1
0
th5/subcerts.go
2018-08-10 09:08:43 +01:00

393 linhas
13 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
// Delegated credentials for TLS
// (https://tools.ietf.org/html/draft-ietf-tls-subcerts-02) is an IETF Internet
// draft and proposed TLS extension. This allows a backend server to delegate
// TLS termination to a trusted frontend. If the client supports this extension,
// then the frontend may use a "delegated credential" as the signing key in the
// handshake. A delegated credential is a short lived key pair delegated to the
// server by an entity trusted by the client. Once issued, credentials can't be
// revoked; in order to mitigate risk in case the frontend is compromised, the
// credential is only valid for a short time (days, hours, or even minutes).
//
// This implements draft 02. This draft doesn't specify an object identifier for
// the X.509 extension; we use one assigned by Cloudflare. In addition, IANA has
// not assigned an extension ID for this extension; we picked up one that's not
// yet taken.
//
// TODO(cjpatton) Only ECDSA is supported with delegated credentials for now;
// we'd like to suppoort for EcDSA signatures once these have better support
// upstream.
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/x509"
"encoding/asn1"
"encoding/binary"
"errors"
"fmt"
"time"
)
const (
// length of the public key field
dcPubKeyFieldLen = 3
dcMaxTTLSeconds = 60 * 60 * 24 * 7 // 7 days
dcMaxTTL = time.Duration(dcMaxTTLSeconds * time.Second)
dcMaxPublicKeyLen = 1 << 24 // Bytes
dcMaxSignatureLen = 1 << 16 // Bytes
)
var errNoDelegationUsage = errors.New("certificate not authorized for delegation")
// delegationUsageId is the DelegationUsage X.509 extension OID
//
// NOTE(cjpatton) This OID is a child of Cloudflare's IANA-assigned OID.
var delegationUsageId = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 44363, 44}
// canDelegate returns true if a certificate can be used for delegated
// credentials.
func canDelegate(cert *x509.Certificate) bool {
// Check that the digitalSignature key usage is set.
if (cert.KeyUsage & x509.KeyUsageDigitalSignature) == 0 {
return false
}
// Check that the certificate has the DelegationUsage extension and that
// it's non-critical (per the spec).
for _, extension := range cert.Extensions {
if extension.Id.Equal(delegationUsageId) {
return true
}
}
return false
}
// credential stores the public components of a credential.
type credential struct {
// The serialized form of the credential.
raw []byte
// The amount of time for which the credential is valid. Specifically, the
// the credential expires `ValidTime` seconds after the `notBefore` of the
// delegation certificate. The delegator shall not issue delegated
// credentials that are valid for more than 7 days from the current time.
//
// When this data structure is serialized, this value is converted to a
// uint32 representing the duration in seconds.
validTime time.Duration
// The signature scheme associated with the delegated credential public key.
expectedCertVerifyAlgorithm SignatureScheme
// The version of TLS in which the credential will be used.
expectedVersion uint16
// The credential public key.
publicKey crypto.PublicKey
}
// isExpired returns true if the credential has expired. The end of the validity
// interval is defined as the delegator certificate's notBefore field (`start`)
// plus ValidTime seconds. This function simply checks that the current time
// (`now`) is before the end of the valdity interval.
func (cred *credential) isExpired(start, now time.Time) bool {
end := start.Add(cred.validTime)
return !now.Before(end)
}
// invalidTTL returns true if the credential's validity period is longer than the
// maximum permitted. This is defined by the certificate's notBefore field
// (`start`) plus the ValidTime, minus the current time (`now`).
func (cred *credential) invalidTTL(start, now time.Time) bool {
return cred.validTime > (now.Sub(start) + dcMaxTTL).Round(time.Second)
}
// marshalSubjectPublicKeyInfo returns a DER encoded SubjectPublicKeyInfo structure
// (as defined in the X.509 standard) for the credential.
func (cred *credential) marshalSubjectPublicKeyInfo() ([]byte, error) {
switch cred.expectedCertVerifyAlgorithm {
case ECDSAWithP256AndSHA256,
ECDSAWithP384AndSHA384,
ECDSAWithP521AndSHA512:
serializedPublicKey, err := x509.MarshalPKIXPublicKey(cred.publicKey)
if err != nil {
return nil, err
}
return serializedPublicKey, nil
default:
return nil, fmt.Errorf("unsupported signature scheme: 0x%04x", cred.expectedCertVerifyAlgorithm)
}
}
// marshal encodes a credential in the wire format specified in
// https://tools.ietf.org/html/draft-ietf-tls-subcerts-02.
