Alternative TLS implementation in Go
Não pode escolher mais do que 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

1388 linhas
39 KiB

  1. // Copyright 2010 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. // TLS low level connection and record layer
  5. package tls
  6. import (
  7. "bytes"
  8. "crypto/cipher"
  9. "crypto/subtle"
  10. "crypto/x509"
  11. "errors"
  12. "fmt"
  13. "io"
  14. "net"
  15. "sync"
  16. "sync/atomic"
  17. "time"
  18. )
  19. // A Conn represents a secured connection.
  20. // It implements the net.Conn interface.
  21. type Conn struct {
  22. // constant
  23. conn net.Conn
  24. isClient bool
  25. // constant after handshake; protected by handshakeMutex
  26. handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
  27. // handshakeCond, if not nil, indicates that a goroutine is committed
  28. // to running the handshake for this Conn. Other goroutines that need
  29. // to wait for the handshake can wait on this, under handshakeMutex.
  30. handshakeCond *sync.Cond
  31. handshakeErr error // error resulting from handshake
  32. vers uint16 // TLS version
  33. haveVers bool // version has been negotiated
  34. config *Config // configuration passed to constructor
  35. // handshakeComplete is true if the connection is currently transferring
  36. // application data (i.e. is not currently processing a handshake).
  37. handshakeComplete bool
  38. // handshakes counts the number of handshakes performed on the
  39. // connection so far. If renegotiation is disabled then this is either
  40. // zero or one.
  41. handshakes int
  42. didResume bool // whether this connection was a session resumption
  43. cipherSuite uint16
  44. ocspResponse []byte // stapled OCSP response
  45. scts [][]byte // signed certificate timestamps from server
  46. peerCertificates []*x509.Certificate
  47. // verifiedChains contains the certificate chains that we built, as
  48. // opposed to the ones presented by the server.
  49. verifiedChains [][]*x509.Certificate
  50. // serverName contains the server name indicated by the client, if any.
  51. serverName string
  52. // secureRenegotiation is true if the server echoed the secure
  53. // renegotiation extension. (This is meaningless as a server because
  54. // renegotiation is not supported in that case.)
  55. secureRenegotiation bool
  56. // clientFinishedIsFirst is true if the client sent the first Finished
  57. // message during the most recent handshake. This is recorded because
  58. // the first transmitted Finished message is the tls-unique
  59. // channel-binding value.
  60. clientFinishedIsFirst bool
  61. // closeNotifyErr is any error from sending the alertCloseNotify record.
  62. closeNotifyErr error
  63. // closeNotifySent is true if the Conn attempted to send an
  64. // alertCloseNotify record.
  65. closeNotifySent bool
  66. // clientFinished and serverFinished contain the Finished message sent
  67. // by the client or server in the most recent handshake. This is
  68. // retained to support the renegotiation extension and tls-unique
  69. // channel-binding.
  70. clientFinished [12]byte
  71. serverFinished [12]byte
  72. clientProtocol string
  73. clientProtocolFallback bool
  74. // input/output
  75. in, out halfConn // in.Mutex < out.Mutex
  76. rawInput *block // raw input, right off the wire
  77. input *block // application data waiting to be read
  78. hand bytes.Buffer // handshake data waiting to be read
  79. buffering bool // whether records are buffered in sendBuf
  80. sendBuf []byte // a buffer of records waiting to be sent
  81. // bytesSent counts the bytes of application data sent.
  82. // packetsSent counts packets.
  83. bytesSent int64
  84. packetsSent int64
  85. // activeCall is an atomic int32; the low bit is whether Close has
  86. // been called. the rest of the bits are the number of goroutines
  87. // in Conn.Write.
  88. activeCall int32
  89. tmp [16]byte
  90. }
  91. // Access to net.Conn methods.
  92. // Cannot just embed net.Conn because that would
  93. // export the struct field too.
  94. // LocalAddr returns the local network address.
  95. func (c *Conn) LocalAddr() net.Addr {
  96. return c.conn.LocalAddr()
  97. }
  98. // RemoteAddr returns the remote network address.
  99. func (c *Conn) RemoteAddr() net.Addr {
  100. return c.conn.RemoteAddr()
  101. }
  102. // SetDeadline sets the read and write deadlines associated with the connection.
  103. // A zero value for t means Read and Write will not time out.
  104. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
  105. func (c *Conn) SetDeadline(t time.Time) error {
  106. return c.conn.SetDeadline(t)
  107. }
  108. // SetReadDeadline sets the read deadline on the underlying connection.
  109. // A zero value for t means Read will not time out.
  110. func (c *Conn) SetReadDeadline(t time.Time) error {
  111. return c.conn.SetReadDeadline(t)
  112. }
  113. // SetWriteDeadline sets the write deadline on the underlying connection.
  114. // A zero value for t means Write will not time out.
  115. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
  116. func (c *Conn) SetWriteDeadline(t time.Time) error {
  117. return c.conn.SetWriteDeadline(t)
  118. }
  119. // A halfConn represents one direction of the record layer
  120. // connection, either sending or receiving.
  121. type halfConn struct {
  122. sync.Mutex
  123. err error // first permanent error
  124. version uint16 // protocol version
  125. cipher interface{} // cipher algorithm
  126. mac macFunction
  127. seq [8]byte // 64-bit sequence number
  128. bfree *block // list of free blocks
  129. additionalData [13]byte // to avoid allocs; interface method args escape
  130. nextCipher interface{} // next encryption state
  131. nextMac macFunction // next MAC algorithm
  132. // used to save allocating a new buffer for each MAC.
