The SignedCertificateTimestampList[1] specifies that both the list and
each element must not be empty. Checking that the list is not empty was
handled in [2] and this change checks that the SCTs themselves are not
zero-length.
[1] https://tools.ietf.org/html/rfc6962#section-3.3
[2] https://golang.org/cl/33265
Change-Id: Iabaae7a15f6d111eb079e5086e0bd2005fae9e48
Reviewed-on: https://go-review.googlesource.com/33355
Run-TryBot: Adam Langley <agl@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
When the CT extension is enabled but no SCTs are present, the existing
code calls "continue" which causes resizing the data byte slice to be
skipped. In fact, such extensions should be rejected.
Fixes#17958
Change-Id: Iad12da10d1ea72d04ae2e1012c28bb2636f06bcd
Reviewed-on: https://go-review.googlesource.com/33265
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Prior to TLS 1.2, the handshake had a pleasing property that one could
incrementally hash it and, from that, get the needed hashes for both
the CertificateVerify and Finished messages.
TLS 1.2 introduced negotiation for the signature and hash and it became
possible for the handshake hash to be, say, SHA-384, but for the
CertificateVerify to sign the handshake with SHA-1. The problem is that
one doesn't know in advance which hashes will be needed and thus the
handshake needs to be buffered.
Go ignored this, always kept a single handshake hash, and any signatures
over the handshake had to use that hash.
However, there are a set of servers that inspect the client's offered
signature hash functions and will abort the handshake if one of the
server's certificates is signed with a hash function outside of that
set. https://robertsspaceindustries.com/ is an example of such a server.
Clearly not a lot of thought happened when that server code was written,
but its out there and we have to deal with it.
This change decouples the handshake hash from the CertificateVerify
hash. This lays the groundwork for advertising support for SHA-384 but
doesn't actually make that change in the interests of reviewability.
Updating the advertised hash functions will cause changes in many of the
testdata/ files and some errors might get lost in the noise. This change
only needs to update four testdata/ files: one because a SHA-384-based
handshake is now being signed with SHA-256 and the others because the
TLS 1.2 CertificateRequest message now includes SHA-1.
This change also has the effect of adding support for
client-certificates in SSLv3 servers. However, SSLv3 is now disabled by
default so this should be moot.
It would be possible to avoid much of this change and just support
SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces
and SKX params (a design mistake in TLS). However, that would leave Go
in the odd situation where it advertised support for SHA-384, but would
only use the handshake hash when signing client certificates. I fear
that'll just cause problems in the future.
Much of this code was written by davidben@ for the purposes of testing
BoringSSL.
Partly addresses #9757
Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485
Reviewed-on: https://go-review.googlesource.com/9415
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
This change adds support for serving and receiving Signed Certificate
Timestamps as described in RFC 6962.
The server is now capable of serving SCTs listed in the Certificate
structure. The client now asks for SCTs and, if any are received,
they are exposed in the ConnectionState structure.
Fixes#10201
Change-Id: Ib3adae98cb4f173bc85cec04d2bdd3aa0fec70bb
Reviewed-on: https://go-review.googlesource.com/8988
Reviewed-by: Adam Langley <agl@golang.org>
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Jonathan Rudenberg <jonathan@titanous.com>
Currently an ECDHE handshake uses the client's curve preference. This
generally means that we use P-521. However, P-521's strength is
mismatched with the rest of the cipher suite in most cases and we have
a fast, constant-time implementation of P-256.
With this change, Go servers will use P-256 where the client supports
it although that can be overridden in the Config.
LGTM=bradfitz
R=bradfitz
CC=golang-codereviews
https://golang.org/cl/66060043
Despite SHA256 support being required for TLS 1.2 handshakes, some
servers are aborting handshakes that don't offer SHA1 support.
This change adds support for signing TLS 1.2 ServerKeyExchange messages
with SHA1. It does not add support for signing TLS 1.2 client
certificates with SHA1 as that would require the handshake to be
buffered.
Fixes#6618.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/15650043
This does not include AES-GCM yet. Also, it assumes that the handshake and
certificate signature hash are always SHA-256, which is true of the ciphersuites
that we currently support.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/10762044
I typoed the code and tried to parse all the way to the end of the
message. Therefore it fails when NPN is not the last extension in the
ServerHello.
Fixes#4088.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/6637052
Session resumption saves a round trip and removes the need to perform
the public-key operations of a TLS handshake when both the client and
server support it (which is true of Firefox and Chrome, at least).
R=golang-dev, bradfitz, rsc
CC=golang-dev
https://golang.org/cl/6555051
It would be nice not to have to support this since all the clients
that we care about support TLSv1 by now. However, due to buggy
implementations of SSLv3 on the Internet which can't do version
negotiation correctly, browsers will sometimes switch to SSLv3. Since
there's no good way for a browser tell a network problem from a buggy
server, this downgrade can occur even if the server in question is
actually working correctly.
So we need to support SSLv3 for robustness :(
Fixes#1703.
R=bradfitz
CC=golang-dev
https://golang.org/cl/5018045
This changeset implements client certificate support in crypto/tls
for both handshake_server.go and handshake_client.go
The updated server implementation sends an empty CertificateAuthorities
field in the CertificateRequest, thus allowing clients to send any
certificates they wish. Likewise, the client code will only respond
with its certificate when the server requests a certificate with this
field empty.
R=agl, rsc, agl1
CC=golang-dev
https://golang.org/cl/1975042
parsing and printing to new syntax.
Use -oldparser to parse the old syntax,
use -oldprinter to print the old syntax.
2) Change default gofmt formatting settings
to use tabs for indentation only and to use
spaces for alignment. This will make the code
alignment insensitive to an editor's tabwidth.
Use -spaces=false to use tabs for alignment.
3) Manually changed src/exp/parser/parser_test.go
so that it doesn't try to parse the parser's
source files using the old syntax (they have
new syntax now).
4) gofmt -w src misc test/bench
1st set of files.
R=rsc
CC=agl, golang-dev, iant, ken2, r
https://golang.org/cl/180047