Alternative TLS implementation in Go
25'ten fazla konu seçemezsiniz Konular bir harf veya rakamla başlamalı, kısa çizgiler ('-') içerebilir ve en fazla 35 karakter uzunluğunda olabilir.

1732 satır
49 KiB

  1. // Copyright 2010 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. // TLS low level connection and record layer
  5. package tls
  6. import (
  7. "bytes"
  8. "crypto/cipher"
  9. "crypto/subtle"
  10. "crypto/x509"
  11. "encoding/binary"
  12. "errors"
  13. "fmt"
  14. "io"
  15. "net"
  16. "sync"
  17. "sync/atomic"
  18. "time"
  19. )
  20. // A Conn represents a secured connection.
  21. // It implements the net.Conn interface.
  22. type Conn struct {
  23. // constant
  24. conn net.Conn
  25. isClient bool
  26. phase handshakeStatus // protected by in.Mutex
  27. // handshakeConfirmed is an atomic bool for phase == handshakeConfirmed
  28. handshakeConfirmed int32
  29. // confirmMutex is held by any read operation before handshakeConfirmed
  30. confirmMutex sync.Mutex
  31. // constant after handshake; protected by handshakeMutex
  32. handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
  33. handshakeErr error // error resulting from handshake
  34. connID []byte // Random connection id
  35. clientHello []byte // ClientHello packet contents
  36. vers uint16 // TLS version
  37. haveVers bool // version has been negotiated
  38. config *Config // configuration passed to constructor
  39. // handshakeComplete is true if the connection reached application data
  40. // and it's equivalent to phase > handshakeRunning
  41. handshakeComplete bool
  42. // handshakes counts the number of handshakes performed on the
  43. // connection so far. If renegotiation is disabled then this is either
  44. // zero or one.
  45. handshakes int
  46. didResume bool // whether this connection was a session resumption
  47. cipherSuite uint16
  48. ocspResponse []byte // stapled OCSP response
  49. scts [][]byte // Signed certificate timestamps from server
  50. peerCertificates []*x509.Certificate
  51. // verifiedChains contains the certificate chains that we built, as
  52. // opposed to the ones presented by the server.
  53. verifiedChains [][]*x509.Certificate
  54. // verifiedDc is set by a client who negotiates the use of a valid delegated
  55. // credential.
  56. verifiedDc *delegatedCredential
  57. // serverName contains the server name indicated by the client, if any.
  58. serverName string
  59. // secureRenegotiation is true if the server echoed the secure
  60. // renegotiation extension. (This is meaningless as a server because
  61. // renegotiation is not supported in that case.)
  62. secureRenegotiation bool
  63. // indicates wether extended MasterSecret extension is used (see RFC7627)
  64. useEMS bool
  65. // clientFinishedIsFirst is true if the client sent the first Finished
  66. // message during the most recent handshake. This is recorded because
  67. // the first transmitted Finished message is the tls-unique
  68. // channel-binding value.
  69. clientFinishedIsFirst bool
  70. // closeNotifyErr is any error from sending the alertCloseNotify record.
  71. closeNotifyErr error
  72. // closeNotifySent is true if the Conn attempted to send an
  73. // alertCloseNotify record.
  74. closeNotifySent bool
  75. // clientFinished and serverFinished contain the Finished message sent
  76. // by the client or server in the most recent handshake. This is
  77. // retained to support the renegotiation extension and tls-unique
  78. // channel-binding.
  79. clientFinished [12]byte
  80. serverFinished [12]byte
  81. clientProtocol string
  82. clientProtocolFallback bool
  83. // ticketMaxEarlyData is the maximum bytes of 0-RTT application data
  84. // that the client is allowed to send on the ticket it used.
  85. ticketMaxEarlyData int64
  86. // input/output
  87. in, out halfConn // in.Mutex < out.Mutex
  88. rawInput *block // raw input, right off the wire
  89. input *block // application data waiting to be read
  90. hand bytes.Buffer // handshake data waiting to be read
  91. buffering bool // whether records are buffered in sendBuf
  92. sendBuf []byte // a buffer of records waiting to be sent
  93. // bytesSent counts the bytes of application data sent.
  94. // packetsSent counts packets.
  95. bytesSent int64
  96. packetsSent int64
  97. // warnCount counts the number of consecutive warning alerts received
  98. // by Conn.readRecord. Protected by in.Mutex.
  99. warnCount int
  100. // activeCall is an atomic int32; the low bit is whether Close has
  101. // been called. the rest of the bits are the number of goroutines
  102. // in Conn.Write.
  103. activeCall int32
  104. // TLS 1.3 needs the server state until it reaches the Client Finished
  105. hs *serverHandshakeState
  106. // earlyDataBytes is the number of bytes of early data received so
  107. // far. Tracked to enforce max_early_data_size.
  108. // We don't keep track of rejected 0-RTT data since there's no need
  109. // to ever buffer it. in.Mutex.
  110. earlyDataBytes int64
  111. // binder is the value of the PSK binder that was validated to
  112. // accept the 0-RTT data. Exposed as ConnectionState.Unique0RTTToken.
  113. binder []byte
  114. tmp [16]byte
  115. }
  116. type handshakeStatus int
  117. const (
  118. handshakeRunning handshakeStatus = iota
  119. discardingEarlyData
  120. readingEarlyData
  121. waitingClientFinished
  122. readingClientFinished
  123. handshakeConfirmed
  124. )
  125. // Access to net.Conn methods.
  126. // Cannot just embed net.Conn because that would
  127. // export the struct field too.
  128. // LocalAddr returns the local network address.
  129. func (c *Conn) LocalAddr() net.Addr {
  130. return c.conn.LocalAddr()
  131. }
  132. // RemoteAddr returns the remote network address.
  133. func (c *Conn) RemoteAddr() net.Addr {
  134. return c.conn.RemoteAddr()
  135. }
  136. // SetDeadline sets the read and write deadlines associated with the connection.
  137. // A zero value for t means Read and Write will not time out.
  138. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
  139. func (c *Conn) SetDeadline(t time.Time) error {
  140. return c.conn.SetDeadline(t)
  141. }
  142. // SetReadDeadline sets the read deadline on the underlying connection.
  143. // A zero value for t means Read will not time out.
  144. func (c *Conn) SetReadDeadline(t time.Time) error {
  145. return c.conn.SetReadDeadline(t)
  146. }
  147. // SetWriteDeadline sets the write deadline on the underlying connection.
  148. // A zero value for t means Write will not time out.
  149. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
  150. func (c *Conn) SetWriteDeadline(t time.Time) error {
  151. return c.conn.SetWriteDeadline(t)
  152. }
  153. // A halfConn represents one direction of the record layer
  154. // connection, either sending or receiving.
  155. type halfConn struct {
  156. sync.Mutex
  157. err error // first permanent error
  158. version uint16 // protocol version
  159. cipher interface{} // cipher algorithm
  160. mac macFunction
  161. seq [8]byte // 64-bit sequence number
  162. bfree *block // list of free blocks
  163. additionalData [13]byte // to avoid allocs; interface method args escape
  164. nextCipher interface{} // next encryption state
  165. nextMac macFunction // next MAC algorithm
  166. // used to save allocating a new buffer for each MAC.
