th5/tls.go
aubble 06234ee3fc crypto/tls: note in comments that setting GetCertificate is now sufficient.
In Go 1.5, Config.Certificates is no longer required if
Config.GetCertificate has been set. This change updated four comments to
reflect that.

Change-Id: Id72cc22fc79e931b2d645a7c3960c3241042762c
Reviewed-on: https://go-review.googlesource.com/13800
Reviewed-by: Adam Langley <agl@golang.org>
2015-08-29 22:23:04 +00:00

272 lines
7.8 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tls partially implements TLS 1.2, as specified in RFC 5246.
package tls
import (
"crypto"
"crypto/ecdsa"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"errors"
"io/ioutil"
"net"
"strings"
"time"
)
// Server returns a new TLS server side connection
// using conn as the underlying transport.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Server(conn net.Conn, config *Config) *Conn {
return &Conn{conn: conn, config: config}
}
// Client returns a new TLS client side connection
// using conn as the underlying transport.
// The config cannot be nil: users must set either ServerName or
// InsecureSkipVerify in the config.
func Client(conn net.Conn, config *Config) *Conn {
return &Conn{conn: conn, config: config, isClient: true}
}
// A listener implements a network listener (net.Listener) for TLS connections.
type listener struct {
net.Listener
config *Config
}
// Accept waits for and returns the next incoming TLS connection.
// The returned connection c is a *tls.Conn.
func (l *listener) Accept() (c net.Conn, err error) {
c, err = l.Listener.Accept()
if err != nil {
return
}
c = Server(c, l.config)
return
}
// NewListener creates a Listener which accepts connections from an inner
// Listener and wraps each connection with Server.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func NewListener(inner net.Listener, config *Config) net.Listener {
l := new(listener)
l.Listener = inner
l.config = config
return l
}
// Listen creates a TLS listener accepting connections on the
// given network address using net.Listen.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Listen(network, laddr string, config *Config) (net.Listener, error) {
if config == nil || (len(config.Certificates) == 0 && config.GetCertificate == nil) {
return nil, errors.New("tls: neither Certificates nor GetCertificate set in Config")
}
l, err := net.Listen(network, laddr)
if err != nil {
return nil, err
}
return NewListener(l, config), nil
}
type timeoutError struct{}
func (timeoutError) Error() string { return "tls: DialWithDialer timed out" }
func (timeoutError) Timeout() bool { return true }
func (timeoutError) Temporary() bool { return true }
// DialWithDialer connects to the given network address using dialer.Dial and
// then initiates a TLS handshake, returning the resulting TLS connection. Any
// timeout or deadline given in the dialer apply to connection and TLS
// handshake as a whole.
//
// DialWithDialer interprets a nil configuration as equivalent to the zero
// configuration; see the documentation of Config for the defaults.
func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
// We want the Timeout and Deadline values from dialer to cover the
// whole process: TCP connection and TLS handshake. This means that we
// also need to start our own timers now.
timeout := dialer.Timeout
if !dialer.Deadline.IsZero() {
deadlineTimeout := dialer.Deadline.Sub(time.Now())
if timeout == 0 || deadlineTimeout < timeout {
timeout = deadlineTimeout
}
}
var errChannel chan error
if timeout != 0 {
errChannel = make(chan error, 2)
time.AfterFunc(timeout, func() {
errChannel <- timeoutError{}
})
}
rawConn, err := dialer.Dial(network, addr)
if err != nil {
return nil, err
}
colonPos := strings.LastIndex(addr, ":")
if colonPos == -1 {
colonPos = len(addr)
}
hostname := addr[:colonPos]
if config == nil {
config = defaultConfig()
}
// If no ServerName is set, infer the ServerName
// from the hostname we're connecting to.
if config.ServerName == "" {
// Make a copy to avoid polluting argument or default.
c := *config
c.ServerName = hostname
config = &c
}
conn := Client(rawConn, config)
if timeout == 0 {
err = conn.Handshake()
} else {
go func() {
errChannel <- conn.Handshake()
}()
err = <-errChannel
}
if err != nil {
rawConn.Close()
return nil, err
}
return conn, nil
}
// Dial connects to the given network address using net.Dial
// and then initiates a TLS handshake, returning the resulting
// TLS connection.
// Dial interprets a nil configuration as equivalent to
// the zero configuration; see the documentation of Config
// for the defaults.
func Dial(network, addr string, config *Config) (*Conn, error) {
return DialWithDialer(new(net.Dialer), network, addr, config)
}
// LoadX509KeyPair reads and parses a public/private key pair from a pair of
// files. The files must contain PEM encoded data.
func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) {
certPEMBlock, err := ioutil.ReadFile(certFile)
if err != nil {
return Certificate{}, err
}
keyPEMBlock, err := ioutil.ReadFile(keyFile)
if err != nil {
return Certificate{}, err
}
return X509KeyPair(certPEMBlock, keyPEMBlock)
}
// X509KeyPair parses a public/private key pair from a pair of
// PEM encoded data.
func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) {
var cert Certificate
var certDERBlock *pem.Block
fail := func(err error) (Certificate, error) { return Certificate{}, err }
for {
certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
if certDERBlock == nil {
break
}
if certDERBlock.Type == "CERTIFICATE" {
cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
}
}
if len(cert.Certificate) == 0 {
return fail(errors.New("crypto/tls: failed to parse certificate PEM data"))
}
var keyDERBlock *pem.Block
for {
keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
if keyDERBlock == nil {
return fail(errors.New("crypto/tls: failed to parse key PEM data"))
}
if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
break
}
}
var err error
cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
if err != nil {
return fail(err)
}
// We don't need to parse the public key for TLS, but we so do anyway
// to check that it looks sane and matches the private key.
x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
if err != nil {
return fail(err)
}
switch pub := x509Cert.PublicKey.(type) {
case *rsa.PublicKey:
priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
if !ok {
return fail(errors.New("crypto/tls: private key type does not match public key type"))
}
if pub.N.Cmp(priv.N) != 0 {
return fail(errors.New("crypto/tls: private key does not match public key"))
}
case *ecdsa.PublicKey:
priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
if !ok {
return fail(errors.New("crypto/tls: private key type does not match public key type"))
}
if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
return fail(errors.New("crypto/tls: private key does not match public key"))
}
default:
return fail(errors.New("crypto/tls: unknown public key algorithm"))
}
return cert, nil
}
// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
// PKCS#1 private keys by default, while OpenSSL 1.0.0 generates PKCS#8 keys.
// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
return key, nil
}
if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
switch key := key.(type) {
case *rsa.PrivateKey, *ecdsa.PrivateKey:
return key, nil
default:
return nil, errors.New("crypto/tls: found unknown private key type in PKCS#8 wrapping")
}
}
if key, err := x509.ParseECPrivateKey(der); err == nil {
return key, nil
}
return nil, errors.New("crypto/tls: failed to parse private key")
}