Alternative TLS implementation in Go
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

1030 rader
28 KiB

  1. // Copyright 2010 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. // TLS low level connection and record layer
  5. package tls
  6. import (
  7. "bytes"
  8. "crypto/cipher"
  9. "crypto/subtle"
  10. "crypto/x509"
  11. "errors"
  12. "fmt"
  13. "io"
  14. "net"
  15. "sync"
  16. "time"
  17. )
  18. // A Conn represents a secured connection.
  19. // It implements the net.Conn interface.
  20. type Conn struct {
  21. // constant
  22. conn net.Conn
  23. isClient bool
  24. // constant after handshake; protected by handshakeMutex
  25. handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
  26. handshakeErr error // error resulting from handshake
  27. vers uint16 // TLS version
  28. haveVers bool // version has been negotiated
  29. config *Config // configuration passed to constructor
  30. handshakeComplete bool
  31. didResume bool // whether this connection was a session resumption
  32. cipherSuite uint16
  33. ocspResponse []byte // stapled OCSP response
  34. scts [][]byte // signed certificate timestamps from server
  35. peerCertificates []*x509.Certificate
  36. // verifiedChains contains the certificate chains that we built, as
  37. // opposed to the ones presented by the server.
  38. verifiedChains [][]*x509.Certificate
  39. // serverName contains the server name indicated by the client, if any.
  40. serverName string
  41. // firstFinished contains the first Finished hash sent during the
  42. // handshake. This is the "tls-unique" channel binding value.
  43. firstFinished [12]byte
  44. clientProtocol string
  45. clientProtocolFallback bool
  46. // input/output
  47. in, out halfConn // in.Mutex < out.Mutex
  48. rawInput *block // raw input, right off the wire
  49. input *block // application data waiting to be read
  50. hand bytes.Buffer // handshake data waiting to be read
  51. tmp [16]byte
  52. }
  53. // Access to net.Conn methods.
  54. // Cannot just embed net.Conn because that would
  55. // export the struct field too.
  56. // LocalAddr returns the local network address.
  57. func (c *Conn) LocalAddr() net.Addr {
  58. return c.conn.LocalAddr()
  59. }
  60. // RemoteAddr returns the remote network address.
  61. func (c *Conn) RemoteAddr() net.Addr {
  62. return c.conn.RemoteAddr()
  63. }
  64. // SetDeadline sets the read and write deadlines associated with the connection.
  65. // A zero value for t means Read and Write will not time out.
  66. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
  67. func (c *Conn) SetDeadline(t time.Time) error {
  68. return c.conn.SetDeadline(t)
  69. }
  70. // SetReadDeadline sets the read deadline on the underlying connection.
  71. // A zero value for t means Read will not time out.
  72. func (c *Conn) SetReadDeadline(t time.Time) error {
  73. return c.conn.SetReadDeadline(t)
  74. }
  75. // SetWriteDeadline sets the write deadline on the underlying connection.
  76. // A zero value for t means Write will not time out.
  77. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
  78. func (c *Conn) SetWriteDeadline(t time.Time) error {
  79. return c.conn.SetWriteDeadline(t)
  80. }
  81. // A halfConn represents one direction of the record layer
  82. // connection, either sending or receiving.
  83. type halfConn struct {
  84. sync.Mutex
  85. err error // first permanent error
  86. version uint16 // protocol version
  87. cipher interface{} // cipher algorithm
  88. mac macFunction
  89. seq [8]byte // 64-bit sequence number
  90. bfree *block // list of free blocks
  91. nextCipher interface{} // next encryption state
  92. nextMac macFunction // next MAC algorithm
  93. // used to save allocating a new buffer for each MAC.
  94. inDigestBuf, outDigestBuf []byte
  95. }
  96. func (hc *halfConn) setErrorLocked(err error) error {
  97. hc.err = err
  98. return err
  99. }
  100. func (hc *halfConn) error() error {
  101. hc.Lock()
  102. err := hc.err
  103. hc.Unlock()
  104. return err
  105. }
  106. // prepareCipherSpec sets the encryption and MAC states
  107. // that a subsequent changeCipherSpec will use.
