// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tls import ( "crypto/rsa" "crypto/subtle" "crypto/x509" "io" "os" ) func (c *Conn) clientHandshake() os.Error { finishedHash := newFinishedHash() if c.config == nil { c.config = defaultConfig() } hello := &clientHelloMsg{ vers: maxVersion, cipherSuites: c.config.cipherSuites(), compressionMethods: []uint8{compressionNone}, random: make([]byte, 32), ocspStapling: true, serverName: c.config.ServerName, } t := uint32(c.config.time()) hello.random[0] = byte(t >> 24) hello.random[1] = byte(t >> 16) hello.random[2] = byte(t >> 8) hello.random[3] = byte(t) _, err := io.ReadFull(c.config.rand(), hello.random[4:]) if err != nil { c.sendAlert(alertInternalError) return os.ErrorString("short read from Rand") } finishedHash.Write(hello.marshal()) c.writeRecord(recordTypeHandshake, hello.marshal()) msg, err := c.readHandshake() if err != nil { return err } serverHello, ok := msg.(*serverHelloMsg) if !ok { return c.sendAlert(alertUnexpectedMessage) } finishedHash.Write(serverHello.marshal()) vers, ok := mutualVersion(serverHello.vers) if !ok { c.sendAlert(alertProtocolVersion) } c.vers = vers c.haveVers = true if serverHello.compressionMethod != compressionNone { return c.sendAlert(alertUnexpectedMessage) } suite, suiteId := mutualCipherSuite(c.config.cipherSuites(), serverHello.cipherSuite) if suite == nil { return c.sendAlert(alertHandshakeFailure) } msg, err = c.readHandshake() if err != nil { return err } certMsg, ok := msg.(*certificateMsg) if !ok || len(certMsg.certificates) == 0 { return c.sendAlert(alertUnexpectedMessage) } finishedHash.Write(certMsg.marshal()) certs := make([]*x509.Certificate, len(certMsg.certificates)) chain := NewCASet() for i, asn1Data := range certMsg.certificates { cert, err := x509.ParseCertificate(asn1Data) if err != nil { c.sendAlert(alertBadCertificate) return os.ErrorString("failed to parse certificate from server: " + err.String()) } certs[i] = cert chain.AddCert(cert) } // If we don't have a root CA set configured then anything is accepted. // TODO(rsc): Find certificates for OS X 10.6. for cur := certs[0]; c.config.RootCAs != nil; { parent := c.config.RootCAs.FindVerifiedParent(cur) if parent != nil { break } parent = chain.FindVerifiedParent(cur) if parent == nil { c.sendAlert(alertBadCertificate) return os.ErrorString("could not find root certificate for chain") } if !parent.BasicConstraintsValid || !parent.IsCA { c.sendAlert(alertBadCertificate) return os.ErrorString("intermediate certificate does not have CA bit set") } // KeyUsage status flags are ignored. From Engineering // Security, Peter Gutmann: A European government CA marked its // signing certificates as being valid for encryption only, but // no-one noticed. Another European CA marked its signature // keys as not being valid for signatures. A different CA // marked its own trusted root certificate as being invalid for // certificate signing. Another national CA distributed a // certificate to be used to encrypt data for the country’s tax // authority that was marked as only being usable for digital // signatures but not for encryption. Yet another CA reversed // the order of the bit flags in the keyUsage due to confusion // over encoding endianness, essentially setting a random // keyUsage in certificates that it issued. Another CA created // a self-invalidating certificate by adding a certificate // policy statement stipulating that the certificate had to be // used strictly as specified in the keyUsage, and a keyUsage // containing a flag indicating that the RSA encryption key // could only be used for Diffie-Hellman key agreement. cur = parent } pub, ok := certs[0].PublicKey.(*rsa.PublicKey) if !ok { return c.sendAlert(alertUnsupportedCertificate) } c.peerCertificates = certs if serverHello.certStatus { msg, err = c.readHandshake() if err != nil { return err } cs, ok := msg.