  167. inDigestBuf, outDigestBuf []byte
  168. traceErr func(error)
  169. }
  170. func (hc *halfConn) setErrorLocked(err error) error {
  171. hc.err = err
  172. if hc.traceErr != nil {
  173. hc.traceErr(err)
  174. }
  175. return err
  176. }
  177. // prepareCipherSpec sets the encryption and MAC states
  178. // that a subsequent changeCipherSpec will use.
  179. func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
  180. hc.version = version
  181. hc.nextCipher = cipher
  182. hc.nextMac = mac
  183. }
  184. // changeCipherSpec changes the encryption and MAC states
  185. // to the ones previously passed to prepareCipherSpec.
  186. func (hc *halfConn) changeCipherSpec() error {
  187. if hc.nextCipher == nil {
  188. return alertInternalError
  189. }
  190. hc.cipher = hc.nextCipher
  191. hc.mac = hc.nextMac
  192. hc.nextCipher = nil
  193. hc.nextMac = nil
  194. for i := range hc.seq {
  195. hc.seq[i] = 0
  196. }
  197. return nil
  198. }
  199. func (hc *halfConn) setCipher(version uint16, cipher interface{}) {
  200. hc.version = version
  201. hc.cipher = cipher
  202. for i := range hc.seq {
  203. hc.seq[i] = 0
  204. }
  205. }
  206. // incSeq increments the sequence number.
  207. func (hc *halfConn) incSeq() {
  208. for i := 7; i >= 0; i-- {
  209. hc.seq[i]++
  210. if hc.seq[i] != 0 {
  211. return
  212. }
  213. }
  214. // Not allowed to let sequence number wrap.
  215. // Instead, must renegotiate before it does.
  216. // Not likely enough to bother.
  217. panic("TLS: sequence number wraparound")
  218. }
  219. // extractPadding returns, in constant time, the length of the padding to remove
  220. // from the end of payload. It also returns a byte which is equal to 255 if the
  221. // padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
  222. func extractPadding(payload []byte) (toRemove int, good byte) {
  223. if len(payload) < 1 {
  224. return 0, 0
  225. }
  226. paddingLen := payload[len(payload)-1]
  227. t := uint(len(payload)-1) - uint(paddingLen)
  228. // if len(payload) >= (paddingLen - 1) then the MSB of t is zero
  229. good = byte(int32(^t) >> 31)
  230. // The maximum possible padding length plus the actual length field
  231. toCheck := 256
  232. // The length of the padded data is public, so we can use an if here
  233. if toCheck > len(payload) {
  234. toCheck = len(payload)
  235. }
  236. for i := 0; i < toCheck; i++ {
  237. t := uint(paddingLen) - uint(i)
  238. // if i <= paddingLen then the MSB of t is zero
  239. mask := byte(int32(^t) >> 31)
  240. b := payload[len(payload)-1-i]
  241. good &^= mask&paddingLen ^ mask&b
  242. }
  243. // We AND together the bits of good and replicate the result across
  244. // all the bits.
  245. good &= good << 4
  246. good &= good << 2
  247. good &= good << 1
  248. good = uint8(int8(good) >> 7)
  249. toRemove = int(paddingLen) + 1
  250. return
  251. }
  252. // extractPaddingSSL30 is a replacement for extractPadding in the case that the
  253. // protocol version is SSLv3. In this version, the contents of the padding
  254. // are random and cannot be checked.
  255. func extractPaddingSSL30(payload []byte) (toRemove int, good byte) {
  256. if len(payload) < 1 {
  257. return 0, 0
  258. }
  259. paddingLen := int(payload[len(payload)-1]) + 1
  260. if paddingLen > len(payload) {
  261. return 0, 0
  262. }
  263. return paddingLen, 255
  264. }
  265. func roundUp(a, b int) int {
  266. return a + (b-a%b)%b
  267. }
  268. // cbcMode is an interface for block ciphers using cipher block chaining.
  269. type cbcMode interface {
  270. cipher.BlockMode
  271. SetIV([]byte)
  272. }
  273. // decrypt checks and strips the mac and decrypts the data in b. Returns a
  274. // success boolean, the number of bytes to skip from the start of the record in
  275. // order to get the application payload, and an optional alert value.
  276. func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
  277. // pull out payload
  278. payload := b.data[recordHeaderLen:]
  279. macSize := 0
  280. if hc.mac != nil {
  281. macSize = hc.mac.Size()
  282. }
  283. paddingGood := byte(255)
  284. paddingLen := 0
  285. explicitIVLen := 0
  286. // decrypt
  287. if hc.cipher != nil {
  288. switch c := hc.cipher.(type) {
  289. case cipher.Stream:
  290. c.XORKeyStream(payload, payload)
  291. case aead:
  292. explicitIVLen = c.explicitNonceLen()
  293. if len(payload) < explicitIVLen {
  294. return false, 0, alertBadRecordMAC
  295. }
  296. nonce := payload[:explicitIVLen]
  297. payload = payload[explicitIVLen:]
  298. if len(nonce) == 0 {
  299. nonce = hc.seq[:]
  300. }
  301. var additionalData []byte
  302. if hc.version < VersionTLS13 {
  303. copy(hc.additionalData[:], hc.seq[:])
  304. copy(hc.additionalData[8:], b.data[:3])
  305. n := len(payload) - c.Overhead()
  306. hc.additionalData[11] = byte(n >> 8)
  307. hc.additionalData[12] = byte(n)
  308. additionalData = hc.additionalData[:]
  309. } else {
  310. if len(payload) > int((1<<14)+256) {
  311. return false, 0, alertRecordOverflow
  312. }
  313. // Check AD header, see 5.2 of RFC8446
  314. additionalData = make([]byte, 5)
  315. additionalData[0] = byte(recordTypeApplicationData)
  316. binary.BigEndian.PutUint16(additionalData[1:], VersionTLS12)
  317. binary.BigEndian.PutUint16(additionalData[3:], uint16(len(payload)))
  318. }
  319. var err error
  320. payload, err = c.Open(payload[:0], nonce, payload, additionalData)
  321. if err != nil {
  322. return false, 0, alertBadRecordMAC
  323. }
  324. b.resize(recordHeaderLen + explicitIVLen + len(payload))
  325. case cbcMode:
  326. blockSize := c.BlockSize()
  327. if hc.version >= VersionTLS11 {
  328. explicitIVLen = blockSize
  329. }
  330. if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
  331. return false, 0, alertBadRecordMAC
  332. }
  333. if explicitIVLen > 0 {
  334. c.SetIV(payload[:explicitIVLen])
  335. payload = payload[explicitIVLen:]
  336. }
  337. c.CryptBlocks(payload, payload)
  338. if hc.version == VersionSSL30 {
  339. paddingLen, paddingGood = extractPaddingSSL30(payload)
  340. } else {
  341. paddingLen, paddingGood = extractPadding(payload)
  342. // To protect against CBC padding oracles like Lucky13, the data
  343. // past paddingLen (which is secret) is passed to the MAC
  344. // function as extra data, to be fed into the HMAC after
  345. // computing the digest. This makes the MAC constant time as
  346. // long as the digest computation is constant time and does not
  347. // affect the subsequent write.