  108. func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
  109. hc.version = version
  110. hc.nextCipher = cipher
  111. hc.nextMac = mac
  112. }
  113. // changeCipherSpec changes the encryption and MAC states
  114. // to the ones previously passed to prepareCipherSpec.
  115. func (hc *halfConn) changeCipherSpec() error {
  116. if hc.nextCipher == nil {
  117. return alertInternalError
  118. }
  119. hc.cipher = hc.nextCipher
  120. hc.mac = hc.nextMac
  121. hc.nextCipher = nil
  122. hc.nextMac = nil
  123. for i := range hc.seq {
  124. hc.seq[i] = 0
  125. }
  126. return nil
  127. }
  128. // incSeq increments the sequence number.
  129. func (hc *halfConn) incSeq() {
  130. for i := 7; i >= 0; i-- {
  131. hc.seq[i]++
  132. if hc.seq[i] != 0 {
  133. return
  134. }
  135. }
  136. // Not allowed to let sequence number wrap.
  137. // Instead, must renegotiate before it does.
  138. // Not likely enough to bother.
  139. panic("TLS: sequence number wraparound")
  140. }
  141. // resetSeq resets the sequence number to zero.
  142. func (hc *halfConn) resetSeq() {
  143. for i := range hc.seq {
  144. hc.seq[i] = 0
  145. }
  146. }
  147. // removePadding returns an unpadded slice, in constant time, which is a prefix
  148. // of the input. It also returns a byte which is equal to 255 if the padding
  149. // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
  150. func removePadding(payload []byte) ([]byte, byte) {
  151. if len(payload) < 1 {
  152. return payload, 0
  153. }
  154. paddingLen := payload[len(payload)-1]
  155. t := uint(len(payload)-1) - uint(paddingLen)
  156. // if len(payload) >= (paddingLen - 1) then the MSB of t is zero
  157. good := byte(int32(^t) >> 31)
  158. toCheck := 255 // the maximum possible padding length
  159. // The length of the padded data is public, so we can use an if here
  160. if toCheck+1 > len(payload) {
  161. toCheck = len(payload) - 1
  162. }
  163. for i := 0; i < toCheck; i++ {
  164. t := uint(paddingLen) - uint(i)
  165. // if i <= paddingLen then the MSB of t is zero
  166. mask := byte(int32(^t) >> 31)
  167. b := payload[len(payload)-1-i]
  168. good &^= mask&paddingLen ^ mask&b
  169. }
  170. // We AND together the bits of good and replicate the result across
  171. // all the bits.
  172. good &= good << 4
  173. good &= good << 2
  174. good &= good << 1
  175. good = uint8(int8(good) >> 7)
  176. toRemove := good&paddingLen + 1
  177. return payload[:len(payload)-int(toRemove)], good
  178. }
  179. // removePaddingSSL30 is a replacement for removePadding in the case that the
  180. // protocol version is SSLv3. In this version, the contents of the padding
  181. // are random and cannot be checked.
  182. func removePaddingSSL30(payload []byte) ([]byte, byte) {
  183. if len(payload) < 1 {
  184. return payload, 0
  185. }
  186. paddingLen := int(payload[len(payload)-1]) + 1
  187. if paddingLen > len(payload) {
  188. return payload, 0
  189. }
  190. return payload[:len(payload)-paddingLen], 255
  191. }
  192. func roundUp(a, b int) int {
  193. return a + (b-a%b)%b
  194. }
  195. // cbcMode is an interface for block ciphers using cipher block chaining.
  196. type cbcMode interface {
  197. cipher.BlockMode
  198. SetIV([]byte)
  199. }
  200. // decrypt checks and strips the mac and decrypts the data in b. Returns a
  201. // success boolean, the number of bytes to skip from the start of the record in
  202. // order to get the application payload, and an optional alert value.
