Strengthening VerifyHostname exposed the fact that for resumed
connections, ConnectionState().VerifiedChains was not being saved
and restored during the ClientSessionCache operations.
Do that.
This change just saves the verified chains in the client's session
cache. It does not re-verify the certificates when resuming a
connection.
There are arguments both ways about this: we want fast, light-weight
resumption connections (thus suggesting that we shouldn't verify) but
it could also be a little surprising that, if the verification config
is changed, that would be ignored if the same session cache is used.
On the server side we do re-verify client-auth certificates, but the
situation is a little different there. The client session cache is an
object in memory that's reset each time the process restarts. But the
server's session cache is a conceptual object, held by the clients, so
can persist across server restarts. Thus the chance of a change in
verification config being surprisingly ignored is much higher in the
server case.
Fixes#12024.
Change-Id: I3081029623322ce3d9f4f3819659fdd9a381db16
Reviewed-on: https://go-review.googlesource.com/13164
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
Prior to TLS 1.2, the handshake had a pleasing property that one could
incrementally hash it and, from that, get the needed hashes for both
the CertificateVerify and Finished messages.
TLS 1.2 introduced negotiation for the signature and hash and it became
possible for the handshake hash to be, say, SHA-384, but for the
CertificateVerify to sign the handshake with SHA-1. The problem is that
one doesn't know in advance which hashes will be needed and thus the
handshake needs to be buffered.
Go ignored this, always kept a single handshake hash, and any signatures
over the handshake had to use that hash.
However, there are a set of servers that inspect the client's offered
signature hash functions and will abort the handshake if one of the
server's certificates is signed with a hash function outside of that
set. https://robertsspaceindustries.com/ is an example of such a server.
Clearly not a lot of thought happened when that server code was written,
but its out there and we have to deal with it.
This change decouples the handshake hash from the CertificateVerify
hash. This lays the groundwork for advertising support for SHA-384 but
doesn't actually make that change in the interests of reviewability.
Updating the advertised hash functions will cause changes in many of the
testdata/ files and some errors might get lost in the noise. This change
only needs to update four testdata/ files: one because a SHA-384-based
handshake is now being signed with SHA-256 and the others because the
TLS 1.2 CertificateRequest message now includes SHA-1.
This change also has the effect of adding support for
client-certificates in SSLv3 servers. However, SSLv3 is now disabled by
default so this should be moot.
It would be possible to avoid much of this change and just support
SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces
and SKX params (a design mistake in TLS). However, that would leave Go
in the odd situation where it advertised support for SHA-384, but would
only use the handshake hash when signing client certificates. I fear
that'll just cause problems in the future.
Much of this code was written by davidben@ for the purposes of testing
BoringSSL.
Partly addresses #9757
Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485
Reviewed-on: https://go-review.googlesource.com/9415
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
This change adds support for serving and receiving Signed Certificate
Timestamps as described in RFC 6962.
The server is now capable of serving SCTs listed in the Certificate
structure. The client now asks for SCTs and, if any are received,
they are exposed in the ConnectionState structure.
Fixes#10201
Change-Id: Ib3adae98cb4f173bc85cec04d2bdd3aa0fec70bb
Reviewed-on: https://go-review.googlesource.com/8988
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Jonathan Rudenberg <jonathan@titanous.com>
Generalizes PRF calculation for TLS 1.2 to support arbitrary hashes (SHA-384 instead of SHA-256).
Testdata were all updated to correspond with the new cipher suites in the handshake.
Change-Id: I3d9fc48c19d1043899e38255a53c80dc952ee08f
Reviewed-on: https://go-review.googlesource.com/3265
Reviewed-by: Adam Langley <agl@golang.org>
Signer is an interface to support opaque private keys.
These keys typically result from being kept in special hardware
(i.e. a TPM) although sometimes operating systems provide a
similar interface using process isolation for security rather
than hardware boundaries.
This changes provides interfaces for representing them and
alters crypto/tls so that client certificates can use
opaque keys.
LGTM=bradfitz
R=bradfitz
CC=golang-codereviews, jdeprez
https://golang.org/cl/114680043
Currently a write error will cause future reads to return that same error.
However, there may have been extra information from a peer pending on
the read direction that is now unavailable.
This change splits the single connErr into errors for the read, write and
handshake. (Splitting off the handshake error is needed because both read
and write paths check the handshake error.)
Fixes#7414.
LGTM=bradfitz, r
R=golang-codereviews, r, bradfitz
CC=golang-codereviews
https://golang.org/cl/69090044
Currently an ECDHE handshake uses the client's curve preference. This
generally means that we use P-521. However, P-521's strength is
mismatched with the rest of the cipher suite in most cases and we have
a fast, constant-time implementation of P-256.