func (cred *credential) marshal() ([]byte, error) {
// The number of bytes comprising the DC parameters, which includes the
// validity time (4 bytes), the signature scheme of the public key (2 bytes), and
// the protocol version (2 bytes).
paramsLen := 8
// The first 4 bytes are the valid_time, scheme, and version fields.
serialized := make([]byte, paramsLen+dcPubKeyFieldLen)
binary.BigEndian.PutUint32(serialized, uint32(cred.validTime/time.Second))
binary.BigEndian.PutUint16(serialized[4:], uint16(cred.expectedCertVerifyAlgorithm))
binary.BigEndian.PutUint16(serialized[6:], cred.expectedVersion)
// Encode the public key and assert that the encoding is no longer than 2^16
// bytes (per the spec).
serializedPublicKey, err := cred.marshalSubjectPublicKeyInfo()
if err != nil {
return nil, err
}
if len(serializedPublicKey) > dcMaxPublicKeyLen {
return nil, errors.New("public key is too long")
}
// The next 3 bytes are the length of the public key field, which may be up
// to 2^24 bytes long.
putUint24(serialized[paramsLen:], len(serializedPublicKey))
// The remaining bytes are the public key itself.
serialized = append(serialized, serializedPublicKey...)
cred.raw = serialized
return serialized, nil
}
// unmarshalCredential decodes a credential and returns it.
func unmarshalCredential(serialized []byte) (*credential, error) {
// The number of bytes comprising the DC parameters.
paramsLen := 8
if len(serialized) < paramsLen+dcPubKeyFieldLen {
return nil, errors.New("credential is too short")
}
// Parse the valid_time, scheme, and version fields.
validTime := time.Duration(binary.BigEndian.Uint32(serialized)) * time.Second
scheme := SignatureScheme(binary.BigEndian.Uint16(serialized[4:]))
version := binary.BigEndian.Uint16(serialized[6:])
// Parse the SubjectPublicKeyInfo.
pk, err := x509.ParsePKIXPublicKey(serialized[paramsLen+dcPubKeyFieldLen:])
if err != nil {
return nil, err
}
if _, ok := pk.(*ecdsa.PublicKey); !ok {
return nil, fmt.Errorf("unsupported delegation key type: %T", pk)
}
return &credential{
raw: serialized,
validTime: validTime,
expectedCertVerifyAlgorithm: scheme,
expectedVersion: version,
publicKey: pk,
}, nil
}
// getCredentialLen returns the number of bytes comprising the serialized
// credential that starts at the beginning of the input slice. It returns an
// error if the input is too short to contain a credential.
func getCredentialLen(serialized []byte) (int, error) {
paramsLen := 8
if len(serialized) < paramsLen+dcPubKeyFieldLen {
return 0, errors.New("credential is too short")
}
// First several bytes are the valid_time, scheme, and version fields.
serialized = serialized[paramsLen:]
// The next 3 bytes are the length of the serialized public key, which may
// be up to 2^24 bytes in length.
serializedPublicKeyLen := getUint24(serialized)
serialized = serialized[dcPubKeyFieldLen:]
if len(serialized) < serializedPublicKeyLen {
return 0, errors.New("public key of credential is too short")
}
return paramsLen + dcPubKeyFieldLen + serializedPublicKeyLen, nil
}
// delegatedCredential stores a credential and its delegation.
type delegatedCredential struct {
raw []byte
// The credential, which contains a public and its validity time.
cred *credential
// The signature scheme used to sign the credential.
algorithm SignatureScheme
// The credential's delegation.
signature []byte
}
// ensureCertificateHasLeaf parses the leaf certificate if needed.
func ensureCertificateHasLeaf(cert *Certificate) error {
var err error
if cert.Leaf == nil {
if len(cert.Certificate[0]) == 0 {
return errors.New("missing leaf certificate")
}
cert.Leaf, err = x509.ParseCertificate(cert.Certificate[0])
if err != nil {
return err
}
}
return nil
}
// validate checks that that the signature is valid, that the credential hasn't
// expired, and that the TTL is valid. It also checks that certificate can be
// used for delegation.