(*certificateStatusMsg) if !ok { return c.sendAlert(alertUnexpectedMessage) } finishedHash.Write(cs.marshal()) if cs.statusType == statusTypeOCSP { c.ocspResponse = cs.response } } msg, err = c.readHandshake() if err != nil { return err } transmitCert := false certReq, ok := msg.(*certificateRequestMsg) if ok { // We only accept certificates with RSA keys. rsaAvail := false for _, certType := range certReq.certificateTypes { if certType == certTypeRSASign { rsaAvail = true break } } // For now, only send a certificate back if the server gives us an // empty list of certificateAuthorities. // // RFC 4346 on the certificateAuthorities field: // A list of the distinguished names of acceptable certificate // authorities. These distinguished names may specify a desired // distinguished name for a root CA or for a subordinate CA; thus, // this message can be used to describe both known roots and a // desired authorization space. If the certificate_authorities // list is empty then the client MAY send any certificate of the // appropriate ClientCertificateType, unless there is some // external arrangement to the contrary. if rsaAvail && len(certReq.certificateAuthorities) == 0 { transmitCert = true } finishedHash.Write(certReq.marshal()) msg, err = c.readHandshake() if err != nil { return err } } shd, ok := msg.(*serverHelloDoneMsg) if !ok { return c.sendAlert(alertUnexpectedMessage) } finishedHash.Write(shd.marshal()) var cert *x509.Certificate if transmitCert { certMsg = new(certificateMsg) if len(c.config.Certificates) > 0 { cert, err = x509.ParseCertificate(c.config.Certificates[0].Certificate[0]) if err == nil && cert.PublicKeyAlgorithm == x509.RSA { certMsg.certificates = c.config.Certificates[0].Certificate } else { cert = nil } } finishedHash.Write(certMsg.marshal()) c.writeRecord(recordTypeHandshake, certMsg.marshal()) } ckx := new(clientKeyExchangeMsg) preMasterSecret := make([]byte, 48) preMasterSecret[0] = byte(hello.vers >> 8) preMasterSecret[1] = byte(hello.vers) _, err = io.ReadFull(c.config.rand(), preMasterSecret[2:]) if err != nil { return c.sendAlert(alertInternalError) } ckx.ciphertext, err = rsa.EncryptPKCS1v15(c.config.rand(), pub, preMasterSecret) if err != nil { return c.sendAlert(alertInternalError) } finishedHash.Write(ckx.marshal()) c.writeRecord(recordTypeHandshake, ckx.marshal()) if cert != nil { certVerify := new(certificateVerifyMsg) var digest [36]byte copy(digest[0:16], finishedHash.serverMD5.Sum()) copy(digest[16:36], finishedHash.serverSHA1.Sum()) signed, err := rsa.SignPKCS1v15(c.config.rand(), c.config.Certificates[0].PrivateKey, rsa.HashMD5SHA1, digest[0:]) if err != nil { return c.sendAlert(alertInternalError) } certVerify.signature = signed finishedHash.Write(certVerify.marshal()) c.writeRecord(recordTypeHandshake, certVerify.marshal()) } masterSecret, clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV := keysFromPreMasterSecret10(preMasterSecret, hello.random, serverHello.random, suite.macLen, suite.keyLen, suite.ivLen) clientCipher := suite.cipher(clientKey, clientIV, false /* not for reading */ ) clientHash := suite.mac(clientMAC) c.out.prepareCipherSpec(clientCipher, clientHash) c.writeRecord(recordTypeChangeCipherSpec, []byte{1}) finished := new(finishedMsg) finished.verifyData = finishedHash.clientSum(masterSecret) finishedHash.Write(finished.marshal()) c.writeRecord(recordTypeHandshake, finished.marshal()) serverCipher := suite.cipher(serverKey, serverIV, true /* for reading */ ) serverHash := suite.mac(serverMAC) c.in.prepareCipherSpec(serverCipher, serverHash) c.readRecord(recordTypeChangeCipherSpec) if c.err != nil { return c.err } msg, err = c.readHandshake() if err != nil { return err } serverFinished, ok := msg.(*finishedMsg) if !ok { return c.sendAlert(alertUnexpectedMessage) } verify := finishedHash.serverSum(masterSecret) if len(verify) != len(serverFinished.verifyData) || subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 { return c.sendAlert(alertHandshakeFailure) } c.handshakeComplete = true c.cipherSuite = suiteId return nil }