th5/prf.go
Adam Langley 13d26a420a crypto/tls: support session ticket resumption.
Session resumption saves a round trip and removes the need to perform
the public-key operations of a TLS handshake when both the client and
server support it (which is true of Firefox and Chrome, at least).

R=golang-dev, bradfitz, rsc
CC=golang-dev
https://golang.org/cl/6555051
2012-09-24 16:52:43 -04:00

247 lines
6.9 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"crypto/hmac"
"crypto/md5"
"crypto/sha1"
"hash"
)
// Split a premaster secret in two as specified in RFC 4346, section 5.
func splitPreMasterSecret(secret []byte) (s1, s2 []byte) {
s1 = secret[0 : (len(secret)+1)/2]
s2 = secret[len(secret)/2:]
return
}
// pHash implements the P_hash function, as defined in RFC 4346, section 5.
func pHash(result, secret, seed []byte, hash func() hash.Hash) {
h := hmac.New(hash, secret)
h.Write(seed)
a := h.Sum(nil)
j := 0
for j < len(result) {
h.Reset()
h.Write(a)
h.Write(seed)
b := h.Sum(nil)
todo := len(b)
if j+todo > len(result) {
todo = len(result) - j
}
copy(result[j:j+todo], b)
j += todo
h.Reset()
h.Write(a)
a = h.Sum(nil)
}
}
// pRF10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5.
func pRF10(result, secret, label, seed []byte) {
hashSHA1 := sha1.New
hashMD5 := md5.New
labelAndSeed := make([]byte, len(label)+len(seed))
copy(labelAndSeed, label)
copy(labelAndSeed[len(label):], seed)
s1, s2 := splitPreMasterSecret(secret)
pHash(result, s1, labelAndSeed, hashMD5)
result2 := make([]byte, len(result))
pHash(result2, s2, labelAndSeed, hashSHA1)
for i, b := range result2 {
result[i] ^= b
}
}
// pRF30 implements the SSL 3.0 pseudo-random function, as defined in
// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6.
func pRF30(result, secret, label, seed []byte) {
hashSHA1 := sha1.New()
hashMD5 := md5.New()
done := 0
i := 0
// RFC5246 section 6.3 says that the largest PRF output needed is 128
// bytes. Since no more ciphersuites will be added to SSLv3, this will
// remain true. Each iteration gives us 16 bytes so 10 iterations will
// be sufficient.
var b [11]byte
for done < len(result) {
for j := 0; j <= i; j++ {
b[j] = 'A' + byte(i)
}
hashSHA1.Reset()
hashSHA1.Write(b[:i+1])
hashSHA1.Write(secret)
hashSHA1.Write(seed)
digest := hashSHA1.Sum(nil)
hashMD5.Reset()
hashMD5.Write(secret)
hashMD5.Write(digest)
done += copy(result[done:], hashMD5.Sum(nil))
i++
}
}
const (
tlsRandomLength = 32 // Length of a random nonce in TLS 1.1.
masterSecretLength = 48 // Length of a master secret in TLS 1.1.
finishedVerifyLength = 12 // Length of verify_data in a Finished message.
)
var masterSecretLabel = []byte("master secret")
var keyExpansionLabel = []byte("key expansion")
var clientFinishedLabel = []byte("client finished")
var serverFinishedLabel = []byte("server finished")
// masterFromPreMasterSecret generates the master secret from the pre-master
// secret. See http://tools.ietf.org/html/rfc5246#section-8.1
func masterFromPreMasterSecret(version uint16, preMasterSecret, clientRandom, serverRandom []byte) []byte {
prf := pRF10
if version == versionSSL30 {
prf = pRF30
}
var seed [tlsRandomLength * 2]byte
copy(seed[0:len(clientRandom)], clientRandom)
copy(seed[len(clientRandom):], serverRandom)
masterSecret := make([]byte, masterSecretLength)
prf(masterSecret, preMasterSecret, masterSecretLabel, seed[0:])
return masterSecret
}
// keysFromMasterSecret generates the connection keys from the master
// secret, given the lengths of the MAC key, cipher key and IV, as defined in
// RFC 2246, section 6.3.