func (dc *delegatedCredential) validate(cert *x509.Certificate, now time.Time) (bool, error) {
// Check that the cert can delegate.
if !canDelegate(cert) {
return false, errNoDelegationUsage
}
if dc.cred.isExpired(cert.NotBefore, now) {
return false, errors.New("credential has expired")
}
if dc.cred.invalidTTL(cert.NotBefore, now) {
return false, errors.New("credential TTL is invalid")
}
// Prepare the credential for verification.
rawCred, err := dc.cred.marshal()
if err != nil {
return false, err
}
hash := getHash(dc.algorithm)
in := prepareDelegation(hash, rawCred, cert.Raw, dc.algorithm)
// TODO(any) This code overlaps significantly with verifyHandshakeSignature()
// in ../auth.go. This should be refactored.
switch dc.algorithm {
case ECDSAWithP256AndSHA256,
ECDSAWithP384AndSHA384,
ECDSAWithP521AndSHA512:
pk, ok := cert.PublicKey.(*ecdsa.PublicKey)
if !ok {
return false, errors.New("expected ECDSA public key")
}
sig := new(ecdsaSignature)
if _, err = asn1.Unmarshal(dc.signature, sig); err != nil {
return false, err
}
return ecdsa.Verify(pk, in, sig.R, sig.S), nil
default:
return false, fmt.Errorf(
"unsupported signature scheme: 0x%04x", dc.algorithm)
}
}
// unmarshalDelegatedCredential decodes a DelegatedCredential structure.
func unmarshalDelegatedCredential(serialized []byte) (*delegatedCredential, error) {
// Get the length of the serialized credential that begins at the start of
// the input slice.
serializedCredentialLen, err := getCredentialLen(serialized)
if err != nil {
return nil, err
}
// Parse the credential.
cred, err := unmarshalCredential(serialized[:serializedCredentialLen])
if err != nil {
return nil, err
}
// Parse the signature scheme.
serialized = serialized[serializedCredentialLen:]
if len(serialized) < 4 {
return nil, errors.New("delegated credential is too short")
}
scheme := SignatureScheme(binary.BigEndian.Uint16(serialized))
// Parse the signature length.
serialized = serialized[2:]
serializedSignatureLen := binary.BigEndian.Uint16(serialized)
// Prase the signature.
serialized = serialized[2:]
if len(serialized) < int(serializedSignatureLen) {
return nil, errors.New("signature of delegated credential is too short")
}
sig := serialized[:serializedSignatureLen]
return &delegatedCredential{
raw: serialized,
cred: cred,
algorithm: scheme,
signature: sig,
}, nil
}
// getCurve maps the SignatureScheme to its corresponding elliptic.Curve.
func getCurve(scheme SignatureScheme) elliptic.Curve {
switch scheme {
case ECDSAWithP256AndSHA256:
return elliptic.P256()
case ECDSAWithP384AndSHA384:
return elliptic.P384()
case ECDSAWithP521AndSHA512:
return elliptic.P521()
default:
return nil
}
}
// getHash maps the SignatureScheme to its corresponding hash function.
//
// TODO(any) This function overlaps with hashForSignatureScheme in 13.go.
func getHash(scheme SignatureScheme) crypto.Hash {
switch scheme {
case ECDSAWithP256AndSHA256:
return crypto.SHA256
case ECDSAWithP384AndSHA384:
return crypto.SHA384
case ECDSAWithP521AndSHA512:
return crypto.SHA512
default:
return 0 // Unknown hash function
}
}
// prepareDelegation returns a hash of the message that the delegator is to
// sign. The inputs are the credential (`cred`), the DER-encoded delegator
// certificate (`delegatorCert`) and the signature scheme of the delegator
// (`delegatorAlgorithm`).
func prepareDelegation(hash crypto.Hash, cred, delegatorCert []byte, delegatorAlgorithm SignatureScheme) []byte {
h := hash.New()
// The header.
h.Write(bytes.Repeat([]byte{0x20}, 64))
h.Write([]byte("TLS, server delegated credentials"))
h.Write([]byte{0x00})
// The delegation certificate.
h.Write(delegatorCert)
// The credential.
h.Write(cred)
// The delegator signature scheme.
var serializedScheme [2]byte
binary.BigEndian.PutUint16(serializedScheme[:], uint16(delegatorAlgorithm))
h.Write(serializedScheme[:])
return h.Sum(nil)
}