  348. }
  349. default:
  350. panic("unknown cipher type")
  351. }
  352. }
  353. // check, strip mac
  354. if hc.mac != nil {
  355. if len(payload) < macSize {
  356. return false, 0, alertBadRecordMAC
  357. }
  358. // strip mac off payload, b.data
  359. n := len(payload) - macSize - paddingLen
  360. n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
  361. b.data[3] = byte(n >> 8)
  362. b.data[4] = byte(n)
  363. remoteMAC := payload[n : n+macSize]
  364. localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:])
  365. if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
  366. return false, 0, alertBadRecordMAC
  367. }
  368. hc.inDigestBuf = localMAC
  369. b.resize(recordHeaderLen + explicitIVLen + n)
  370. }
  371. hc.incSeq()
  372. return true, recordHeaderLen + explicitIVLen, 0
  373. }
  374. // padToBlockSize calculates the needed padding block, if any, for a payload.
  375. // On exit, prefix aliases payload and extends to the end of the last full
  376. // block of payload. finalBlock is a fresh slice which contains the contents of
  377. // any suffix of payload as well as the needed padding to make finalBlock a
  378. // full block.
  379. func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
  380. overrun := len(payload) % blockSize
  381. paddingLen := blockSize - overrun
  382. prefix = payload[:len(payload)-overrun]
  383. finalBlock = make([]byte, blockSize)
  384. copy(finalBlock, payload[len(payload)-overrun:])
  385. for i := overrun; i < blockSize; i++ {
  386. finalBlock[i] = byte(paddingLen - 1)
  387. }
  388. return
  389. }
  390. // encrypt encrypts and macs the data in b.
  391. func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
  392. // mac
  393. if hc.mac != nil {
  394. mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil)
  395. n := len(b.data)
  396. b.resize(n + len(mac))
  397. copy(b.data[n:], mac)
  398. hc.outDigestBuf = mac
  399. }
  400. payload := b.data[recordHeaderLen:]
  401. // encrypt
  402. if hc.cipher != nil {
  403. switch c := hc.cipher.(type) {
  404. case cipher.Stream:
  405. c.XORKeyStream(payload, payload)
  406. case aead:
  407. // explicitIVLen is always 0 for TLS1.3
  408. payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
  409. payloadOffset := recordHeaderLen + explicitIVLen
  410. nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
  411. if len(nonce) == 0 {
  412. nonce = hc.seq[:]
  413. }
  414. var additionalData []byte
  415. if hc.version < VersionTLS13 {
  416. // make room in a buffer for payload + MAC
  417. b.resize(len(b.data) + c.Overhead())
  418. payload = b.data[payloadOffset : payloadOffset+payloadLen]
  419. copy(hc.additionalData[:], hc.seq[:])
  420. copy(hc.additionalData[8:], b.data[:3])
  421. binary.BigEndian.PutUint16(hc.additionalData[11:], uint16(payloadLen))
  422. additionalData = hc.additionalData[:]
  423. } else {
  424. // make room in a buffer for TLSCiphertext.encrypted_record:
  425. // payload + MAC + extra data if needed
  426. b.resize(len(b.data) + c.Overhead() + 1)
  427. payload = b.data[payloadOffset : payloadOffset+payloadLen+1]
  428. // 1 byte of content type is appended to payload and encrypted
  429. payload[len(payload)-1] = b.data[0]
  430. // opaque_type
  431. b.data[0] = byte(recordTypeApplicationData)
  432. // Add AD header, see 5.2 of RFC8446
  433. additionalData = make([]byte, 5)
  434. additionalData[0] = b.data[0]
  435. binary.BigEndian.PutUint16(additionalData[1:], VersionTLS12)
  436. binary.BigEndian.PutUint16(additionalData[3:], uint16(len(payload)+c.Overhead()))
  437. }
  438. c.Seal(payload[:0], nonce, payload, additionalData)
  439. case cbcMode:
  440. blockSize := c.BlockSize()
  441. if explicitIVLen > 0 {
  442. c.SetIV(payload[:explicitIVLen])
  443. payload = payload[explicitIVLen:]
  444. }
  445. prefix, finalBlock := padToBlockSize(payload, blockSize)
  446. b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
  447. c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
  448. c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
  449. default:
  450. panic("unknown cipher type")
  451. }
  452. }
  453. // update length to include MAC and any block padding needed.
  454. n := len(b.data) - recordHeaderLen
  455. b.data[3] = byte(n >> 8)
  456. b.data[4] = byte(n)
  457. hc.incSeq()
  458. return true, 0
  459. }
  460. // A block is a simple data buffer.
  461. type block struct {
  462. data []byte
  463. off int // index for Read
  464. link *block
  465. }
  466. // resize resizes block to be n bytes, growing if necessary.
  467. func (b *block) resize(n int) {
  468. if n > cap(b.data) {
  469. b.reserve(n)
  470. }
  471. b.data = b.data[0:n]
  472. }
  473. // reserve makes sure that block contains a capacity of at least n bytes.
  474. func (b *block) reserve(n int) {
  475. if cap(b.data) >= n {
  476. return
  477. }
  478. m := cap(b.data)
  479. if m == 0 {
  480. m = 1024
  481. }
  482. for m < n {
  483. m *= 2
  484. }
  485. data := make([]byte, len(b.data), m)
  486. copy(data, b.data)
  487. b.data = data
  488. }
  489. // readFromUntil reads from r into b until b contains at least n bytes
  490. // or else returns an error.
  491. func (b *block) readFromUntil(r io.Reader, n int) error {
  492. // quick case
  493. if len(b.data) >= n {
  494. return nil
  495. }
  496. // read until have enough.
  497. b.reserve(n)
  498. for {
  499. m, err := r.Read(b.data[len(b.data):cap(b.data)])
  500. b.data = b.data[0 : len(b.data)+m]
  501. if len(b.data) >= n {
  502. // TODO(bradfitz,agl): slightly suspicious
  503. // that we're throwing away r.Read's err here.
  504. break
  505. }
  506. if err != nil {
  507. return err
  508. }
  509. }
  510. return nil
  511. }
  512. func (b *block) Read(p []byte) (n int, err error) {
  513. n = copy(p, b.data[b.off:])
  514. b.off += n
  515. if b.off >= len(b.data) {
  516. err = io.EOF
  517. }
  518. return
  519. }
  520. // newBlock allocates a new block, from hc's free list if possible.
  521. func (hc *halfConn) newBlock() *block {
  522. b := hc.bfree
  523. if b == nil {
  524. return new(block)
  525. }
  526. hc.bfree = b.link
  527. b.link = nil
  528. b.resize(0)
  529. return b
  530. }
  531. // freeBlock returns a block to hc's free list.
  532. // The protocol is such that each side only has a block or two on
  533. // its free list at a time, so there's no need to worry about
  534. // trimming the list, etc.
  535. func (hc *halfConn) freeBlock(b *block) {
  536. b.link = hc.bfree
  537. hc.bfree = b
  538. }
  539. // splitBlock splits a block after the first n bytes,
  540. // returning a block with those n bytes and a
  541. // block with the remainder. the latter may be nil.
  542. func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
  543. if len(b.data) <= n {
  544. return b, nil
  545. }
  546. bb := hc.newBlock()
  547. bb.resize(len(b.data) - n)
  548. copy(bb.data, b.data[n:])
  549. b.data = b.data[0:n]
  550. return b, bb
  551. }
  552. // RecordHeaderError results when a TLS record header is invalid.
  553. type RecordHeaderError struct {
  554. // Msg contains a human readable string that describes the error.
  555. Msg string
  556. // RecordHeader contains the five bytes of TLS record header that
  557. // triggered the error.