  203. func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
  204. // pull out payload
  205. payload := b.data[recordHeaderLen:]
  206. macSize := 0
  207. if hc.mac != nil {
  208. macSize = hc.mac.Size()
  209. }
  210. paddingGood := byte(255)
  211. explicitIVLen := 0
  212. // decrypt
  213. if hc.cipher != nil {
  214. switch c := hc.cipher.(type) {
  215. case cipher.Stream:
  216. c.XORKeyStream(payload, payload)
  217. case cipher.AEAD:
  218. explicitIVLen = 8
  219. if len(payload) < explicitIVLen {
  220. return false, 0, alertBadRecordMAC
  221. }
  222. nonce := payload[:8]
  223. payload = payload[8:]
  224. var additionalData [13]byte
  225. copy(additionalData[:], hc.seq[:])
  226. copy(additionalData[8:], b.data[:3])
  227. n := len(payload) - c.Overhead()
  228. additionalData[11] = byte(n >> 8)
  229. additionalData[12] = byte(n)
  230. var err error
  231. payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
  232. if err != nil {
  233. return false, 0, alertBadRecordMAC
  234. }
  235. b.resize(recordHeaderLen + explicitIVLen + len(payload))
  236. case cbcMode:
  237. blockSize := c.BlockSize()
  238. if hc.version >= VersionTLS11 {
  239. explicitIVLen = blockSize
  240. }
  241. if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
  242. return false, 0, alertBadRecordMAC
  243. }
  244. if explicitIVLen > 0 {
  245. c.SetIV(payload[:explicitIVLen])
  246. payload = payload[explicitIVLen:]
  247. }
  248. c.CryptBlocks(payload, payload)
  249. if hc.version == VersionSSL30 {
  250. payload, paddingGood = removePaddingSSL30(payload)
  251. } else {
  252. payload, paddingGood = removePadding(payload)
  253. }
  254. b.resize(recordHeaderLen + explicitIVLen + len(payload))
  255. // note that we still have a timing side-channel in the
  256. // MAC check, below. An attacker can align the record
  257. // so that a correct padding will cause one less hash
  258. // block to be calculated. Then they can iteratively
  259. // decrypt a record by breaking each byte. See
  260. // "Password Interception in a SSL/TLS Channel", Brice
  261. // Canvel et al.
  262. //
  263. // However, our behavior matches OpenSSL, so we leak
  264. // only as much as they do.
  265. default:
  266. panic("unknown cipher type")
  267. }
  268. }
  269. // check, strip mac
  270. if hc.mac != nil {
  271. if len(payload) < macSize {
  272. return false, 0, alertBadRecordMAC
  273. }
  274. // strip mac off payload, b.data
  275. n := len(payload) - macSize
  276. b.data[3] = byte(n >> 8)
  277. b.data[4] = byte(n)
  278. b.resize(recordHeaderLen + explicitIVLen + n)
  279. remoteMAC := payload[n:]
  280. localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
  281. if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
  282. return false, 0, alertBadRecordMAC
  283. }
  284. hc.inDigestBuf = localMAC
  285. }
  286. hc.incSeq()
  287. return true, recordHeaderLen + explicitIVLen, 0
  288. }
  289. // padToBlockSize calculates the needed padding block, if any, for a payload.
  290. // On exit, prefix aliases payload and extends to the end of the last full
  291. // block of payload. finalBlock is a fresh slice which contains the contents of
  292. // any suffix of payload as well as the needed padding to make finalBlock a
  293. // full block.
  294. func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
  295. overrun := len(payload) % blockSize
  296. paddingLen := blockSize - overrun
  297. prefix = payload[:len(payload)-overrun]
  298. finalBlock = make([]byte, blockSize)
  299. copy(finalBlock, payload[len(payload)-overrun:])
  300. for i := overrun; i < blockSize; i++ {
  301. finalBlock[i] = byte(paddingLen - 1)
  302. }
  303. return
  304. }
  305. // encrypt encrypts and macs the data in b.