  133. inDigestBuf, outDigestBuf []byte
  134. }
  135. func (hc *halfConn) setErrorLocked(err error) error {
  136. hc.err = err
  137. return err
  138. }
  139. // prepareCipherSpec sets the encryption and MAC states
  140. // that a subsequent changeCipherSpec will use.
  141. func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
  142. hc.version = version
  143. hc.nextCipher = cipher
  144. hc.nextMac = mac
  145. }
  146. // changeCipherSpec changes the encryption and MAC states
  147. // to the ones previously passed to prepareCipherSpec.
  148. func (hc *halfConn) changeCipherSpec() error {
  149. if hc.nextCipher == nil {
  150. return alertInternalError
  151. }
  152. hc.cipher = hc.nextCipher
  153. hc.mac = hc.nextMac
  154. hc.nextCipher = nil
  155. hc.nextMac = nil
  156. for i := range hc.seq {
  157. hc.seq[i] = 0
  158. }
  159. return nil
  160. }
  161. // incSeq increments the sequence number.
  162. func (hc *halfConn) incSeq() {
  163. for i := 7; i >= 0; i-- {
  164. hc.seq[i]++
  165. if hc.seq[i] != 0 {
  166. return
  167. }
  168. }
  169. // Not allowed to let sequence number wrap.
  170. // Instead, must renegotiate before it does.
  171. // Not likely enough to bother.
  172. panic("TLS: sequence number wraparound")
  173. }
  174. // extractPadding returns, in constant time, the length of the padding to remove
  175. // from the end of payload. It also returns a byte which is equal to 255 if the
  176. // padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
  177. func extractPadding(payload []byte) (toRemove int, good byte) {
  178. if len(payload) < 1 {
  179. return 0, 0
  180. }
  181. paddingLen := payload[len(payload)-1]
  182. t := uint(len(payload)-1) - uint(paddingLen)
  183. // if len(payload) >= (paddingLen - 1) then the MSB of t is zero
  184. good = byte(int32(^t) >> 31)
  185. toCheck := 255 // the maximum possible padding length
  186. // The length of the padded data is public, so we can use an if here
  187. if toCheck+1 > len(payload) {
  188. toCheck = len(payload) - 1
  189. }
  190. for i := 0; i < toCheck; i++ {
  191. t := uint(paddingLen) - uint(i)
  192. // if i <= paddingLen then the MSB of t is zero
  193. mask := byte(int32(^t) >> 31)
  194. b := payload[len(payload)-1-i]
  195. good &^= mask&paddingLen ^ mask&b
  196. }
  197. // We AND together the bits of good and replicate the result across
  198. // all the bits.
  199. good &= good << 4
  200. good &= good << 2
  201. good &= good << 1
  202. good = uint8(int8(good) >> 7)
  203. toRemove = int(paddingLen) + 1
  204. return
  205. }
  206. // extractPaddingSSL30 is a replacement for extractPadding in the case that the
  207. // protocol version is SSLv3. In this version, the contents of the padding
  208. // are random and cannot be checked.
  209. func extractPaddingSSL30(payload []byte) (toRemove int, good byte) {
  210. if len(payload) < 1 {
  211. return 0, 0
  212. }
  213. paddingLen := int(payload[len(payload)-1]) + 1
  214. if paddingLen > len(payload) {
  215. return 0, 0
  216. }
  217. return paddingLen, 255
  218. }
  219. func roundUp(a, b int) int {
  220. return a + (b-a%b)%b
  221. }
  222. // cbcMode is an interface for block ciphers using cipher block chaining.
  223. type cbcMode interface {
  224. cipher.BlockMode
  225. SetIV([]byte)
  226. }
  227. // decrypt checks and strips the mac and decrypts the data in b. Returns a
  228. // success boolean, the number of bytes to skip from the start of the record in
  229. // order to get the application payload, and an optional alert value.
  230. func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
  231. // pull out payload
  232. payload := b.data[recordHeaderLen:]
  233. macSize := 0
  234. if hc.mac != nil {
  235. macSize = hc.mac.Size()
  236. }
  237. paddingGood := byte(255)
  238. paddingLen := 0
  239. explicitIVLen := 0
  240. // decrypt
  241. if hc.cipher != nil {
  242. switch c := hc.cipher.(type) {
  243. case cipher.Stream:
  244. c.XORKeyStream(payload, payload)
  245. case aead:
  246. explicitIVLen = c.explicitNonceLen()
  247. if len(payload) < explicitIVLen {
  248. return false, 0, alertBadRecordMAC
  249. }
  250. nonce := payload[:explicitIVLen]
  251. payload = payload[explicitIVLen:]
  252. if len(nonce) == 0 {
  253. nonce = hc.seq[:]
  254. }
  255. copy(hc.additionalData[:], hc.seq[:])
  256. copy(hc.additionalData[8:], b.data[:3])
  257. n := len(payload) - c.Overhead()
  258. hc.additionalData[11] = byte(n >> 8)
  259. hc.additionalData[12] = byte(n)
  260. var err error
  261. payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:])
  262. if err != nil {
  263. return false, 0, alertBadRecordMAC
  264. }
  265. b.resize(recordHeaderLen + explicitIVLen + len(payload))
  266. case cbcMode:
  267. blockSize := c.BlockSize()
  268. if hc.version >= VersionTLS11 {
  269. explicitIVLen = blockSize
  270. }
  271. if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
  272. return false, 0, alertBadRecordMAC
  273. }
  274. if explicitIVLen > 0 {
  275. c.SetIV(payload[:explicitIVLen])
  276. payload = payload[explicitIVLen:]
  277. }
  278. c.CryptBlocks(payload, payload)
  279. if hc.version == VersionSSL30 {
  280. paddingLen, paddingGood = extractPaddingSSL30(payload)
  281. } else {
  282. paddingLen, paddingGood = extractPadding(payload)
  283. // To protect against CBC padding oracles like Lucky13, the data
  284. // past paddingLen (which is secret) is passed to the MAC
  285. // function as extra data, to be fed into the HMAC after
  286. // computing the digest. This makes the MAC constant time as
  287. // long as the digest computation is constant time and does not
  288. // affect the subsequent write.
