th5/handshake_client.go
Adam Langley 93eb884c98 crypto/tls: use pool building for certificate checking
Previously we checked the certificate chain from the leaf
upwards and expected to jump from the last cert in the chain to
a root certificate.

Although technically correct, there are a number of sites with
problems including out-of-order certs, superfluous certs and
missing certs.

The last of these requires AIA chasing, which is a lot of
complexity. However, we can address the more common cases by
using a pool building algorithm, as browsers do.

We build a pool of root certificates and a pool from the
server's chain. We then try to build a path to a root
certificate, using either of these pools.

This differs from the behaviour of, say, Firefox in that Firefox
will accumulate intermedite certificate in a persistent pool in
the hope that it can use them to fill in gaps in future chains.

We don't do that because it leads to confusing errors which only
occur based on the order to sites visited.

This change also enabled SNI for tls.Dial so that sites will return
the correct certificate chain.

R=rsc
CC=golang-dev
https://golang.org/cl/2916041
2010-11-05 09:54:56 -04:00

288 lines
8.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"crypto/hmac"
"crypto/rc4"
"crypto/rsa"
"crypto/subtle"
"crypto/x509"
"io"
"os"
)
func (c *Conn) clientHandshake() os.Error {
finishedHash := newFinishedHash()
if c.config == nil {
c.config = defaultConfig()
}
hello := &clientHelloMsg{
vers: maxVersion,
cipherSuites: []uint16{TLS_RSA_WITH_RC4_128_SHA},
compressionMethods: []uint8{compressionNone},
random: make([]byte, 32),
ocspStapling: true,
serverName: c.config.ServerName,
}
t := uint32(c.config.Time())
hello.random[0] = byte(t >> 24)
hello.random[1] = byte(t >> 16)
hello.random[2] = byte(t >> 8)
hello.random[3] = byte(t)
_, err := io.ReadFull(c.config.Rand, hello.random[4:])
if err != nil {
c.sendAlert(alertInternalError)
return os.ErrorString("short read from Rand")
}
finishedHash.Write(hello.marshal())
c.writeRecord(recordTypeHandshake, hello.marshal())
msg, err := c.readHandshake()
if err != nil {
return err
}
serverHello, ok := msg.(*serverHelloMsg)
if !ok {
return c.sendAlert(alertUnexpectedMessage)
}
finishedHash.Write(serverHello.marshal())
vers, ok := mutualVersion(serverHello.vers)
if !ok {
c.sendAlert(alertProtocolVersion)
}
c.vers = vers
c.haveVers = true
if serverHello.cipherSuite != TLS_RSA_WITH_RC4_128_SHA ||
serverHello.compressionMethod != compressionNone {
return c.sendAlert(alertUnexpectedMessage)
}
msg, err = c.readHandshake()
if err != nil {
return err
}
certMsg, ok := msg.(*certificateMsg)
if !ok || len(certMsg.certificates) == 0 {
return c.sendAlert(alertUnexpectedMessage)
}
finishedHash.Write(certMsg.marshal())
certs := make([]*x509.Certificate, len(certMsg.certificates))
chain := NewCASet()
for i, asn1Data := range certMsg.certificates {
cert, err := x509.ParseCertificate(asn1Data)
if err != nil {
c.sendAlert(alertBadCertificate)
return os.ErrorString("failed to parse certificate from server: " + err.String())
}
certs[i] = cert
chain.AddCert(cert)
}
// If we don't have a root CA set configured then anything is accepted.
// TODO(rsc): Find certificates for OS X 10.6.
for cur := certs[0]; c.config.RootCAs != nil; {
parent := c.config.RootCAs.FindVerifiedParent(cur)
if parent != nil {
break
}
parent = chain.FindVerifiedParent(cur)
if parent == nil {
c.sendAlert(alertBadCertificate)
return os.ErrorString("could not find root certificate for chain")
}
if !parent.BasicConstraintsValid || !parent.IsCA {
c.sendAlert(alertBadCertificate)
return os.ErrorString("intermediate certificate does not have CA bit set")
}
// KeyUsage status flags are ignored. From Engineering
// Security, Peter Gutmann: A European government CA marked its
// signing certificates as being valid for encryption only, but
// no-one noticed. Another European CA marked its signature
// keys as not being valid for signatures. A different CA
// marked its own trusted root certificate as being invalid for
// certificate signing. Another national CA distributed a
// certificate to be used to encrypt data for the countrys tax
// authority that was marked as only being usable for digital
// signatures but not for encryption. Yet another CA reversed
// the order of the bit flags in the keyUsage due to confusion
// over encoding endianness, essentially setting a random
// keyUsage in certificates that it issued. Another CA created