  558. RecordHeader [5]byte
  559. }
  560. func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
  561. func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
  562. err.Msg = msg
  563. copy(err.RecordHeader[:], c.rawInput.data)
  564. return err
  565. }
  566. // readRecord reads the next TLS record from the connection
  567. // and updates the record layer state.
  568. // c.in.Mutex <= L; c.input == nil.
  569. // c.input can still be nil after a call, retry if so.
  570. func (c *Conn) readRecord(want recordType) error {
  571. // Caller must be in sync with connection:
  572. // handshake data if handshake not yet completed,
  573. // else application data.
  574. switch want {
  575. default:
  576. c.sendAlert(alertInternalError)
  577. return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
  578. case recordTypeHandshake, recordTypeChangeCipherSpec:
  579. if c.phase != handshakeRunning && c.phase != readingClientFinished {
  580. c.sendAlert(alertInternalError)
  581. return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake"))
  582. }
  583. case recordTypeApplicationData:
  584. if c.phase == handshakeRunning || c.phase == readingClientFinished {
  585. c.sendAlert(alertInternalError)
  586. return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake"))
  587. }
  588. }
  589. Again:
  590. if c.rawInput == nil {
  591. c.rawInput = c.in.newBlock()
  592. }
  593. b := c.rawInput
  594. // Read header, payload.
  595. if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
  596. // RFC suggests that EOF without an alertCloseNotify is
  597. // an error, but popular web sites seem to do this,
  598. // so we can't make it an error.
  599. // if err == io.EOF {
  600. // err = io.ErrUnexpectedEOF
  601. // }
  602. if e, ok := err.(net.Error); !ok || !e.Temporary() {
  603. c.in.setErrorLocked(err)
  604. }
  605. return err
  606. }
  607. typ := recordType(b.data[0])
  608. // No valid TLS record has a type of 0x80, however SSLv2 handshakes
  609. // start with a uint16 length where the MSB is set and the first record
  610. // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
  611. // an SSLv2 client.
  612. if want == recordTypeHandshake && typ == 0x80 {
  613. c.sendAlert(alertProtocolVersion)
  614. return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
  615. }
  616. vers := uint16(b.data[1])<<8 | uint16(b.data[2])
  617. n := int(b.data[3])<<8 | int(b.data[4])
  618. if n > maxCiphertext {
  619. c.sendAlert(alertRecordOverflow)
  620. msg := fmt.Sprintf("oversized record received with length %d", n)
  621. return c.in.setErrorLocked(c.newRecordHeaderError(msg))
  622. }
  623. if !c.haveVers {
  624. // First message, be extra suspicious: this might not be a TLS
  625. // client. Bail out before reading a full 'body', if possible.
  626. // The current max version is 3.3 so if the version is >= 16.0,
  627. // it's probably not real.
  628. if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
  629. c.sendAlert(alertUnexpectedMessage)
  630. return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
  631. }
  632. }
  633. if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
  634. if err == io.EOF {
  635. err = io.ErrUnexpectedEOF
  636. }
  637. if e, ok := err.(net.Error); !ok || !e.Temporary() {
  638. c.in.setErrorLocked(err)
  639. }
  640. return err
  641. }
  642. // Process message.
  643. b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
  644. // TLS 1.3 middlebox compatibility: skip over unencrypted CCS.
  645. if c.vers >= VersionTLS13 && typ == recordTypeChangeCipherSpec && c.phase != handshakeConfirmed {
  646. if len(b.data) != 6 || b.data[5] != 1 {
  647. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  648. }
  649. c.in.freeBlock(b)
  650. return c.in.err
  651. }
  652. peekedAlert := peekAlert(b) // peek at a possible alert before decryption
  653. ok, off, alertValue := c.in.decrypt(b)
  654. switch {
  655. case !ok && c.phase == discardingEarlyData:
  656. // If the client said that it's sending early data and we did not
  657. // accept it, we are expected to fail decryption.
  658. c.in.freeBlock(b)
  659. return nil
  660. case ok && c.phase == discardingEarlyData:
  661. c.phase = waitingClientFinished
  662. case !ok:
  663. c.in.traceErr, c.out.traceErr = nil, nil // not that interesting
  664. c.in.freeBlock(b)
  665. err := c.sendAlert(alertValue)
  666. // If decryption failed because the message is an unencrypted
  667. // alert, return a more meaningful error message
  668. if alertValue == alertBadRecordMAC && peekedAlert != nil {
  669. err = peekedAlert
  670. }
  671. return c.in.setErrorLocked(err)
  672. }
  673. b.off = off
  674. data := b.data[b.off:]
  675. if (c.vers < VersionTLS13 && len(data) > maxPlaintext) || len(data) > maxPlaintext+1 {
  676. c.in.freeBlock(b)
  677. return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
  678. }
  679. // After checking the plaintext length, remove 1.3 padding and
  680. // extract the real content type.
  681. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-5.4.
  682. if c.vers >= VersionTLS13 {
  683. i := len(data) - 1
  684. for i >= 0 {
  685. if data[i] != 0 {
  686. break
  687. }
  688. i--
  689. }
  690. if i < 0 {
  691. c.in.freeBlock(b)
  692. return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  693. }
  694. typ = recordType(data[i])
  695. data = data[:i]
  696. b.resize(b.off + i) // shrinks, guaranteed not to reallocate
  697. }
  698. if typ != recordTypeAlert && len(data) > 0 {
  699. // this is a valid non-alert message: reset the count of alerts
  700. c.warnCount = 0
  701. }
  702. switch typ {
  703. default:
  704. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  705. case recordTypeAlert:
  706. if len(data) != 2 {
  707. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  708. break
  709. }
  710. if alert(data[1]) == alertCloseNotify {
  711. c.in.setErrorLocked(io.EOF)
  712. break
  713. }
  714. switch data[0] {
  715. case alertLevelWarning:
  716. // drop on the floor
  717. c.in.freeBlock(b)
  718. c.warnCount++
  719. if c.warnCount > maxWarnAlertCount {
  720. c.sendAlert(alertUnexpectedMessage)
  721. return c.in.setErrorLocked(errors.New("tls: too many warn alerts"))
  722. }
  723. goto Again
  724. case alertLevelError:
  725. c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
  726. default:
  727. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  728. }
  729. case recordTypeChangeCipherSpec:
  730. if typ != want || len(data) != 1 || data[0] != 1 || c.vers >= VersionTLS13 {
  731. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  732. break
  733. }
  734. // Handshake messages are not allowed to fragment across the CCS
  735. if c.hand.Len() > 0 {
  736. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  737. break
  738. }
  739. // Handshake messages are not allowed to fragment across the CCS
  740. if c.hand.Len() > 0 {
  741. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  742. break
  743. }
  744. err := c.in.changeCipherSpec()
  745. if err != nil {
  746. c.in.setErrorLocked(c.sendAlert(err.(alert)))
  747. }
  748. case recordTypeApplicationData:
  749. if typ != want || c.phase == waitingClientFinished {
  750. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  751. break
  752. }
  753. if c.phase == readingEarlyData {
  754. c.earlyDataBytes += int64(len(b.data) - b.off)
  755. if c.earlyDataBytes > c.ticketMaxEarlyData {
  756. return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  757. }
  758. }
  759. c.input = b
  760. b = nil
  761. case recordTypeHandshake:
  762. // TODO(rsc): Should at least pick off connection close.
  763. // If early data was being read, a Finished message is expected
  764. // instead of (early) application data. Other post-handshake
  765. // messages include HelloRequest and NewSessionTicket.