  289. }
  290. default:
  291. panic("unknown cipher type")
  292. }
  293. }
  294. // check, strip mac
  295. if hc.mac != nil {
  296. if len(payload) < macSize {
  297. return false, 0, alertBadRecordMAC
  298. }
  299. // strip mac off payload, b.data
  300. n := len(payload) - macSize - paddingLen
  301. n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
  302. b.data[3] = byte(n >> 8)
  303. b.data[4] = byte(n)
  304. remoteMAC := payload[n : n+macSize]
  305. localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:])
  306. if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
  307. return false, 0, alertBadRecordMAC
  308. }
  309. hc.inDigestBuf = localMAC
  310. b.resize(recordHeaderLen + explicitIVLen + n)
  311. }
  312. hc.incSeq()
  313. return true, recordHeaderLen + explicitIVLen, 0
  314. }
  315. // padToBlockSize calculates the needed padding block, if any, for a payload.
  316. // On exit, prefix aliases payload and extends to the end of the last full
  317. // block of payload. finalBlock is a fresh slice which contains the contents of
  318. // any suffix of payload as well as the needed padding to make finalBlock a
  319. // full block.
  320. func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
  321. overrun := len(payload) % blockSize
  322. paddingLen := blockSize - overrun
  323. prefix = payload[:len(payload)-overrun]
  324. finalBlock = make([]byte, blockSize)
  325. copy(finalBlock, payload[len(payload)-overrun:])
  326. for i := overrun; i < blockSize; i++ {
  327. finalBlock[i] = byte(paddingLen - 1)
  328. }
  329. return
  330. }
  331. // encrypt encrypts and macs the data in b.
  332. func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
  333. // mac
  334. if hc.mac != nil {
  335. mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil)
  336. n := len(b.data)
  337. b.resize(n + len(mac))
  338. copy(b.data[n:], mac)
  339. hc.outDigestBuf = mac
  340. }
  341. payload := b.data[recordHeaderLen:]
  342. // encrypt
  343. if hc.cipher != nil {
  344. switch c := hc.cipher.(type) {
  345. case cipher.Stream:
  346. c.XORKeyStream(payload, payload)
  347. case aead:
  348. payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
  349. b.resize(len(b.data) + c.Overhead())
  350. nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
  351. if len(nonce) == 0 {
  352. nonce = hc.seq[:]
  353. }
  354. payload := b.data[recordHeaderLen+explicitIVLen:]
  355. payload = payload[:payloadLen]
  356. copy(hc.additionalData[:], hc.seq[:])
  357. copy(hc.additionalData[8:], b.data[:3])
  358. hc.additionalData[11] = byte(payloadLen >> 8)
  359. hc.additionalData[12] = byte(payloadLen)
  360. c.Seal(payload[:0], nonce, payload, hc.additionalData[:])
  361. case cbcMode:
  362. blockSize := c.BlockSize()
  363. if explicitIVLen > 0 {
  364. c.SetIV(payload[:explicitIVLen])
  365. payload = payload[explicitIVLen:]
  366. }
  367. prefix, finalBlock := padToBlockSize(payload, blockSize)
  368. b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
  369. c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
  370. c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
  371. default:
  372. panic("unknown cipher type")
  373. }
  374. }
  375. // update length to include MAC and any block padding needed.
  376. n := len(b.data) - recordHeaderLen
  377. b.data[3] = byte(n >> 8)
  378. b.data[4] = byte(n)
  379. hc.incSeq()
  380. return true, 0
  381. }
  382. // A block is a simple data buffer.
  383. type block struct {
  384. data []byte
  385. off int // index for Read
  386. link *block
  387. }
  388. // resize resizes block to be n bytes, growing if necessary.
  389. func (b *block) resize(n int) {
  390. if n > cap(b.data) {
  391. b.reserve(n)
  392. }
  393. b.data = b.data[0:n]
  394. }
  395. // reserve makes sure that block contains a capacity of at least n bytes.
  396. func (b *block) reserve(n int) {
  397. if cap(b.data) >= n {
  398. return
  399. }
  400. m := cap(b.data)
  401. if m == 0 {
  402. m = 1024
  403. }
  404. for m < n {
  405. m *= 2
  406. }
  407. data := make([]byte, len(b.data), m)
  408. copy(data, b.data)
  409. b.data = data
  410. }
  411. // readFromUntil reads from r into b until b contains at least n bytes
  412. // or else returns an error.
  413. func (b *block) readFromUntil(r io.Reader, n int) error {
  414. // quick case
  415. if len(b.data) >= n {
  416. return nil
  417. }
  418. // read until have enough.