// a self-invalidating certificate by adding a certificate
// policy statement stipulating that the certificate had to be
// used strictly as specified in the keyUsage, and a keyUsage
// containing a flag indicating that the RSA encryption key
// could only be used for Diffie-Hellman key agreement.
cur = parent
}
pub, ok := certs[0].PublicKey.(*rsa.PublicKey)
if !ok {
return c.sendAlert(alertUnsupportedCertificate)
}
c.peerCertificates = certs
if serverHello.certStatus {
msg, err = c.readHandshake()
if err != nil {
return err
}
cs, ok := msg.(*certificateStatusMsg)
if !ok {
return c.sendAlert(alertUnexpectedMessage)
}
finishedHash.Write(cs.marshal())
if cs.statusType == statusTypeOCSP {
c.ocspResponse = cs.response
}
}
msg, err = c.readHandshake()
if err != nil {
return err
}
transmitCert := false
certReq, ok := msg.(*certificateRequestMsg)
if ok {
// We only accept certificates with RSA keys.
rsaAvail := false
for _, certType := range certReq.certificateTypes {
if certType == certTypeRSASign {
rsaAvail = true
break
}
}
// For now, only send a certificate back if the server gives us an
// empty list of certificateAuthorities.
//
// RFC 4346 on the certificateAuthorities field:
// A list of the distinguished names of acceptable certificate
// authorities. These distinguished names may specify a desired
// distinguished name for a root CA or for a subordinate CA; thus,
// this message can be used to describe both known roots and a
// desired authorization space. If the certificate_authorities
// list is empty then the client MAY send any certificate of the
// appropriate ClientCertificateType, unless there is some
// external arrangement to the contrary.
if rsaAvail && len(certReq.certificateAuthorities) == 0 {
transmitCert = true
}
finishedHash.Write(certReq.marshal())
msg, err = c.readHandshake()
if err != nil {
return err
}
}
shd, ok := msg.(*serverHelloDoneMsg)
if !ok {
return c.sendAlert(alertUnexpectedMessage)
}
finishedHash.Write(shd.marshal())
var cert *x509.Certificate
if transmitCert {
certMsg = new(certificateMsg)
if len(c.config.Certificates) > 0 {
cert, err = x509.ParseCertificate(c.config.Certificates[0].Certificate[0])
if err == nil && cert.PublicKeyAlgorithm == x509.RSA {
certMsg.certificates = c.config.Certificates[0].Certificate
} else {
cert = nil
}
}
finishedHash.Write(certMsg.marshal())
c.writeRecord(recordTypeHandshake, certMsg.marshal())
}
ckx := new(clientKeyExchangeMsg)
preMasterSecret := make([]byte, 48)
preMasterSecret[0] = byte(hello.vers >> 8)
preMasterSecret[1] = byte(hello.vers)
_, err = io.ReadFull(c.config.Rand, preMasterSecret[2:])
if err != nil {
return c.sendAlert(alertInternalError)
}
ckx.ciphertext, err = rsa.EncryptPKCS1v15(c.config.Rand, pub, preMasterSecret)
if err != nil {
return c.sendAlert(alertInternalError)
}
finishedHash.Write(ckx.marshal())
c.writeRecord(recordTypeHandshake, ckx.marshal())
if cert != nil {
certVerify := new(certificateVerifyMsg)
var digest [36]byte
copy(digest[0:16], finishedHash.serverMD5.Sum())
copy(digest[16:36], finishedHash.serverSHA1.Sum())
signed, err := rsa.SignPKCS1v15(c.config.Rand, c.config.Certificates[0].PrivateKey, rsa.HashMD5SHA1, digest[0:])
if err != nil {
return c.sendAlert(alertInternalError)
}
certVerify.signature = signed
finishedHash.Write(certVerify.marshal())
c.writeRecord(recordTypeHandshake, certVerify.marshal())
}
suite := cipherSuites[0]
masterSecret, clientMAC, serverMAC, clientKey, serverKey :=
keysFromPreMasterSecret11(preMasterSecret, hello.random, serverHello.random, suite.hashLength, suite.cipherKeyLength)
cipher, _ := rc4.NewCipher(clientKey)
c.out.prepareCipherSpec(cipher, hmac.NewSHA1(clientMAC))
c.writeRecord(recordTypeChangeCipherSpec, []byte{1})
finished := new(finishedMsg)
finished.verifyData = finishedHash.clientSum(masterSecret)
finishedHash.Write(finished.marshal())
c.writeRecord(recordTypeHandshake, finished.marshal())
cipher2, _ := rc4.NewCipher(serverKey)
c.in.prepareCipherSpec(cipher2, hmac.NewSHA1(serverMAC))
c.readRecord(recordTypeChangeCipherSpec)
if c.err != nil {
return c.err
}
msg, err = c.readHandshake()
if err != nil {
return err
}
serverFinished, ok := msg.(*finishedMsg)
if !ok {
return c.sendAlert(alertUnexpectedMessage)
}
verify := finishedHash.serverSum(masterSecret)
if len(verify) != len(serverFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 {
return c.sendAlert(alertHandshakeFailure)
}
c.handshakeComplete = true
c.cipherSuite = TLS_RSA_WITH_RC4_128_SHA
return nil
}