  766. if typ != want && want != recordTypeApplicationData {
  767. return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  768. }
  769. c.hand.Write(data)
  770. }
  771. if b != nil {
  772. c.in.freeBlock(b)
  773. }
  774. return c.in.err
  775. }
  776. // peekAlert looks at a message to spot an unencrypted alert. It must be
  777. // called before decryption to avoid a side channel, and its result must
  778. // only be used if decryption fails, to avoid false positives.
  779. func peekAlert(b *block) error {
  780. if len(b.data) < 7 {
  781. return nil
  782. }
  783. if recordType(b.data[0]) != recordTypeAlert {
  784. return nil
  785. }
  786. return &net.OpError{Op: "remote error", Err: alert(b.data[6])}
  787. }
  788. // sendAlert sends a TLS alert message.
  789. // c.out.Mutex <= L.
  790. func (c *Conn) sendAlertLocked(err alert) error {
  791. switch err {
  792. case alertNoRenegotiation, alertCloseNotify:
  793. c.tmp[0] = alertLevelWarning
  794. default:
  795. c.tmp[0] = alertLevelError
  796. }
  797. c.tmp[1] = byte(err)
  798. _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
  799. if err == alertCloseNotify {
  800. // closeNotify is a special case in that it isn't an error.
  801. return writeErr
  802. }
  803. return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
  804. }
  805. // sendAlert sends a TLS alert message.
  806. // L < c.out.Mutex.
  807. func (c *Conn) sendAlert(err alert) error {
  808. c.out.Lock()
  809. defer c.out.Unlock()
  810. return c.sendAlertLocked(err)
  811. }
  812. const (
  813. // tcpMSSEstimate is a conservative estimate of the TCP maximum segment
  814. // size (MSS). A constant is used, rather than querying the kernel for
  815. // the actual MSS, to avoid complexity. The value here is the IPv6
  816. // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
  817. // bytes) and a TCP header with timestamps (32 bytes).
  818. tcpMSSEstimate = 1208
  819. // recordSizeBoostThreshold is the number of bytes of application data
  820. // sent after which the TLS record size will be increased to the
  821. // maximum.
  822. recordSizeBoostThreshold = 128 * 1024
  823. )
  824. // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
  825. // next application data record. There is the following trade-off:
  826. //
  827. // - For latency-sensitive applications, such as web browsing, each TLS
  828. // record should fit in one TCP segment.
  829. // - For throughput-sensitive applications, such as large file transfers,
  830. // larger TLS records better amortize framing and encryption overheads.
  831. //
  832. // A simple heuristic that works well in practice is to use small records for
  833. // the first 1MB of data, then use larger records for subsequent data, and
  834. // reset back to smaller records after the connection becomes idle. See "High
  835. // Performance Web Networking", Chapter 4, or:
  836. // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
  837. //
  838. // In the interests of simplicity and determinism, this code does not attempt
  839. // to reset the record size once the connection is idle, however.
  840. //
  841. // c.out.Mutex <= L.
  842. func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
  843. if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
  844. return maxPlaintext
  845. }
  846. if c.bytesSent >= recordSizeBoostThreshold {
  847. return maxPlaintext
  848. }
  849. // Subtract TLS overheads to get the maximum payload size.
  850. macSize := 0
  851. if c.out.mac != nil {
  852. macSize = c.out.mac.Size()
  853. }
  854. payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen
  855. if c.out.cipher != nil {
  856. switch ciph := c.out.cipher.(type) {
  857. case cipher.Stream:
  858. payloadBytes -= macSize
  859. case cipher.AEAD:
  860. payloadBytes -= ciph.Overhead()
  861. if c.vers >= VersionTLS13 {
  862. payloadBytes -= 1 // ContentType
  863. }
  864. case cbcMode:
  865. blockSize := ciph.BlockSize()
  866. // The payload must fit in a multiple of blockSize, with
  867. // room for at least one padding byte.
  868. payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
  869. // The MAC is appended before padding so affects the
  870. // payload size directly.
  871. payloadBytes -= macSize
  872. default:
  873. panic("unknown cipher type")
  874. }
  875. }
  876. // Allow packet growth in arithmetic progression up to max.
  877. pkt := c.packetsSent
  878. c.packetsSent++
  879. if pkt > 1000 {
  880. return maxPlaintext // avoid overflow in multiply below
  881. }
  882. n := payloadBytes * int(pkt+1)
  883. if n > maxPlaintext {
  884. n = maxPlaintext
  885. }
  886. return n
  887. }
  888. // c.out.Mutex <= L.
  889. func (c *Conn) write(data []byte) (int, error) {
  890. if c.buffering {
  891. c.sendBuf = append(c.sendBuf, data...)
  892. return len(data), nil
  893. }
  894. n, err := c.conn.Write(data)
  895. c.bytesSent += int64(n)
  896. return n, err
  897. }
  898. func (c *Conn) flush() (int, error) {
  899. if len(c.sendBuf) == 0 {
  900. return 0, nil
  901. }
  902. n, err := c.conn.Write(c.sendBuf)
  903. c.bytesSent += int64(n)
  904. c.sendBuf = nil
  905. c.buffering = false
  906. return n, err
  907. }
  908. // writeRecordLocked writes a TLS record with the given type and payload to the
  909. // connection and updates the record layer state.
  910. // c.out.Mutex <= L.
  911. func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
  912. b := c.out.newBlock()
  913. defer c.out.freeBlock(b)
  914. var n int
  915. for len(data) > 0 {
  916. explicitIVLen := 0
  917. explicitIVIsSeq := false
  918. var cbc cbcMode
  919. if c.out.version >= VersionTLS11 {
  920. var ok bool
  921. if cbc, ok = c.out.cipher.(cbcMode); ok {
  922. explicitIVLen = cbc.BlockSize()
  923. }
  924. }
  925. if explicitIVLen == 0 {
  926. if c, ok := c.out.cipher.(aead); ok {
  927. explicitIVLen = c.explicitNonceLen()
  928. // The AES-GCM construction in TLS has an
  929. // explicit nonce so that the nonce can be
  930. // random. However, the nonce is only 8 bytes
  931. // which is too small for a secure, random
  932. // nonce. Therefore we use the sequence number
  933. // as the nonce.
  934. explicitIVIsSeq = explicitIVLen > 0
  935. }
  936. }
  937. m := len(data)
  938. if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload {
  939. m = maxPayload
  940. }
  941. b.resize(recordHeaderLen + explicitIVLen + m)
  942. b.data[0] = byte(typ)
  943. vers := c.vers
  944. if vers == 0 {
  945. // Some TLS servers fail if the record version is
  946. // greater than TLS 1.0 for the initial ClientHello.
  947. vers = VersionTLS10
  948. }
  949. if c.vers >= VersionTLS13 {
  950. // TLS 1.3 froze the record layer version at { 3, 1 }.
  951. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-5.1.
  952. // But for draft 22, this was changed to { 3, 3 }.