  306. func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
  307. // mac
  308. if hc.mac != nil {
  309. mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
  310. n := len(b.data)
  311. b.resize(n + len(mac))
  312. copy(b.data[n:], mac)
  313. hc.outDigestBuf = mac
  314. }
  315. payload := b.data[recordHeaderLen:]
  316. // encrypt
  317. if hc.cipher != nil {
  318. switch c := hc.cipher.(type) {
  319. case cipher.Stream:
  320. c.XORKeyStream(payload, payload)
  321. case cipher.AEAD:
  322. payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
  323. b.resize(len(b.data) + c.Overhead())
  324. nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
  325. payload := b.data[recordHeaderLen+explicitIVLen:]
  326. payload = payload[:payloadLen]
  327. var additionalData [13]byte
  328. copy(additionalData[:], hc.seq[:])
  329. copy(additionalData[8:], b.data[:3])
  330. additionalData[11] = byte(payloadLen >> 8)
  331. additionalData[12] = byte(payloadLen)
  332. c.Seal(payload[:0], nonce, payload, additionalData[:])
  333. case cbcMode:
  334. blockSize := c.BlockSize()
  335. if explicitIVLen > 0 {
  336. c.SetIV(payload[:explicitIVLen])
  337. payload = payload[explicitIVLen:]
  338. }
  339. prefix, finalBlock := padToBlockSize(payload, blockSize)
  340. b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
  341. c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
  342. c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
  343. default:
  344. panic("unknown cipher type")
  345. }
  346. }
  347. // update length to include MAC and any block padding needed.
  348. n := len(b.data) - recordHeaderLen
  349. b.data[3] = byte(n >> 8)
  350. b.data[4] = byte(n)
  351. hc.incSeq()
  352. return true, 0
  353. }
  354. // A block is a simple data buffer.
  355. type block struct {
  356. data []byte
  357. off int // index for Read
  358. link *block
  359. }
  360. // resize resizes block to be n bytes, growing if necessary.
  361. func (b *block) resize(n int) {
  362. if n > cap(b.data) {
  363. b.reserve(n)
  364. }
  365. b.data = b.data[0:n]
  366. }
  367. // reserve makes sure that block contains a capacity of at least n bytes.
  368. func (b *block) reserve(n int) {
  369. if cap(b.data) >= n {
  370. return
  371. }
  372. m := cap(b.data)
  373. if m == 0 {
  374. m = 1024
  375. }
  376. for m < n {
  377. m *= 2
  378. }
  379. data := make([]byte, len(b.data), m)
  380. copy(data, b.data)
  381. b.data = data
  382. }
  383. // readFromUntil reads from r into b until b contains at least n bytes
  384. // or else returns an error.
  385. func (b *block) readFromUntil(r io.Reader, n int) error {
  386. // quick case
  387. if len(b.data) >= n {
  388. return nil
  389. }
  390. // read until have enough.
  391. b.reserve(n)
  392. for {
  393. m, err := r.Read(b.data[len(b.data):cap(b.data)])
  394. b.data = b.data[0 : len(b.data)+m]
  395. if len(b.data) >= n {
  396. // TODO(bradfitz,agl): slightly suspicious
  397. // that we're throwing away r.Read's err here.
  398. break
  399. }
  400. if err != nil {
  401. return err
  402. }
  403. }
  404. return nil
  405. }
  406. func (b *block) Read(p []byte) (n int, err error) {
  407. n = copy(p, b.data[b.off:])
  408. b.off += n
  409. return
  410. }
  411. // newBlock allocates a new block, from hc's free list if possible.
  412. func (hc *halfConn) newBlock() *block {
  413. b := hc.bfree
  414. if b == nil {
  415. return new(block)
  416. }
  417. hc.bfree = b.link
  418. b.link = nil
  419. b.resize(0)
  420. return b
  421. }
  422. // freeBlock returns a block to hc's free list.
  423. // The protocol is such that each side only has a block or two on
  424. // its free list at a time, so there's no need to worry about
  425. // trimming the list, etc.
  426. func (hc *halfConn) freeBlock(b *block) {
  427. b.link = hc.bfree
  428. hc.bfree = b
  429. }
  430. // splitBlock splits a block after the first n bytes,
  431. // returning a block with those n bytes and a
  432. // block with the remainder. the latter may be nil.
  433. func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
  434. if len(b.data) <= n {
  435. return b, nil
  436. }
  437. bb := hc.newBlock()
  438. bb.resize(len(b.data) - n)
  439. copy(bb.data, b.data[n:])
  440. b.data = b.data[0:n]
  441. return b, bb
  442. }
  443. // readRecord reads the next TLS record from the connection
  444. // and updates the record layer state.
  445. // c.in.Mutex <= L; c.input == nil.
  446. func (c *Conn) readRecord(want recordType) error {
  447. // Caller must be in sync with connection:
  448. // handshake data if handshake not yet completed,
  449. // else application data. (We don't support renegotiation.)
