of the cipher suite in most cases and we have
a fast, constant-time implementation of P-256.
With this change, Go servers will use P-256 where the client supports
it although that can be overridden in the Config.
LGTM=bradfitz
R=bradfitz
CC=golang-codereviews
https://golang.org/cl/66060043
Despite SHA256 support being required for TLS 1.2 handshakes, some
servers are aborting handshakes that don't offer SHA1 support.
This change adds support for signing TLS 1.2 ServerKeyExchange messages
with SHA1. It does not add support for signing TLS 1.2 client
certificates with SHA1 as that would require the handshake to be
buffered.
Fixes#6618.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/15650043
Add support for ECDHE-ECDSA (RFC4492), which uses an ephemeral server
key pair to perform ECDH with ECDSA signatures. Like ECDHE-RSA,
ECDHE-ECDSA also provides PFS.
R=agl
CC=golang-dev
https://golang.org/cl/7006047
This does not include AES-GCM yet. Also, it assumes that the handshake and
certificate signature hash are always SHA-256, which is true of the ciphersuites
that we currently support.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/10762044
The significant change between TLS 1.0 and 1.1 is the addition of an explicit IV in the case of CBC encrypted records. Support for TLS 1.1 is needed in order to support TLS 1.2.
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/7880043
When SNI based certificate selection is enabled, we previously used
the default private key even if we selected a non-default certificate.
Fixes#3367.
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/5987058
The existing code that tried to prevent ECC ciphersuites from being
selected when there were no mutual curves still left |suite| set.
This lead to a panic on a nil pointer when there were no acceptable
ciphersuites at all.
Thanks to George Kadianakis for pointing it out.
R=golang-dev, r, bradfitz
CC=golang-dev
https://golang.org/cl/5857043
(Sending to r because of the API change.)
This change alters the API for crypto/elliptic to permit different
implementations in the future. This will allow us to add faster,
constant-time implementations of the standard curves without any more
API changes.
As a demonstration, it also adds a constant-time implementation of
P224. Since it's only 32-bit, it's actually only about 40% the speed
of the generic code on a 64-bit system.
R=r, rsc
CC=golang-dev
https://golang.org/cl/5528088
We still very much assume it in the code, but with this change in
place we can implement other things later without changing and users
of the package.
Fixes#2319.
R=golang-dev, bradfitz, r
CC=golang-dev
https://golang.org/cl/5489073
This is the result of running `gofix -r hashsum` over the tree, changing
the hash function implementations by hand and then fixing a couple of
instances where gofix didn't catch something.
The changed implementations are as simple as possible while still
working: I'm not trying to optimise in this CL.
R=rsc, cw, rogpeppe
CC=golang-dev
https://golang.org/cl/5448065
It would be nice not to have to support this since all the clients
that we care about support TLSv1 by now. However, due to buggy
implementations of SSLv3 on the Internet which can't do version
negotiation correctly, browsers will sometimes switch to SSLv3. Since
there's no good way for a browser tell a network problem from a buggy
server, this downgrade can occur even if the server in question is
actually working correctly.
So we need to support SSLv3 for robustness :(
Fixes#1703.
R=bradfitz
CC=golang-dev
https://golang.org/cl/5018045
This is a core API change.
1) gofix misc src
2) Manual adjustments to the following files under src/pkg:
gob/decode.go
rpc/client.go
os/error.go
io/io.go
bufio/bufio.go
http/request.go
websocket/client.go
as well as:
src/cmd/gofix/testdata/*.go.in (reverted)
test/fixedbugs/bug243.go
3) Implemented gofix patch (oserrorstring.go) and test case (oserrorstring_test.go)
Compiles and runs all tests.
R=r, rsc, gri
CC=golang-dev
https://golang.org/cl/4607052
The crypto package is added as a common place to store identifiers for
hash functions. At the moment, the rsa package has an enumeration of
hash functions and knowledge of their digest lengths. This is an
unfortunate coupling and other high level crypto packages tend to need
to duplicate this enumeration and knowledge (i.e. openpgp).
crypto pulls this code out into a common location.
It would also make sense to add similar support for ciphers to crypto,
but the problem there isn't as acute that isn't done in this change.
R=bradfitzgo, r, rsc
CC=golang-dev
https://golang.org/cl/4080046