  953. vers = VersionTLS12
  954. }
  955. b.data[1] = byte(vers >> 8)
  956. b.data[2] = byte(vers)
  957. b.data[3] = byte(m >> 8)
  958. b.data[4] = byte(m)
  959. if explicitIVLen > 0 {
  960. explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
  961. if explicitIVIsSeq {
  962. copy(explicitIV, c.out.seq[:])
  963. } else {
  964. if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil {
  965. return n, err
  966. }
  967. }
  968. }
  969. copy(b.data[recordHeaderLen+explicitIVLen:], data)
  970. c.out.encrypt(b, explicitIVLen)
  971. if _, err := c.write(b.data); err != nil {
  972. return n, err
  973. }
  974. n += m
  975. data = data[m:]
  976. }
  977. if typ == recordTypeChangeCipherSpec && c.vers < VersionTLS13 {
  978. if err := c.out.changeCipherSpec(); err != nil {
  979. return n, c.sendAlertLocked(err.(alert))
  980. }
  981. }
  982. return n, nil
  983. }
  984. // writeRecord writes a TLS record with the given type and payload to the
  985. // connection and updates the record layer state.
  986. // L < c.out.Mutex.
  987. func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
  988. c.out.Lock()
  989. defer c.out.Unlock()
  990. return c.writeRecordLocked(typ, data)
  991. }
  992. // readHandshake reads the next handshake message from
  993. // the record layer.
  994. // c.in.Mutex < L; c.out.Mutex < L.
  995. func (c *Conn) readHandshake() (interface{}, error) {
  996. for c.hand.Len() < 4 {
  997. if err := c.in.err; err != nil {
  998. return nil, err
  999. }
  1000. if err := c.readRecord(recordTypeHandshake); err != nil {
  1001. return nil, err
  1002. }
  1003. }
  1004. data := c.hand.Bytes()
  1005. n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  1006. if n > maxHandshake {
  1007. c.sendAlertLocked(alertInternalError)
  1008. return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
  1009. }
  1010. for c.hand.Len() < 4+n {
  1011. if err := c.in.err; err != nil {
  1012. return nil, err
  1013. }
  1014. if err := c.readRecord(recordTypeHandshake); err != nil {
  1015. return nil, err
  1016. }
  1017. }
  1018. data = c.hand.Next(4 + n)
  1019. var m handshakeMessage
  1020. switch data[0] {
  1021. case typeHelloRequest:
  1022. m = new(helloRequestMsg)
  1023. case typeClientHello:
  1024. m = new(clientHelloMsg)
  1025. case typeServerHello:
  1026. m = new(serverHelloMsg)
  1027. case typeEncryptedExtensions:
  1028. m = new(encryptedExtensionsMsg)
  1029. case typeNewSessionTicket:
  1030. if c.vers >= VersionTLS13 {
  1031. m = new(newSessionTicketMsg13)
  1032. } else {
  1033. m = new(newSessionTicketMsg)
  1034. }
  1035. case typeEndOfEarlyData:
  1036. m = new(endOfEarlyDataMsg)
  1037. case typeCertificate:
  1038. if c.vers >= VersionTLS13 {
  1039. m = new(certificateMsg13)
  1040. } else {
  1041. m = new(certificateMsg)
  1042. }
  1043. case typeCertificateRequest:
  1044. if c.vers >= VersionTLS13 {
  1045. m = new(certificateRequestMsg13)
  1046. } else {
  1047. m = &certificateRequestMsg{
  1048. hasSignatureAndHash: c.vers >= VersionTLS12,
  1049. }
  1050. }
  1051. case typeCertificateStatus:
  1052. m = new(certificateStatusMsg)
  1053. case typeServerKeyExchange:
  1054. m = new(serverKeyExchangeMsg)
  1055. case typeServerHelloDone:
  1056. m = new(serverHelloDoneMsg)
  1057. case typeClientKeyExchange:
  1058. m = new(clientKeyExchangeMsg)
  1059. case typeCertificateVerify:
  1060. m = &certificateVerifyMsg{
  1061. hasSignatureAndHash: c.vers >= VersionTLS12,
  1062. }
  1063. case typeNextProtocol:
  1064. m = new(nextProtoMsg)
  1065. case typeFinished:
  1066. m = new(finishedMsg)
  1067. default:
  1068. return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1069. }
  1070. // The handshake message unmarshalers
  1071. // expect to be able to keep references to data,
  1072. // so pass in a fresh copy that won't be overwritten.
  1073. data = append([]byte(nil), data...)
  1074. if unmarshalAlert := m.unmarshal(data); unmarshalAlert != alertSuccess {
  1075. return nil, c.in.setErrorLocked(c.sendAlert(unmarshalAlert))
  1076. }
  1077. return m, nil
  1078. }
  1079. var (
  1080. errClosed = errors.New("tls: use of closed connection")
  1081. errShutdown = errors.New("tls: protocol is shutdown")
  1082. )
  1083. // Write writes data to the connection.
  1084. func (c *Conn) Write(b []byte) (int, error) {
  1085. // interlock with Close below
  1086. for {
  1087. x := atomic.LoadInt32(&c.activeCall)
  1088. if x&1 != 0 {
  1089. return 0, errClosed
  1090. }
  1091. if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1092. defer atomic.AddInt32(&c.activeCall, -2)
  1093. break
  1094. }
  1095. }
  1096. if err := c.Handshake(); err != nil {
  1097. return 0, err
  1098. }
  1099. c.out.Lock()
  1100. defer c.out.Unlock()
  1101. if err := c.out.err; err != nil {
  1102. return 0, err
  1103. }
  1104. if !c.handshakeComplete {
  1105. return 0, alertInternalError
  1106. }
  1107. if c.closeNotifySent {
  1108. return 0, errShutdown
  1109. }
  1110. // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
  1111. // attack when using block mode ciphers due to predictable IVs.
  1112. // This can be prevented by splitting each Application Data
  1113. // record into two records, effectively randomizing the IV.
  1114. //
  1115. // http://www.openssl.org/~bodo/tls-cbc.txt
  1116. // https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1117. // http://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1118. var m int
  1119. if len(b) > 1 && c.vers <= VersionTLS10 {
  1120. if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1121. n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1122. if err != nil {
  1123. return n, c.out.setErrorLocked(err)
  1124. }
  1125. m, b = 1, b[1:]
  1126. }
  1127. }
  1128. n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1129. return n + m, c.out.setErrorLocked(err)
  1130. }
  1131. // Process Handshake messages after the handshake has completed.
  1132. // c.in.Mutex <= L
  1133. func (c *Conn) handlePostHandshake() error {
  1134. msg, err := c.readHandshake()
  1135. if err != nil {
  1136. return err
  1137. }
  1138. switch hm := msg.(type) {
  1139. case *helloRequestMsg:
  1140. return c.handleRenegotiation(hm)
  1141. case *newSessionTicketMsg13:
  1142. if !c.isClient {
  1143. c.sendAlert(alertUnexpectedMessage)
  1144. return alertUnexpectedMessage
  1145. }
  1146. return nil // TODO implement session tickets
  1147. default:
  1148. c.sendAlert(alertUnexpectedMessage)
  1149. return alertUnexpectedMessage
  1150. }
  1151. }
  1152. // handleRenegotiation processes a HelloRequest handshake message.
  1153. // c.in.Mutex <= L
  1154. func (c *Conn) handleRenegotiation(*helloRequestMsg) error {
  1155. if !c.isClient {
  1156. return c.sendAlert(alertNoRenegotiation)
  1157. }
  1158. if c.vers >= VersionTLS13 {
  1159. return c.sendAlert(alertNoRenegotiation)
  1160. }
  1161. switch c.config.Renegotiation {
  1162. case RenegotiateNever:
  1163. return c.sendAlert(alertNoRenegotiation)
  1164. case RenegotiateOnceAsClient:
  1165. if c.handshakes > 1 {
  1166. return c.sendAlert(alertNoRenegotiation)
  1167. }
  1168. case RenegotiateFreelyAsClient:
  1169. // Ok.