  450. switch want {
  451. default:
  452. c.sendAlert(alertInternalError)
  453. return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
  454. case recordTypeHandshake, recordTypeChangeCipherSpec:
  455. if c.handshakeComplete {
  456. c.sendAlert(alertInternalError)
  457. return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
  458. }
  459. case recordTypeApplicationData:
  460. if !c.handshakeComplete {
  461. c.sendAlert(alertInternalError)
  462. return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
  463. }
  464. }
  465. Again:
  466. if c.rawInput == nil {
  467. c.rawInput = c.in.newBlock()
  468. }
  469. b := c.rawInput
  470. // Read header, payload.
  471. if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
  472. // RFC suggests that EOF without an alertCloseNotify is
  473. // an error, but popular web sites seem to do this,
  474. // so we can't make it an error.
  475. // if err == io.EOF {
  476. // err = io.ErrUnexpectedEOF
  477. // }
  478. if e, ok := err.(net.Error); !ok || !e.Temporary() {
  479. c.in.setErrorLocked(err)
  480. }
  481. return err
  482. }
  483. typ := recordType(b.data[0])
  484. // No valid TLS record has a type of 0x80, however SSLv2 handshakes
  485. // start with a uint16 length where the MSB is set and the first record
  486. // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
  487. // an SSLv2 client.
  488. if want == recordTypeHandshake && typ == 0x80 {
  489. c.sendAlert(alertProtocolVersion)
  490. return c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
  491. }
  492. vers := uint16(b.data[1])<<8 | uint16(b.data[2])
  493. n := int(b.data[3])<<8 | int(b.data[4])
  494. if c.haveVers && vers != c.vers {
  495. c.sendAlert(alertProtocolVersion)
  496. return c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
  497. }
  498. if n > maxCiphertext {
  499. c.sendAlert(alertRecordOverflow)
  500. return c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
  501. }
  502. if !c.haveVers {
  503. // First message, be extra suspicious: this might not be a TLS
  504. // client. Bail out before reading a full 'body', if possible.
  505. // The current max version is 3.3 so if the version is >= 16.0,
  506. // it's probably not real.
  507. if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
  508. c.sendAlert(alertUnexpectedMessage)
  509. return c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
  510. }
  511. }
  512. if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
  513. if err == io.EOF {
  514. err = io.ErrUnexpectedEOF
  515. }
  516. if e, ok := err.(net.Error); !ok || !e.Temporary() {
  517. c.in.setErrorLocked(err)
  518. }
  519. return err
  520. }
  521. // Process message.
  522. b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
  523. ok, off, err := c.in.decrypt(b)
  524. if !ok {
  525. c.in.setErrorLocked(c.sendAlert(err))
  526. }
  527. b.off = off
  528. data := b.data[b.off:]
  529. if len(data) > maxPlaintext {
  530. err := c.sendAlert(alertRecordOverflow)
  531. c.in.freeBlock(b)
  532. return c.in.setErrorLocked(err)
  533. }
  534. switch typ {
  535. default:
  536. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  537. case recordTypeAlert:
  538. if len(data) != 2 {
  539. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  540. break
  541. }
  542. if alert(data[1]) == alertCloseNotify {
  543. c.in.setErrorLocked(io.EOF)
  544. break
  545. }
  546. switch data[0] {
  547. case alertLevelWarning:
  548. // drop on the floor
  549. c.in.freeBlock(b)
  550. goto Again
  551. case alertLevelError:
  552. c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
  553. default:
  554. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  555. }
  556. case recordTypeChangeCipherSpec:
  557. if typ != want || len(data) != 1 || data[0] != 1 {
  558. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  559. break
  560. }
  561. err := c.in.changeCipherSpec()
  562. if err != nil {
  563. c.in.setErrorLocked(c.sendAlert(err.(alert)))
  564. }
  565. case recordTypeApplicationData:
  566. if typ != want {
  567. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  568. break
  569. }
  570. c.input = b
  571. b = nil
  572. case recordTypeHandshake:
  573. // TODO(rsc): Should at least pick off connection close.