func keysFromMasterSecret(version uint16, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) {
prf := pRF10
if version == versionSSL30 {
prf = pRF30
}
var seed [tlsRandomLength * 2]byte
copy(seed[0:len(clientRandom)], serverRandom)
copy(seed[len(serverRandom):], clientRandom)
n := 2*macLen + 2*keyLen + 2*ivLen
keyMaterial := make([]byte, n)
prf(keyMaterial, masterSecret, keyExpansionLabel, seed[0:])
clientMAC = keyMaterial[:macLen]
keyMaterial = keyMaterial[macLen:]
serverMAC = keyMaterial[:macLen]
keyMaterial = keyMaterial[macLen:]
clientKey = keyMaterial[:keyLen]
keyMaterial = keyMaterial[keyLen:]
serverKey = keyMaterial[:keyLen]
keyMaterial = keyMaterial[keyLen:]
clientIV = keyMaterial[:ivLen]
keyMaterial = keyMaterial[ivLen:]
serverIV = keyMaterial[:ivLen]
return
}
func newFinishedHash(version uint16) finishedHash {
return finishedHash{md5.New(), sha1.New(), md5.New(), sha1.New(), version}
}
// A finishedHash calculates the hash of a set of handshake messages suitable
// for including in a Finished message.
type finishedHash struct {
clientMD5 hash.Hash
clientSHA1 hash.Hash
serverMD5 hash.Hash
serverSHA1 hash.Hash
version uint16
}
func (h finishedHash) Write(msg []byte) (n int, err error) {
h.clientMD5.Write(msg)
h.clientSHA1.Write(msg)
h.serverMD5.Write(msg)
h.serverSHA1.Write(msg)
return len(msg), nil
}
// finishedSum10 calculates the contents of the verify_data member of a TLSv1
// Finished message given the MD5 and SHA1 hashes of a set of handshake
// messages.
func finishedSum10(md5, sha1, label, masterSecret []byte) []byte {
seed := make([]byte, len(md5)+len(sha1))
copy(seed, md5)
copy(seed[len(md5):], sha1)
out := make([]byte, finishedVerifyLength)
pRF10(out, masterSecret, label, seed)
return out
}
// finishedSum30 calculates the contents of the verify_data member of a SSLv3
// Finished message given the MD5 and SHA1 hashes of a set of handshake
// messages.
func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic [4]byte) []byte {
md5.Write(magic[:])
md5.Write(masterSecret)
md5.Write(ssl30Pad1[:])
md5Digest := md5.Sum(nil)
md5.Reset()
md5.Write(masterSecret)
md5.Write(ssl30Pad2[:])
md5.Write(md5Digest)
md5Digest = md5.Sum(nil)
sha1.Write(magic[:])
sha1.Write(masterSecret)
sha1.Write(ssl30Pad1[:40])
sha1Digest := sha1.Sum(nil)
sha1.Reset()
sha1.Write(masterSecret)
sha1.Write(ssl30Pad2[:40])
sha1.Write(sha1Digest)
sha1Digest = sha1.Sum(nil)
ret := make([]byte, len(md5Digest)+len(sha1Digest))
copy(ret, md5Digest)
copy(ret[len(md5Digest):], sha1Digest)
return ret
}
var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54}
var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52}
// clientSum returns the contents of the verify_data member of a client's
// Finished message.
func (h finishedHash) clientSum(masterSecret []byte) []byte {
if h.version == versionSSL30 {
return finishedSum30(h.clientMD5, h.clientSHA1, masterSecret, ssl3ClientFinishedMagic)
}
md5 := h.clientMD5.Sum(nil)
sha1 := h.clientSHA1.Sum(nil)
return finishedSum10(md5, sha1, clientFinishedLabel, masterSecret)
}
// serverSum returns the contents of the verify_data member of a server's
// Finished message.
func (h finishedHash) serverSum(masterSecret []byte) []byte {
if h.version == versionSSL30 {
return finishedSum30(h.serverMD5, h.serverSHA1, masterSecret, ssl3ServerFinishedMagic)
}
md5 := h.serverMD5.Sum(nil)
sha1 := h.serverSHA1.Sum(nil)
return finishedSum10(md5, sha1, serverFinishedLabel, masterSecret)
}