  1170. default:
  1171. c.sendAlert(alertInternalError)
  1172. return errors.New("tls: unknown Renegotiation value")
  1173. }
  1174. c.handshakeMutex.Lock()
  1175. defer c.handshakeMutex.Unlock()
  1176. c.phase = handshakeRunning
  1177. c.handshakeComplete = false
  1178. if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  1179. c.handshakes++
  1180. }
  1181. return c.handshakeErr
  1182. }
  1183. // ConfirmHandshake waits for the handshake to reach a point at which
  1184. // the connection is certainly not replayed. That is, after receiving
  1185. // the Client Finished.
  1186. //
  1187. // If ConfirmHandshake returns an error and until ConfirmHandshake
  1188. // returns, the 0-RTT data should not be trusted not to be replayed.
  1189. //
  1190. // This is only meaningful in TLS 1.3 when Accept0RTTData is true and the
  1191. // client sent valid 0-RTT data. In any other case it's equivalent to
  1192. // calling Handshake.
  1193. func (c *Conn) ConfirmHandshake() error {
  1194. if c.isClient {
  1195. panic("ConfirmHandshake should only be called for servers")
  1196. }
  1197. if err := c.Handshake(); err != nil {
  1198. return err
  1199. }
  1200. if c.vers < VersionTLS13 {
  1201. return nil
  1202. }
  1203. c.confirmMutex.Lock()
  1204. if atomic.LoadInt32(&c.handshakeConfirmed) == 1 { // c.phase == handshakeConfirmed
  1205. c.confirmMutex.Unlock()
  1206. return nil
  1207. } else {
  1208. defer func() {
  1209. // If we transitioned to handshakeConfirmed we already released the lock,
  1210. // otherwise do it here.
  1211. if c.phase != handshakeConfirmed {
  1212. c.confirmMutex.Unlock()
  1213. }
  1214. }()
  1215. }
  1216. c.in.Lock()
  1217. defer c.in.Unlock()
  1218. var input *block
  1219. // Try to read all data (if phase==readingEarlyData) or extract the
  1220. // remaining data from the previous read that could not fit in the read
  1221. // buffer (if c.input != nil).
  1222. if c.phase == readingEarlyData || c.input != nil {
  1223. buf := &bytes.Buffer{}
  1224. if _, err := buf.ReadFrom(earlyDataReader{c}); err != nil {
  1225. c.in.setErrorLocked(err)
  1226. return err
  1227. }
  1228. input = &block{data: buf.Bytes()}
  1229. }
  1230. // At this point, earlyDataReader has read all early data and received
  1231. // the end_of_early_data signal. Expect a Finished message.
  1232. // Locks held so far: c.confirmMutex, c.in
  1233. // not confirmed implies c.phase == discardingEarlyData || c.phase == waitingClientFinished
  1234. for c.phase != handshakeConfirmed {
  1235. if err := c.hs.readClientFinished13(true); err != nil {
  1236. c.in.setErrorLocked(err)
  1237. return err
  1238. }
  1239. }
  1240. if c.phase != handshakeConfirmed {
  1241. panic("should have reached handshakeConfirmed state")
  1242. }
  1243. if c.input != nil {
  1244. panic("should not have read past the Client Finished")
  1245. }
  1246. c.input = input
  1247. return nil
  1248. }
  1249. // earlyDataReader wraps a Conn and reads only early data, both buffered
  1250. // and still on the wire.
  1251. type earlyDataReader struct {
  1252. c *Conn
  1253. }
  1254. // c.in.Mutex <= L
  1255. func (r earlyDataReader) Read(b []byte) (n int, err error) {
  1256. c := r.c
  1257. if c.phase == handshakeConfirmed {
  1258. // c.input might not be early data
  1259. panic("earlyDataReader called at handshakeConfirmed")
  1260. }
  1261. for c.input == nil && c.in.err == nil && c.phase == readingEarlyData {
  1262. if err := c.readRecord(recordTypeApplicationData); err != nil {
  1263. return 0, err
  1264. }
  1265. if c.hand.Len() > 0 {
  1266. if err := c.handleEndOfEarlyData(); err != nil {
  1267. return 0, err
  1268. }
  1269. }
  1270. }
  1271. if err := c.in.err; err != nil {
  1272. return 0, err
  1273. }
  1274. if c.input != nil {
  1275. n, err = c.input.Read(b)
  1276. if err == io.EOF {
  1277. err = nil
  1278. c.in.freeBlock(c.input)
  1279. c.input = nil
  1280. }
  1281. }
  1282. // Following early application data, an end_of_early_data is expected.
  1283. if err == nil && c.phase != readingEarlyData && c.input == nil {
  1284. err = io.EOF
  1285. }
  1286. return
  1287. }
  1288. // Read can be made to time out and return a net.Error with Timeout() == true
  1289. // after a fixed time limit; see SetDeadline and SetReadDeadline.
  1290. func (c *Conn) Read(b []byte) (n int, err error) {
  1291. if err = c.Handshake(); err != nil {
  1292. return
  1293. }
  1294. if len(b) == 0 {
  1295. // Put this after Handshake, in case people were calling
  1296. // Read(nil) for the side effect of the Handshake.
  1297. return
  1298. }
  1299. c.confirmMutex.Lock()
  1300. if atomic.LoadInt32(&c.handshakeConfirmed) == 1 { // c.phase == handshakeConfirmed
  1301. c.confirmMutex.Unlock()
  1302. } else {
  1303. defer func() {
  1304. // If we transitioned to handshakeConfirmed we already released the lock,
  1305. // otherwise do it here.
  1306. if c.phase != handshakeConfirmed {
  1307. c.confirmMutex.Unlock()
  1308. }
  1309. }()
  1310. }
  1311. c.in.Lock()
  1312. defer c.in.Unlock()
  1313. // Some OpenSSL servers send empty records in order to randomize the
  1314. // CBC IV. So this loop ignores a limited number of empty records.
  1315. const maxConsecutiveEmptyRecords = 100
  1316. for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
  1317. for c.input == nil && c.in.err == nil {
  1318. if err := c.readRecord(recordTypeApplicationData); err != nil {
  1319. // Soft error, like EAGAIN
  1320. return 0, err
  1321. }
  1322. if c.hand.Len() > 0 {
  1323. if c.phase == readingEarlyData || c.phase == waitingClientFinished {
  1324. if c.phase == readingEarlyData {
  1325. if err := c.handleEndOfEarlyData(); err != nil {
  1326. return 0, err
  1327. }
  1328. }
  1329. // Server has received all early data, confirm
  1330. // by reading the Client Finished message.
  1331. if err := c.hs.readClientFinished13(true); err != nil {
  1332. c.in.setErrorLocked(err)
  1333. return 0, err
  1334. }
  1335. continue
  1336. }
  1337. if err := c.handlePostHandshake(); err != nil {
  1338. return 0, err
  1339. }
  1340. }
  1341. }
  1342. if err := c.in.err; err != nil {
  1343. return 0, err
  1344. }
  1345. n, err = c.input.Read(b)
  1346. if err == io.EOF {
  1347. err = nil
  1348. c.in.freeBlock(c.input)
  1349. c.input = nil
  1350. }
  1351. // If a close-notify alert is waiting, read it so that
  1352. // we can return (n, EOF) instead of (n, nil), to signal
  1353. // to the HTTP response reading goroutine that the
  1354. // connection is now closed. This eliminates a race
  1355. // where the HTTP response reading goroutine would
  1356. // otherwise not observe the EOF until its next read,
  1357. // by which time a client goroutine might have already
  1358. // tried to reuse the HTTP connection for a new
  1359. // request.