  419. b.reserve(n)
  420. for {
  421. m, err := r.Read(b.data[len(b.data):cap(b.data)])
  422. b.data = b.data[0 : len(b.data)+m]
  423. if len(b.data) >= n {
  424. // TODO(bradfitz,agl): slightly suspicious
  425. // that we're throwing away r.Read's err here.
  426. break
  427. }
  428. if err != nil {
  429. return err
  430. }
  431. }
  432. return nil
  433. }
  434. func (b *block) Read(p []byte) (n int, err error) {
  435. n = copy(p, b.data[b.off:])
  436. b.off += n
  437. return
  438. }
  439. // newBlock allocates a new block, from hc's free list if possible.
  440. func (hc *halfConn) newBlock() *block {
  441. b := hc.bfree
  442. if b == nil {
  443. return new(block)
  444. }
  445. hc.bfree = b.link
  446. b.link = nil
  447. b.resize(0)
  448. return b
  449. }
  450. // freeBlock returns a block to hc's free list.
  451. // The protocol is such that each side only has a block or two on
  452. // its free list at a time, so there's no need to worry about
  453. // trimming the list, etc.
  454. func (hc *halfConn) freeBlock(b *block) {
  455. b.link = hc.bfree
  456. hc.bfree = b
  457. }
  458. // splitBlock splits a block after the first n bytes,
  459. // returning a block with those n bytes and a
  460. // block with the remainder. the latter may be nil.
  461. func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
  462. if len(b.data) <= n {
  463. return b, nil
  464. }
  465. bb := hc.newBlock()
  466. bb.resize(len(b.data) - n)
  467. copy(bb.data, b.data[n:])
  468. b.data = b.data[0:n]
  469. return b, bb
  470. }
  471. // RecordHeaderError results when a TLS record header is invalid.
  472. type RecordHeaderError struct {
  473. // Msg contains a human readable string that describes the error.
  474. Msg string
  475. // RecordHeader contains the five bytes of TLS record header that
  476. // triggered the error.
  477. RecordHeader [5]byte
  478. }
  479. func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
  480. func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
  481. err.Msg = msg
  482. copy(err.RecordHeader[:], c.rawInput.data)
  483. return err
  484. }
  485. // readRecord reads the next TLS record from the connection
  486. // and updates the record layer state.
  487. // c.in.Mutex <= L; c.input == nil.
  488. func (c *Conn) readRecord(want recordType) error {
  489. // Caller must be in sync with connection:
  490. // handshake data if handshake not yet completed,
  491. // else application data.
  492. switch want {
  493. default:
  494. c.sendAlert(alertInternalError)
  495. return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
  496. case recordTypeHandshake, recordTypeChangeCipherSpec:
  497. if c.handshakeComplete {
  498. c.sendAlert(alertInternalError)
  499. return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake"))
  500. }
  501. case recordTypeApplicationData:
  502. if !c.handshakeComplete {
  503. c.sendAlert(alertInternalError)
  504. return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake"))
  505. }
  506. }
  507. Again:
  508. if c.rawInput == nil {
  509. c.rawInput = c.in.newBlock()
  510. }
  511. b := c.rawInput
  512. // Read header, payload.
  513. if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
  514. // RFC suggests that EOF without an alertCloseNotify is
  515. // an error, but popular web sites seem to do this,
  516. // so we can't make it an error.
  517. // if err == io.EOF {
  518. // err = io.ErrUnexpectedEOF
  519. // }
  520. if e, ok := err.(net.Error); !ok || !e.Temporary() {
  521. c.in.setErrorLocked(err)
  522. }
  523. return err
  524. }
  525. typ := recordType(b.data[0])
  526. // No valid TLS record has a type of 0x80, however SSLv2 handshakes
  527. // start with a uint16 length where the MSB is set and the first record
  528. // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
  529. // an SSLv2 client.
  530. if want == recordTypeHandshake && typ == 0x80 {
  531. c.sendAlert(alertProtocolVersion)
  532. return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
  533. }
  534. vers := uint16(b.data[1])<<8 | uint16(b.data[2])
  535. n := int(b.data[3])<<8 | int(b.data[4])
  536. if c.haveVers && vers != c.vers {
  537. c.sendAlert(alertProtocolVersion)
  538. msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
  539. return c.in.setErrorLocked(c.newRecordHeaderError(msg))
  540. }
  541. if n > maxCiphertext {
  542. c.sendAlert(alertRecordOverflow)
  543. msg := fmt.Sprintf("oversized record received with length %d", n)
  544. return c.in.setErrorLocked(c.newRecordHeaderError(msg))
  545. }
  546. if !c.haveVers {
  547. // First message, be extra suspicious: this might not be a TLS
  548. // client. Bail out before reading a full 'body', if possible.
  549. // The current max version is 3.3 so if the version is >= 16.0,
  550. // it's probably not real.
  551. if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
  552. c.sendAlert(alertUnexpectedMessage)
  553. return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
  554. }
  555. }
  556. if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
  557. if err == io.EOF {
  558. err = io.ErrUnexpectedEOF
  559. }
  560. if e, ok := err.(net.Error); !ok || !e.Temporary() {
  561. c.in.setErrorLocked(err)
  562. }
  563. return err
  564. }
  565. // Process message.