  574. if typ != want {
  575. return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
  576. }
  577. c.hand.Write(data)
  578. }
  579. if b != nil {
  580. c.in.freeBlock(b)
  581. }
  582. return c.in.err
  583. }
  584. // sendAlert sends a TLS alert message.
  585. // c.out.Mutex <= L.
  586. func (c *Conn) sendAlertLocked(err alert) error {
  587. switch err {
  588. case alertNoRenegotiation, alertCloseNotify:
  589. c.tmp[0] = alertLevelWarning
  590. default:
  591. c.tmp[0] = alertLevelError
  592. }
  593. c.tmp[1] = byte(err)
  594. c.writeRecord(recordTypeAlert, c.tmp[0:2])
  595. // closeNotify is a special case in that it isn't an error:
  596. if err != alertCloseNotify {
  597. return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
  598. }
  599. return nil
  600. }
  601. // sendAlert sends a TLS alert message.
  602. // L < c.out.Mutex.
  603. func (c *Conn) sendAlert(err alert) error {
  604. c.out.Lock()
  605. defer c.out.Unlock()
  606. return c.sendAlertLocked(err)
  607. }
  608. // writeRecord writes a TLS record with the given type and payload
  609. // to the connection and updates the record layer state.
  610. // c.out.Mutex <= L.
  611. func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
  612. b := c.out.newBlock()
  613. for len(data) > 0 {
  614. m := len(data)
  615. if m > maxPlaintext {
  616. m = maxPlaintext
  617. }
  618. explicitIVLen := 0
  619. explicitIVIsSeq := false
  620. var cbc cbcMode
  621. if c.out.version >= VersionTLS11 {
  622. var ok bool
  623. if cbc, ok = c.out.cipher.(cbcMode); ok {
  624. explicitIVLen = cbc.BlockSize()
  625. }
  626. }
  627. if explicitIVLen == 0 {
  628. if _, ok := c.out.cipher.(cipher.AEAD); ok {
  629. explicitIVLen = 8
  630. // The AES-GCM construction in TLS has an
  631. // explicit nonce so that the nonce can be
  632. // random. However, the nonce is only 8 bytes
  633. // which is too small for a secure, random
  634. // nonce. Therefore we use the sequence number
  635. // as the nonce.
  636. explicitIVIsSeq = true
  637. }
  638. }
  639. b.resize(recordHeaderLen + explicitIVLen + m)
  640. b.data[0] = byte(typ)
  641. vers := c.vers
  642. if vers == 0 {
  643. // Some TLS servers fail if the record version is
  644. // greater than TLS 1.0 for the initial ClientHello.
  645. vers = VersionTLS10
  646. }
  647. b.data[1] = byte(vers >> 8)
  648. b.data[2] = byte(vers)
  649. b.data[3] = byte(m >> 8)
  650. b.data[4] = byte(m)
  651. if explicitIVLen > 0 {
  652. explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
  653. if explicitIVIsSeq {
  654. copy(explicitIV, c.out.seq[:])
  655. } else {
  656. if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
  657. break
  658. }
  659. }
  660. }
  661. copy(b.data[recordHeaderLen+explicitIVLen:], data)
  662. c.out.encrypt(b, explicitIVLen)
  663. _, err = c.conn.Write(b.data)
  664. if err != nil {
  665. break
  666. }
  667. n += m
  668. data = data[m:]
  669. }
  670. c.out.freeBlock(b)
  671. if typ == recordTypeChangeCipherSpec {
  672. err = c.out.changeCipherSpec()
  673. if err != nil {
  674. // Cannot call sendAlert directly,
  675. // because we already hold c.out.Mutex.
  676. c.tmp[0] = alertLevelError
  677. c.tmp[1] = byte(err.(alert))
  678. c.writeRecord(recordTypeAlert, c.tmp[0:2])
  679. return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
  680. }
  681. }
  682. return
  683. }
  684. // readHandshake reads the next handshake message from
  685. // the record layer.
  686. // c.in.Mutex < L; c.out.Mutex < L.