With this change, Go servers will use P-256 where the client supports
it although that can be overridden in the Config.
LGTM=bradfitz
R=bradfitz
CC=golang-codereviews
https://golang.org/cl/66060043
crypto/tls has two functions for creating a client connection: Dial,
which most users are expected to use, and Client, which is the
lower-level API.
Dial does what you expect: it gives you a secure connection to the host
that you specify and the majority of users of crypto/tls appear to work
fine with it.
Client gives more control but needs more care. Specifically, if it
wasn't given a server name in the tls.Config then it didn't check that
the server's certificates match any hostname - because it doesn't have
one to check against. It was assumed that users of the low-level API
call VerifyHostname on the certificate themselves if they didn't supply
a hostname.
A review of the uses of Client both within Google and in a couple of
external libraries has shown that nearly all of them got this wrong.
Thus, this change enforces that either a ServerName or
InsecureSkipVerify is given. This does not affect tls.Dial.
See discussion at https://groups.google.com/d/msg/golang-nuts/4vnt7NdLvVU/b1SJ4u0ikb0J.
Fixes#7342.
LGTM=bradfitz
R=golang-codereviews, bradfitz
CC=golang-codereviews
https://golang.org/cl/67010043
Adam (agl@) had already done an initial review of this CL in a branch.
Added ClientSessionState to Config which now allows clients to keep state
required to resume a TLS session with a server. A client handshake will try
and use the SessionTicket/MasterSecret in this cached state if the server
acknowledged resumption.
We also added support to cache ClientSessionState object in Config that will
be looked up by server remote address during the handshake.
R=golang-codereviews, agl, rsc, agl, agl, bradfitz, mikioh.mikioh
CC=golang-codereviews
https://golang.org/cl/15680043
The renegotiation extension was introduced[1] due to an attack by Ray in
which a client's handshake was spliced into a connection that was
renegotiating, thus giving an attacker the ability to inject an
arbitary prefix into the connection.
Go has never supported renegotiation as a server and so this attack
doesn't apply. As a client, it's possible that at some point in the
future the population of servers will be sufficiently updated that
it'll be possible to reject connections where the server hasn't
demonstrated that it has been updated to address this problem.
We're not at that point yet, but it's good for Go servers to support
the extension so that it might be possible to do in the future.
[1] https://tools.ietf.org/search/rfc5746
R=golang-codereviews, mikioh.mikioh
CC=golang-codereviews
https://golang.org/cl/48580043
Despite SHA256 support being required for TLS 1.2 handshakes, some
servers are aborting handshakes that don't offer SHA1 support.
This change adds support for signing TLS 1.2 ServerKeyExchange messages
with SHA1. It does not add support for signing TLS 1.2 client
certificates with SHA1 as that would require the handshake to be
buffered.
Fixes#6618.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/15650043
AES-GCM cipher suites are only defined for TLS 1.2, although there's
nothing really version specific about them. However, development
versions of NSS (meaning Firefox and Chrome) have an issue where
they'll advertise TLS 1.2-only cipher suites in a TLS 1.1 ClientHello
but then balk when the server selects one.
This change causes Go clients not to advertise TLS 1.2 cipher suites
unless TLS 1.2 is being used, and prevents servers from selecting them
unless TLS 1.2 has been negotiated.
https://code.google.com/p/chromium/issues/detail?id=297151https://bugzilla.mozilla.org/show_bug.cgi?id=919677
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/13573047
With TLS 1.2, when sending client certificates the code was omitting
the new (in TLS 1.2) signature and hash fields.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/13413050
AES-GCM is the only current TLS ciphersuite that doesn't have
cryptographic weaknesses (RC4), nor major construction issues (CBC mode
ciphers) and has some deployment (i.e. not-CCM).
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/13249044
Add support for ECDHE-ECDSA (RFC4492), which uses an ephemeral server
key pair to perform ECDH with ECDSA signatures. Like ECDHE-RSA,
ECDHE-ECDSA also provides PFS.
R=agl
CC=golang-dev
https://golang.org/cl/7006047
This does not include AES-GCM yet. Also, it assumes that the handshake and
certificate signature hash are always SHA-256, which is true of the ciphersuites
that we currently support.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/10762044
The significant change between TLS 1.0 and 1.1 is the addition of an explicit IV in the case of CBC encrypted records. Support for TLS 1.1 is needed in order to support TLS 1.2.