  566. b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
  567. ok, off, alertValue := c.in.decrypt(b)
  568. if !ok {
  569. c.in.freeBlock(b)
  570. return c.in.setErrorLocked(c.sendAlert(alertValue))
  571. }
  572. b.off = off
  573. data := b.data[b.off:]
  574. if len(data) > maxPlaintext {
  575. err := c.sendAlert(alertRecordOverflow)
  576. c.in.freeBlock(b)
  577. return c.in.setErrorLocked(err)
  578. }
  579. switch typ {
  580. default:
  581. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  582. case recordTypeAlert:
  583. if len(data) != 2 {
  584. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  585. break
  586. }
  587. if alert(data[1]) == alertCloseNotify {
  588. c.in.setErrorLocked(io.EOF)
  589. break
  590. }
  591. switch data[0] {
  592. case alertLevelWarning:
  593. // drop on the floor
  594. c.in.freeBlock(b)
  595. goto Again
  596. case alertLevelError:
  597. c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
  598. default:
  599. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  600. }
  601. case recordTypeChangeCipherSpec:
  602. if typ != want || len(data) != 1 || data[0] != 1 {
  603. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  604. break
  605. }
  606. err := c.in.changeCipherSpec()
  607. if err != nil {
  608. c.in.setErrorLocked(c.sendAlert(err.(alert)))
  609. }
  610. case recordTypeApplicationData:
  611. if typ != want {
  612. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  613. break
  614. }
  615. c.input = b
  616. b = nil
  617. case recordTypeHandshake:
  618. // TODO(rsc): Should at least pick off connection close.
  619. if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) {
  620. return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
  621. }
  622. c.hand.Write(data)
  623. }
  624. if b != nil {
  625. c.in.freeBlock(b)
  626. }
  627. return c.in.err
  628. }
  629. // sendAlert sends a TLS alert message.
  630. // c.out.Mutex <= L.
  631. func (c *Conn) sendAlertLocked(err alert) error {
  632. switch err {
  633. case alertNoRenegotiation, alertCloseNotify:
  634. c.tmp[0] = alertLevelWarning
  635. default:
  636. c.tmp[0] = alertLevelError
  637. }
  638. c.tmp[1] = byte(err)
  639. _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
  640. if err == alertCloseNotify {
  641. // closeNotify is a special case in that it isn't an error.
  642. return writeErr
  643. }
  644. return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
  645. }
  646. // sendAlert sends a TLS alert message.
  647. // L < c.out.Mutex.
  648. func (c *Conn) sendAlert(err alert) error {
  649. c.out.Lock()
  650. defer c.out.Unlock()
  651. return c.sendAlertLocked(err)
  652. }
  653. const (
  654. // tcpMSSEstimate is a conservative estimate of the TCP maximum segment
  655. // size (MSS). A constant is used, rather than querying the kernel for
  656. // the actual MSS, to avoid complexity. The value here is the IPv6
  657. // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
  658. // bytes) and a TCP header with timestamps (32 bytes).
  659. tcpMSSEstimate = 1208
  660. // recordSizeBoostThreshold is the number of bytes of application data
  661. // sent after which the TLS record size will be increased to the
  662. // maximum.
  663. recordSizeBoostThreshold = 128 * 1024
  664. )
  665. // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
  666. // next application data record. There is the following trade-off:
  667. //
  668. // - For latency-sensitive applications, such as web browsing, each TLS
  669. // record should fit in one TCP segment.
  670. // - For throughput-sensitive applications, such as large file transfers,
  671. // larger TLS records better amortize framing and encryption overheads.
  672. //
  673. // A simple heuristic that works well in practice is to use small records for
  674. // the first 1MB of data, then use larger records for subsequent data, and
  675. // reset back to smaller records after the connection becomes idle. See "High
  676. // Performance Web Networking", Chapter 4, or:
  677. // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
  678. //
  679. // In the interests of simplicity and determinism, this code does not attempt
  680. // to reset the record size once the connection is idle, however.
  681. //
  682. // c.out.Mutex <= L.
  683. func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
  684. if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
  685. return maxPlaintext
  686. }
  687. if c.bytesSent >= recordSizeBoostThreshold {
  688. return maxPlaintext
  689. }
  690. // Subtract TLS overheads to get the maximum payload size.
  691. macSize := 0
  692. if c.out.mac != nil {
  693. macSize = c.out.mac.Size()
  694. }
  695. payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen
  696. if c.out.cipher != nil {
  697. switch ciph := c.out.cipher.(type) {
  698. case cipher.Stream:
  699. payloadBytes -= macSize
  700. case cipher.AEAD:
  701. payloadBytes -= ciph.Overhead()
  702. case cbcMode:
  703. blockSize := ciph.BlockSize()
  704. // The payload must fit in a multiple of blockSize, with
  705. // room for at least one padding byte.
  706. payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
  707. // The MAC is appended before padding so affects the
  708. // payload size directly.
  709. payloadBytes -= macSize
  710. default:
  711. panic("unknown cipher type")
  712. }
  713. }
  714. // Allow packet growth in arithmetic progression up to max.
  715. pkt := c.packetsSent
  716. c.packetsSent++
  717. if pkt > 1000 {
  718. return maxPlaintext // avoid overflow in multiply below
  719. }
  720. n := payloadBytes * int(pkt+1)
  721. if n > maxPlaintext {
  722. n = maxPlaintext
  723. }
  724. return n
  725. }
  726. // c.out.Mutex <= L.
  727. func (c *Conn) write(data []byte) (int, error) {
  728. if c.buffering {
  729. c.sendBuf = append(c.sendBuf, data...)