  687. func (c *Conn) readHandshake() (interface{}, error) {
  688. for c.hand.Len() < 4 {
  689. if err := c.in.err; err != nil {
  690. return nil, err
  691. }
  692. if err := c.readRecord(recordTypeHandshake); err != nil {
  693. return nil, err
  694. }
  695. }
  696. data := c.hand.Bytes()
  697. n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  698. if n > maxHandshake {
  699. return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
  700. }
  701. for c.hand.Len() < 4+n {
  702. if err := c.in.err; err != nil {
  703. return nil, err
  704. }
  705. if err := c.readRecord(recordTypeHandshake); err != nil {
  706. return nil, err
  707. }
  708. }
  709. data = c.hand.Next(4 + n)
  710. var m handshakeMessage
  711. switch data[0] {
  712. case typeClientHello:
  713. m = new(clientHelloMsg)
  714. case typeServerHello:
  715. m = new(serverHelloMsg)
  716. case typeNewSessionTicket:
  717. m = new(newSessionTicketMsg)
  718. case typeCertificate:
  719. m = new(certificateMsg)
  720. case typeCertificateRequest:
  721. m = &certificateRequestMsg{
  722. hasSignatureAndHash: c.vers >= VersionTLS12,
  723. }
  724. case typeCertificateStatus:
  725. m = new(certificateStatusMsg)
  726. case typeServerKeyExchange:
  727. m = new(serverKeyExchangeMsg)
  728. case typeServerHelloDone:
  729. m = new(serverHelloDoneMsg)
  730. case typeClientKeyExchange:
  731. m = new(clientKeyExchangeMsg)
  732. case typeCertificateVerify:
  733. m = &certificateVerifyMsg{
  734. hasSignatureAndHash: c.vers >= VersionTLS12,
  735. }
  736. case typeNextProtocol:
  737. m = new(nextProtoMsg)
  738. case typeFinished:
  739. m = new(finishedMsg)
  740. default:
  741. return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  742. }
  743. // The handshake message unmarshallers
  744. // expect to be able to keep references to data,
  745. // so pass in a fresh copy that won't be overwritten.
  746. data = append([]byte(nil), data...)
  747. if !m.unmarshal(data) {
  748. return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  749. }
  750. return m, nil
  751. }
  752. // Write writes data to the connection.
  753. func (c *Conn) Write(b []byte) (int, error) {
  754. if err := c.Handshake(); err != nil {
  755. return 0, err
  756. }
  757. c.out.Lock()
  758. defer c.out.Unlock()
  759. if err := c.out.err; err != nil {
  760. return 0, err
  761. }
  762. if !c.handshakeComplete {
  763. return 0, alertInternalError
  764. }
  765. // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
  766. // attack when using block mode ciphers due to predictable IVs.
  767. // This can be prevented by splitting each Application Data
  768. // record into two records, effectively randomizing the IV.
  769. //
  770. // http://www.openssl.org/~bodo/tls-cbc.txt
  771. // https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  772. // http://www.imperialviolet.org/2012/01/15/beastfollowup.html
  773. var m int
  774. if len(b) > 1 && c.vers <= VersionTLS10 {
  775. if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  776. n, err := c.writeRecord(recordTypeApplicationData, b[:1])
  777. if err != nil {
  778. return n, c.out.setErrorLocked(err)
  779. }
  780. m, b = 1, b[1:]
  781. }
  782. }
  783. n, err := c.writeRecord(recordTypeApplicationData, b)
  784. return n + m, c.out.setErrorLocked(err)
  785. }
  786. // Read can be made to time out and return a net.Error with Timeout() == true
  787. // after a fixed time limit; see SetDeadline and SetReadDeadline.
  788. func (c *Conn) Read(b []byte) (n int, err error) {
  789. if err = c.Handshake(); err != nil {
  790. return
  791. }
  792. if len(b) == 0 {
  793. // Put this after Handshake, in case people were calling
  794. // Read(nil) for the side effect of the Handshake.
  795. return
  796. }
  797. c.in.Lock()
  798. defer c.in.Unlock()
  799. // Some OpenSSL servers send empty records in order to randomize the
  800. // CBC IV. So this loop ignores a limited number of empty records.