  1360. // See https://codereview.appspot.com/76400046
  1361. // and https://golang.org/issue/3514
  1362. if ri := c.rawInput; ri != nil &&
  1363. n != 0 && err == nil &&
  1364. c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
  1365. if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
  1366. err = recErr // will be io.EOF on closeNotify
  1367. }
  1368. }
  1369. if n != 0 || err != nil {
  1370. return n, err
  1371. }
  1372. }
  1373. return 0, io.ErrNoProgress
  1374. }
  1375. // Close closes the connection.
  1376. func (c *Conn) Close() error {
  1377. // Interlock with Conn.Write above.
  1378. var x int32
  1379. for {
  1380. x = atomic.LoadInt32(&c.activeCall)
  1381. if x&1 != 0 {
  1382. return errClosed
  1383. }
  1384. if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1385. break
  1386. }
  1387. }
  1388. if x != 0 {
  1389. // io.Writer and io.Closer should not be used concurrently.
  1390. // If Close is called while a Write is currently in-flight,
  1391. // interpret that as a sign that this Close is really just
  1392. // being used to break the Write and/or clean up resources and
  1393. // avoid sending the alertCloseNotify, which may block
  1394. // waiting on handshakeMutex or the c.out mutex.
  1395. return c.conn.Close()
  1396. }
  1397. var alertErr error
  1398. c.handshakeMutex.Lock()
  1399. if c.handshakeComplete {
  1400. alertErr = c.closeNotify()
  1401. }
  1402. c.handshakeMutex.Unlock()
  1403. if err := c.conn.Close(); err != nil {
  1404. return err
  1405. }
  1406. return alertErr
  1407. }
  1408. var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1409. // CloseWrite shuts down the writing side of the connection. It should only be
  1410. // called once the handshake has completed and does not call CloseWrite on the
  1411. // underlying connection. Most callers should just use Close.
  1412. func (c *Conn) CloseWrite() error {
  1413. c.handshakeMutex.Lock()
  1414. defer c.handshakeMutex.Unlock()
  1415. if !c.handshakeComplete {
  1416. return errEarlyCloseWrite
  1417. }
  1418. return c.closeNotify()
  1419. }
  1420. func (c *Conn) closeNotify() error {
  1421. c.out.Lock()
  1422. defer c.out.Unlock()
  1423. if !c.closeNotifySent {
  1424. c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1425. c.closeNotifySent = true
  1426. }
  1427. return c.closeNotifyErr
  1428. }
  1429. // Handshake runs the client or server handshake
  1430. // protocol if it has not yet been run.
  1431. // Most uses of this package need not call Handshake
  1432. // explicitly: the first Read or Write will call it automatically.
  1433. //
  1434. // In TLS 1.3 Handshake returns after the client and server first flights,
  1435. // without waiting for the Client Finished.
  1436. func (c *Conn) Handshake() error {
  1437. c.handshakeMutex.Lock()
  1438. defer c.handshakeMutex.Unlock()
  1439. if err := c.handshakeErr; err != nil {
  1440. return err
  1441. }
  1442. if c.handshakeComplete {
  1443. return nil
  1444. }
  1445. c.in.Lock()
  1446. defer c.in.Unlock()
  1447. // The handshake cannot have completed when handshakeMutex was unlocked
  1448. // because this goroutine set handshakeCond.
  1449. if c.handshakeErr != nil || c.handshakeComplete {
  1450. panic("handshake should not have been able to complete after handshakeCond was set")
  1451. }
  1452. c.connID = make([]byte, 8)
  1453. if _, err := io.ReadFull(c.config.rand(), c.connID); err != nil {
  1454. return err
  1455. }
  1456. if c.isClient {
  1457. c.handshakeErr = c.clientHandshake()
  1458. } else {
  1459. c.handshakeErr = c.serverHandshake()
  1460. }
  1461. if c.handshakeErr == nil {
  1462. c.handshakes++
  1463. } else {
  1464. // If an error occurred during the hadshake try to flush the
  1465. // alert that might be left in the buffer.
  1466. c.flush()
  1467. }
  1468. if c.handshakeErr == nil && !c.handshakeComplete {
  1469. panic("handshake should have had a result.")
  1470. }
  1471. return c.handshakeErr
  1472. }
  1473. // ConnectionState returns basic TLS details about the connection.
  1474. func (c *Conn) ConnectionState() ConnectionState {
  1475. c.handshakeMutex.Lock()
  1476. defer c.handshakeMutex.Unlock()
  1477. var state ConnectionState
  1478. state.HandshakeComplete = c.handshakeComplete
  1479. state.ServerName = c.serverName
  1480. if c.handshakeComplete {
  1481. state.ConnectionID = c.connID
  1482. state.ClientHello = c.clientHello
  1483. state.Version = c.vers
  1484. state.NegotiatedProtocol = c.clientProtocol
  1485. state.DidResume = c.didResume
  1486. state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1487. state.CipherSuite = c.cipherSuite
  1488. state.PeerCertificates = c.peerCertificates
  1489. state.VerifiedChains = c.verifiedChains
  1490. state.SignedCertificateTimestamps = c.scts
  1491. state.OCSPResponse = c.ocspResponse
  1492. if c.verifiedDc != nil {
  1493. state.DelegatedCredential = c.verifiedDc.raw
  1494. }
  1495. state.HandshakeConfirmed = atomic.LoadInt32(&c.handshakeConfirmed) == 1
  1496. if !state.HandshakeConfirmed {
  1497. state.Unique0RTTToken = c.binder
  1498. }
  1499. if !c.didResume {
  1500. if c.clientFinishedIsFirst {
  1501. state.TLSUnique = c.clientFinished[:]
  1502. } else {
  1503. state.TLSUnique = c.serverFinished[:]
  1504. }
  1505. }
  1506. }
  1507. return state
  1508. }
  1509. // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1510. // any. (Only valid for client connections.)
  1511. func (c *Conn) OCSPResponse() []byte {
  1512. c.handshakeMutex.Lock()
  1513. defer c.handshakeMutex.Unlock()
  1514. return c.ocspResponse
  1515. }
  1516. // VerifyHostname checks that the peer certificate chain is valid for
  1517. // connecting to host. If so, it returns nil; if not, it returns an error
  1518. // describing the problem.
  1519. func (c *Conn) VerifyHostname(host string) error {
  1520. c.handshakeMutex.Lock()
  1521. defer c.handshakeMutex.Unlock()
  1522. if !c.isClient {
  1523. return errors.New("tls: VerifyHostname called on TLS server connection")
  1524. }
  1525. if !c.handshakeComplete {
  1526. return errors.New("tls: handshake has not yet been performed")
  1527. }
  1528. if len(c.verifiedChains) == 0 {
  1529. return errors.New("tls: handshake did not verify certificate chain")
  1530. }
  1531. return c.peerCertificates[0].VerifyHostname(host)
  1532. }