  730. return len(data), nil
  731. }
  732. n, err := c.conn.Write(data)
  733. c.bytesSent += int64(n)
  734. return n, err
  735. }
  736. func (c *Conn) flush() (int, error) {
  737. if len(c.sendBuf) == 0 {
  738. return 0, nil
  739. }
  740. n, err := c.conn.Write(c.sendBuf)
  741. c.bytesSent += int64(n)
  742. c.sendBuf = nil
  743. c.buffering = false
  744. return n, err
  745. }
  746. // writeRecordLocked writes a TLS record with the given type and payload to the
  747. // connection and updates the record layer state.
  748. // c.out.Mutex <= L.
  749. func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
  750. b := c.out.newBlock()
  751. defer c.out.freeBlock(b)
  752. var n int
  753. for len(data) > 0 {
  754. explicitIVLen := 0
  755. explicitIVIsSeq := false
  756. var cbc cbcMode
  757. if c.out.version >= VersionTLS11 {
  758. var ok bool
  759. if cbc, ok = c.out.cipher.(cbcMode); ok {
  760. explicitIVLen = cbc.BlockSize()
  761. }
  762. }
  763. if explicitIVLen == 0 {
  764. if c, ok := c.out.cipher.(aead); ok {
  765. explicitIVLen = c.explicitNonceLen()
  766. // The AES-GCM construction in TLS has an
  767. // explicit nonce so that the nonce can be
  768. // random. However, the nonce is only 8 bytes
  769. // which is too small for a secure, random
  770. // nonce. Therefore we use the sequence number
  771. // as the nonce.
  772. explicitIVIsSeq = explicitIVLen > 0
  773. }
  774. }
  775. m := len(data)
  776. if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload {
  777. m = maxPayload
  778. }
  779. b.resize(recordHeaderLen + explicitIVLen + m)
  780. b.data[0] = byte(typ)
  781. vers := c.vers
  782. if vers == 0 {
  783. // Some TLS servers fail if the record version is
  784. // greater than TLS 1.0 for the initial ClientHello.
  785. vers = VersionTLS10
  786. }
  787. b.data[1] = byte(vers >> 8)
  788. b.data[2] = byte(vers)
  789. b.data[3] = byte(m >> 8)
  790. b.data[4] = byte(m)
  791. if explicitIVLen > 0 {
  792. explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
  793. if explicitIVIsSeq {
  794. copy(explicitIV, c.out.seq[:])
  795. } else {
  796. if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil {
  797. return n, err
  798. }
  799. }
  800. }
  801. copy(b.data[recordHeaderLen+explicitIVLen:], data)
  802. c.out.encrypt(b, explicitIVLen)
  803. if _, err := c.write(b.data); err != nil {
  804. return n, err
  805. }
  806. n += m
  807. data = data[m:]
  808. }
  809. if typ == recordTypeChangeCipherSpec {
  810. if err := c.out.changeCipherSpec(); err != nil {
  811. return n, c.sendAlertLocked(err.(alert))
  812. }
  813. }
  814. return n, nil
  815. }
  816. // writeRecord writes a TLS record with the given type and payload to the
  817. // connection and updates the record layer state.
  818. // L < c.out.Mutex.
  819. func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
  820. c.out.Lock()
  821. defer c.out.Unlock()
  822. return c.writeRecordLocked(typ, data)
  823. }
  824. // readHandshake reads the next handshake message from
  825. // the record layer.
  826. // c.in.Mutex < L; c.out.Mutex < L.
  827. func (c *Conn) readHandshake() (interface{}, error) {
  828. for c.hand.Len() < 4 {
  829. if err := c.in.err; err != nil {
  830. return nil, err
  831. }
  832. if err := c.readRecord(recordTypeHandshake); err != nil {
  833. return nil, err
  834. }
  835. }
  836. data := c.hand.Bytes()
  837. n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  838. if n > maxHandshake {
  839. c.sendAlertLocked(alertInternalError)
  840. return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
  841. }
  842. for c.hand.Len() < 4+n {
  843. if err := c.in.err; err != nil {
  844. return nil, err
  845. }
  846. if err := c.readRecord(recordTypeHandshake); err != nil {
  847. return nil, err
  848. }
  849. }
  850. data = c.hand.Next(4 + n)
  851. var m handshakeMessage
  852. switch data[0] {
  853. case typeHelloRequest:
  854. m = new(helloRequestMsg)
  855. case typeClientHello:
  856. m = new(clientHelloMsg)
  857. case typeServerHello:
  858. m = new(serverHelloMsg)
  859. case typeNewSessionTicket:
  860. m = new(newSessionTicketMsg)
  861. case typeCertificate:
  862. m = new(certificateMsg)
  863. case typeCertificateRequest:
  864. m = &certificateRequestMsg{
  865. hasSignatureAndHash: c.vers >= VersionTLS12,
  866. }
  867. case typeCertificateStatus:
  868. m = new(certificateStatusMsg)
  869. case typeServerKeyExchange:
  870. m = new(serverKeyExchangeMsg)
  871. case typeServerHelloDone:
  872. m = new(serverHelloDoneMsg)
  873. case typeClientKeyExchange:
  874. m = new(clientKeyExchangeMsg)
  875. case typeCertificateVerify:
  876. m = &certificateVerifyMsg{
  877. hasSignatureAndHash: c.vers >= VersionTLS12,
  878. }
  879. case typeNextProtocol:
  880. m = new(nextProtoMsg)
  881. case typeFinished:
  882. m = new(finishedMsg)
  883. default:
  884. return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  885. }
  886. // The handshake message unmarshalers
  887. // expect to be able to keep references to data,
  888. // so pass in a fresh copy that won't be overwritten.
  889. data = append([]byte(nil), data...)