  801. const maxConsecutiveEmptyRecords = 100
  802. for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
  803. for c.input == nil && c.in.err == nil {
  804. if err := c.readRecord(recordTypeApplicationData); err != nil {
  805. // Soft error, like EAGAIN
  806. return 0, err
  807. }
  808. }
  809. if err := c.in.err; err != nil {
  810. return 0, err
  811. }
  812. n, err = c.input.Read(b)
  813. if c.input.off >= len(c.input.data) {
  814. c.in.freeBlock(c.input)
  815. c.input = nil
  816. }
  817. // If a close-notify alert is waiting, read it so that
  818. // we can return (n, EOF) instead of (n, nil), to signal
  819. // to the HTTP response reading goroutine that the
  820. // connection is now closed. This eliminates a race
  821. // where the HTTP response reading goroutine would
  822. // otherwise not observe the EOF until its next read,
  823. // by which time a client goroutine might have already
  824. // tried to reuse the HTTP connection for a new
  825. // request.
  826. // See https://codereview.appspot.com/76400046
  827. // and http://golang.org/issue/3514
  828. if ri := c.rawInput; ri != nil &&
  829. n != 0 && err == nil &&
  830. c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
  831. if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
  832. err = recErr // will be io.EOF on closeNotify
  833. }
  834. }
  835. if n != 0 || err != nil {
  836. return n, err
  837. }
  838. }
  839. return 0, io.ErrNoProgress
  840. }
  841. // Close closes the connection.
  842. func (c *Conn) Close() error {
  843. var alertErr error
  844. c.handshakeMutex.Lock()
  845. defer c.handshakeMutex.Unlock()
  846. if c.handshakeComplete {
  847. alertErr = c.sendAlert(alertCloseNotify)
  848. }
  849. if err := c.conn.Close(); err != nil {
  850. return err
  851. }
  852. return alertErr
  853. }
  854. // Handshake runs the client or server handshake
  855. // protocol if it has not yet been run.
  856. // Most uses of this package need not call Handshake
  857. // explicitly: the first Read or Write will call it automatically.
  858. func (c *Conn) Handshake() error {
  859. c.handshakeMutex.Lock()
  860. defer c.handshakeMutex.Unlock()
  861. if err := c.handshakeErr; err != nil {
  862. return err
  863. }
  864. if c.handshakeComplete {
  865. return nil
  866. }
  867. if c.isClient {
  868. c.handshakeErr = c.clientHandshake()
  869. } else {
  870. c.handshakeErr = c.serverHandshake()
  871. }
  872. return c.handshakeErr
  873. }
  874. // ConnectionState returns basic TLS details about the connection.
  875. func (c *Conn) ConnectionState() ConnectionState {
  876. c.handshakeMutex.Lock()
  877. defer c.handshakeMutex.Unlock()
  878. var state ConnectionState
  879. state.HandshakeComplete = c.handshakeComplete
  880. if c.handshakeComplete {
  881. state.Version = c.vers
  882. state.NegotiatedProtocol = c.clientProtocol
  883. state.DidResume = c.didResume
  884. state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  885. state.CipherSuite = c.cipherSuite
  886. state.PeerCertificates = c.peerCertificates
  887. state.VerifiedChains = c.verifiedChains
  888. state.ServerName = c.serverName
  889. state.SignedCertificateTimestamps = c.scts
  890. state.OCSPResponse = c.ocspResponse
  891. if !c.didResume {
  892. state.TLSUnique = c.firstFinished[:]
  893. }
  894. }
  895. return state
  896. }
  897. // OCSPResponse returns the stapled OCSP response from the TLS server, if
  898. // any. (Only valid for client connections.)
  899. func (c *Conn) OCSPResponse() []byte {
  900. c.handshakeMutex.Lock()
  901. defer c.handshakeMutex.Unlock()
  902. return c.ocspResponse
  903. }
  904. // VerifyHostname checks that the peer certificate chain is valid for
  905. // connecting to host. If so, it returns nil; if not, it returns an error
  906. // describing the problem.
  907. func (c *Conn) VerifyHostname(host string) error {
  908. c.handshakeMutex.Lock()
  909. defer c.handshakeMutex.Unlock()
  910. if !c.isClient {
  911. return errors.New("tls: VerifyHostname called on TLS server connection")
  912. }
  913. if !c.handshakeComplete {
  914. return errors.New("tls: handshake has not yet been performed")
  915. }
  916. return c.peerCertificates[0].VerifyHostname(host)
  917. }