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/7880043
Currently we only check the leaf node's issuer against the list of
distinguished names in the server's CertificateRequest message. This
will fail if the client certiciate has more than one certificate in
the path and the leaf node issuer isn't in the list of distinguished
names, but the issuer's issuer was in the distinguished names.
R=agl, agl
CC=gobot, golang-dev
https://golang.org/cl/9795043
Session resumption saves a round trip and removes the need to perform
the public-key operations of a TLS handshake when both the client and
server support it (which is true of Firefox and Chrome, at least).
R=golang-dev, bradfitz, rsc
CC=golang-dev
https://golang.org/cl/6555051
Fixes#3862.
There were many areas where conn.err was being accessed
outside the mutex. This proposal moves the err value to
an embedded struct to make it more obvious when the error
value is being accessed.
As there are no Benchmark tests in this package I cannot
feel confident of the impact of this additional locking,
although most will be uncontended.
R=dvyukov, agl
CC=golang-dev
https://golang.org/cl/6497070
If a CertificateRequest is received we have to reply with a
Certificate message, even if we don't have a certificate to offer.
Fixes#3339.
R=golang-dev, r, ality
CC=golang-dev
https://golang.org/cl/5845067
This moves the various CA root fetchers from crypto/tls into crypto/x509.
The move was brought about by issue 2997. Windows doesn't ship with all
its root certificates, but will instead download them as-needed when using
CryptoAPI for certificate verification.
This CL changes crypto/x509 to verify a certificate using the system root
CAs when VerifyOptions.RootCAs == nil. On Windows, this verification is
now implemented using Windows's CryptoAPI. All other root fetchers are
unchanged, and still use Go's own verification code.
The CL also fixes the hostname matching logic in crypto/tls/tls.go, in
order to be able to test whether hostname mismatches are honored by the
Windows verification code.
The move to crypto/x509 also allows other packages to use the OS-provided
root certificates, instead of hiding them inside the crypto/tls package.
Fixes#2997.
R=agl, golang-dev, alex.brainman, rsc, mikkel
CC=golang-dev
https://golang.org/cl/5700087
Not a Go 1 issue, but appeared to be fairly easy to fix.
- Note that a few existing test cases look slightly worse but
those cases were not representative for real code. All real
code looks better now.
- Manual move of the comment in go/scanner/example_test.go
before applying gofmt.
- gofmt -w $GOROOT/src $GOROOT/misc
Fixes#3062.
R=rsc
CC=golang-dev
https://golang.org/cl/5674093
We support SSLv3 as a server but not as a client (and we don't want to
support it as a client). This change fixes the error message when
connecting to an SSLv3 server since SSLv3 support on the server side
made mutualVersion accept SSLv3.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/5545073
Fix incorrect marshal/unmarshal of certificateRequest.
Add support for configuring client-auth on the server side.
Fix the certificate selection in the client side.
Update generate_cert.go to new time package
Fixes#2521.
R=krautz, agl, bradfitz
CC=golang-dev, mikkel
https://golang.org/cl/5448093
We still very much assume it in the code, but with this change in
place we can implement other things later without changing and users
of the package.
Fixes#2319.
R=golang-dev, bradfitz, r
CC=golang-dev
https://golang.org/cl/5489073
The code in hash functions themselves could write directly into the
output buffer for a savings of about 50ns. But it's a little ugly so I
wasted a copy.
R=bradfitz
CC=golang-dev
https://golang.org/cl/5440111
This is the result of running `gofix -r hashsum` over the tree, changing
the hash function implementations by hand and then fixing a couple of
instances where gofix didn't catch something.
The changed implementations are as simple as possible while still
working: I'm not trying to optimise in this CL.
R=rsc, cw, rogpeppe
CC=golang-dev
https://golang.org/cl/5448065
Previously we were using the map iteration order to set the order of
the cipher suites in the ClientHello.
R=bradfitz
CC=golang-dev
https://golang.org/cl/5440048
It would be nice not to have to support this since all the clients
that we care about support TLSv1 by now. However, due to buggy
implementations of SSLv3 on the Internet which can't do version
negotiation correctly, browsers will sometimes switch to SSLv3. Since
there's no good way for a browser tell a network problem from a buggy
server, this downgrade can occur even if the server in question is
actually working correctly.
So we need to support SSLv3 for robustness :(
Fixes#1703.
R=bradfitz
CC=golang-dev
https://golang.org/cl/5018045
This is a core API change.
1) gofix misc src
2) Manual adjustments to the following files under src/pkg:
gob/decode.go
rpc/client.go
os/error.go
io/io.go
bufio/bufio.go
http/request.go
websocket/client.go
as well as:
src/cmd/gofix/testdata/*.go.in (reverted)
test/fixedbugs/bug243.go
3) Implemented gofix patch (oserrorstring.go) and test case (oserrorstring_test.go)
Compiles and runs all tests.