  890. if !m.unmarshal(data) {
  891. return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  892. }
  893. return m, nil
  894. }
  895. var (
  896. errClosed = errors.New("tls: use of closed connection")
  897. errShutdown = errors.New("tls: protocol is shutdown")
  898. )
  899. // Write writes data to the connection.
  900. func (c *Conn) Write(b []byte) (int, error) {
  901. // interlock with Close below
  902. for {
  903. x := atomic.LoadInt32(&c.activeCall)
  904. if x&1 != 0 {
  905. return 0, errClosed
  906. }
  907. if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  908. defer atomic.AddInt32(&c.activeCall, -2)
  909. break
  910. }
  911. }
  912. if err := c.Handshake(); err != nil {
  913. return 0, err
  914. }
  915. c.out.Lock()
  916. defer c.out.Unlock()
  917. if err := c.out.err; err != nil {
  918. return 0, err
  919. }
  920. if !c.handshakeComplete {
  921. return 0, alertInternalError
  922. }
  923. if c.closeNotifySent {
  924. return 0, errShutdown
  925. }
  926. // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
  927. // attack when using block mode ciphers due to predictable IVs.
  928. // This can be prevented by splitting each Application Data
  929. // record into two records, effectively randomizing the IV.
  930. //
  931. // http://www.openssl.org/~bodo/tls-cbc.txt
  932. // https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  933. // http://www.imperialviolet.org/2012/01/15/beastfollowup.html
  934. var m int
  935. if len(b) > 1 && c.vers <= VersionTLS10 {
  936. if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  937. n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  938. if err != nil {
  939. return n, c.out.setErrorLocked(err)
  940. }
  941. m, b = 1, b[1:]
  942. }
  943. }
  944. n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  945. return n + m, c.out.setErrorLocked(err)
  946. }
  947. // handleRenegotiation processes a HelloRequest handshake message.
  948. // c.in.Mutex <= L
  949. func (c *Conn) handleRenegotiation() error {
  950. msg, err := c.readHandshake()
  951. if err != nil {
  952. return err
  953. }
  954. _, ok := msg.(*helloRequestMsg)
  955. if !ok {
  956. c.sendAlert(alertUnexpectedMessage)
  957. return alertUnexpectedMessage
  958. }
  959. if !c.isClient {
  960. return c.sendAlert(alertNoRenegotiation)
  961. }
  962. switch c.config.Renegotiation {
  963. case RenegotiateNever:
  964. return c.sendAlert(alertNoRenegotiation)
  965. case RenegotiateOnceAsClient:
  966. if c.handshakes > 1 {
  967. return c.sendAlert(alertNoRenegotiation)
  968. }
  969. case RenegotiateFreelyAsClient:
  970. // Ok.
  971. default:
  972. c.sendAlert(alertInternalError)
  973. return errors.New("tls: unknown Renegotiation value")
  974. }
  975. c.handshakeMutex.Lock()
  976. defer c.handshakeMutex.Unlock()
  977. c.handshakeComplete = false
  978. if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  979. c.handshakes++
  980. }
  981. return c.handshakeErr
  982. }
  983. // Read can be made to time out and return a net.Error with Timeout() == true
  984. // after a fixed time limit; see SetDeadline and SetReadDeadline.
  985. func (c *Conn) Read(b []byte) (n int, err error) {
  986. if err = c.Handshake(); err != nil {
  987. return
  988. }
  989. if len(b) == 0 {
  990. // Put this after Handshake, in case people were calling
  991. // Read(nil) for the side effect of the Handshake.
  992. return
  993. }
  994. c.in.Lock()
  995. defer c.in.Unlock()
  996. // Some OpenSSL servers send empty records in order to randomize the
  997. // CBC IV. So this loop ignores a limited number of empty records.
  998. const maxConsecutiveEmptyRecords = 100
  999. for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
  1000. for c.input == nil && c.in.err == nil {
  1001. if err := c.readRecord(recordTypeApplicationData); err != nil {
  1002. // Soft error, like EAGAIN
  1003. return 0, err
  1004. }
  1005. if c.hand.Len() > 0 {
  1006. // We received handshake bytes, indicating the
  1007. // start of a renegotiation.
  1008. if err := c.handleRenegotiation(); err != nil {
  1009. return 0, err
  1010. }
  1011. }
  1012. }
  1013. if err := c.in.err; err != nil {
  1014. return 0, err
  1015. }
  1016. n, err = c.input.Read(b)
  1017. if c.input.off >= len(c.input.data) {
  1018. c.in.freeBlock(c.input)
  1019. c.input = nil
  1020. }
  1021. // If a close-notify alert is waiting, read it so that
  1022. // we can return (n, EOF) instead of (n, nil), to signal
  1023. // to the HTTP response reading goroutine that the
  1024. // connection is now closed. This eliminates a race
  1025. // where the HTTP response reading goroutine would
  1026. // otherwise not observe the EOF until its next read,
  1027. // by which time a client goroutine might have already
  1028. // tried to reuse the HTTP connection for a new
  1029. // request.
  1030. // See https://codereview.appspot.com/76400046
  1031. // and https://golang.org/issue/3514
  1032. if ri := c.rawInput; ri != nil &&
  1033. n != 0 && err == nil &&
  1034. c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
  1035. if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
  1036. err = recErr // will be io.EOF on closeNotify
  1037. }
  1038. }
  1039. if n != 0 || err != nil {
  1040. return n, err
  1041. }
  1042. }
  1043. return 0, io.ErrNoProgress
  1044. }
  1045. // Close closes the connection.