R=r, rsc, gri
CC=golang-dev
https://golang.org/cl/4607052
The unexported version returns a sensible default when the user hasn't
set a value. The exported version crashes in that case.
R=bradfitzgo, rsc1
CC=golang-dev
https://golang.org/cl/4435070
People have a need to verify certificates in situations other than TLS
client handshaking. Thus this CL moves certificate verification into
x509 and expands its abilities.
R=bradfitzgo
CC=golang-dev
https://golang.org/cl/4407046
We already had support on the client side. I also changed the name of
the flag in the ServerHello structure to match the name of the same
flag in the ClientHello (ocspStapling).
R=bradfitzgo
CC=golang-dev
https://golang.org/cl/4408044
The crypto package is added as a common place to store identifiers for
hash functions. At the moment, the rsa package has an enumeration of
hash functions and knowledge of their digest lengths. This is an
unfortunate coupling and other high level crypto packages tend to need
to duplicate this enumeration and knowledge (i.e. openpgp).
crypto pulls this code out into a common location.
It would also make sense to add similar support for ciphers to crypto,
but the problem there isn't as acute that isn't done in this change.
R=bradfitzgo, r, rsc
CC=golang-dev
https://golang.org/cl/4080046
This is largely based on ality's CL 2747042.
crypto/rc4: API break in order to conform to crypto/cipher's
Stream interface
cipher/cipher: promote to the default build
Since CBC differs between TLS 1.0 and 1.1, we downgrade and
support only 1.0 at the current time. 1.0 is what most of the
world uses.
Given this CL, it would be trival to add support for AES 256,
SHA 256 etc, but I haven't in order to keep the change smaller.
R=rsc
CC=ality, golang-dev
https://golang.org/cl/3659041
Previously we checked the certificate chain from the leaf
upwards and expected to jump from the last cert in the chain to
a root certificate.
Although technically correct, there are a number of sites with
problems including out-of-order certs, superfluous certs and
missing certs.
The last of these requires AIA chasing, which is a lot of
complexity. However, we can address the more common cases by
using a pool building algorithm, as browsers do.
We build a pool of root certificates and a pool from the
server's chain. We then try to build a path to a root
certificate, using either of these pools.
This differs from the behaviour of, say, Firefox in that Firefox
will accumulate intermedite certificate in a persistent pool in
the hope that it can use them to fill in gaps in future chains.
We don't do that because it leads to confusing errors which only
occur based on the order to sites visited.
This change also enabled SNI for tls.Dial so that sites will return
the correct certificate chain.
R=rsc
CC=golang-dev
https://golang.org/cl/2916041
The key/value format of X.500 names means that it's possible to encode
a name with multiple values for, say, organisation. RFC5280
doesn't seem to consider this, but there are Verisign root
certificates which do this and, in order to find the correct
root certificate in some cases, we need to handle it.
Also, CA certificates should set the CA flag and we now check
this. After looking at the other X.509 extensions it appears
that they are universally ignored/bit rotted away so we ignore
them.
R=rsc
CC=golang-dev
https://golang.org/cl/2249042
This changeset implements client certificate support in crypto/tls
for both handshake_server.go and handshake_client.go
The updated server implementation sends an empty CertificateAuthorities
field in the CertificateRequest, thus allowing clients to send any
certificates they wish. Likewise, the client code will only respond
with its certificate when the server requests a certificate with this
field empty.
R=agl, rsc, agl1
CC=golang-dev
https://golang.org/cl/1975042
SNI (Server Name Indication) is a way for a TLS client to
indicate to the server which name it knows the server by. This
allows the server to have several names and return the correct
certificate for each (virtual hosting).
PeerCertificates returns the list of certificates presented by
server.
R=r
CC=golang-dev
https://golang.org/cl/1741053
parsing and printing to new syntax.
Use -oldparser to parse the old syntax,
use -oldprinter to print the old syntax.
2) Change default gofmt formatting settings
to use tabs for indentation only and to use
spaces for alignment. This will make the code
alignment insensitive to an editor's tabwidth.
Use -spaces=false to use tabs for alignment.
3) Manually changed src/exp/parser/parser_test.go
so that it doesn't try to parse the parser's
source files using the old syntax (they have
new syntax now).
4) gofmt -w src misc test/bench
1st set of files.
R=rsc
CC=agl, golang-dev, iant, ken2, r
https://golang.org/cl/180047