  1046. func (c *Conn) Close() error {
  1047. // Interlock with Conn.Write above.
  1048. var x int32
  1049. for {
  1050. x = atomic.LoadInt32(&c.activeCall)
  1051. if x&1 != 0 {
  1052. return errClosed
  1053. }
  1054. if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1055. break
  1056. }
  1057. }
  1058. if x != 0 {
  1059. // io.Writer and io.Closer should not be used concurrently.
  1060. // If Close is called while a Write is currently in-flight,
  1061. // interpret that as a sign that this Close is really just
  1062. // being used to break the Write and/or clean up resources and
  1063. // avoid sending the alertCloseNotify, which may block
  1064. // waiting on handshakeMutex or the c.out mutex.
  1065. return c.conn.Close()
  1066. }
  1067. var alertErr error
  1068. c.handshakeMutex.Lock()
  1069. defer c.handshakeMutex.Unlock()
  1070. if c.handshakeComplete {
  1071. alertErr = c.closeNotify()
  1072. }
  1073. if err := c.conn.Close(); err != nil {
  1074. return err
  1075. }
  1076. return alertErr
  1077. }
  1078. var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1079. // CloseWrite shuts down the writing side of the connection. It should only be
  1080. // called once the handshake has completed and does not call CloseWrite on the
  1081. // underlying connection. Most callers should just use Close.
  1082. func (c *Conn) CloseWrite() error {
  1083. c.handshakeMutex.Lock()
  1084. defer c.handshakeMutex.Unlock()
  1085. if !c.handshakeComplete {
  1086. return errEarlyCloseWrite
  1087. }
  1088. return c.closeNotify()
  1089. }
  1090. func (c *Conn) closeNotify() error {
  1091. c.out.Lock()
  1092. defer c.out.Unlock()
  1093. if !c.closeNotifySent {
  1094. c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1095. c.closeNotifySent = true
  1096. }
  1097. return c.closeNotifyErr
  1098. }
  1099. // Handshake runs the client or server handshake
  1100. // protocol if it has not yet been run.
  1101. // Most uses of this package need not call Handshake
  1102. // explicitly: the first Read or Write will call it automatically.
  1103. func (c *Conn) Handshake() error {
  1104. // c.handshakeErr and c.handshakeComplete are protected by
  1105. // c.handshakeMutex. In order to perform a handshake, we need to lock
  1106. // c.in also and c.handshakeMutex must be locked after c.in.
  1107. //
  1108. // However, if a Read() operation is hanging then it'll be holding the
  1109. // lock on c.in and so taking it here would cause all operations that
  1110. // need to check whether a handshake is pending (such as Write) to
  1111. // block.
  1112. //
  1113. // Thus we first take c.handshakeMutex to check whether a handshake is
  1114. // needed.
  1115. //
  1116. // If so then, previously, this code would unlock handshakeMutex and
  1117. // then lock c.in and handshakeMutex in the correct order to run the
  1118. // handshake. The problem was that it was possible for a Read to
  1119. // complete the handshake once handshakeMutex was unlocked and then
  1120. // keep c.in while waiting for network data. Thus a concurrent
  1121. // operation could be blocked on c.in.
  1122. //
  1123. // Thus handshakeCond is used to signal that a goroutine is committed
  1124. // to running the handshake and other goroutines can wait on it if they
  1125. // need. handshakeCond is protected by handshakeMutex.
  1126. c.handshakeMutex.Lock()
  1127. defer c.handshakeMutex.Unlock()
  1128. for {
  1129. if err := c.handshakeErr; err != nil {
  1130. return err
  1131. }
  1132. if c.handshakeComplete {
  1133. return nil
  1134. }
  1135. if c.handshakeCond == nil {
  1136. break
  1137. }
  1138. c.handshakeCond.Wait()
  1139. }
  1140. // Set handshakeCond to indicate that this goroutine is committing to
  1141. // running the handshake.
  1142. c.handshakeCond = sync.NewCond(&c.handshakeMutex)
  1143. c.handshakeMutex.Unlock()
  1144. c.in.Lock()
  1145. defer c.in.Unlock()
  1146. c.handshakeMutex.Lock()
  1147. // The handshake cannot have completed when handshakeMutex was unlocked
  1148. // because this goroutine set handshakeCond.
  1149. if c.handshakeErr != nil || c.handshakeComplete {
  1150. panic("handshake should not have been able to complete after handshakeCond was set")
  1151. }
  1152. if c.isClient {
  1153. c.handshakeErr = c.clientHandshake()
  1154. } else {
  1155. c.handshakeErr = c.serverHandshake()
  1156. }
  1157. if c.handshakeErr == nil {
  1158. c.handshakes++
  1159. } else {
  1160. // If an error occurred during the hadshake try to flush the
  1161. // alert that might be left in the buffer.
  1162. c.flush()
  1163. }
  1164. if c.handshakeErr == nil && !c.handshakeComplete {
  1165. panic("handshake should have had a result.")
  1166. }
  1167. // Wake any other goroutines that are waiting for this handshake to
  1168. // complete.
  1169. c.handshakeCond.Broadcast()
  1170. c.handshakeCond = nil
  1171. return c.handshakeErr
  1172. }
  1173. // ConnectionState returns basic TLS details about the connection.
  1174. func (c *Conn) ConnectionState() ConnectionState {
  1175. c.handshakeMutex.Lock()
  1176. defer c.handshakeMutex.Unlock()
  1177. var state ConnectionState
  1178. state.HandshakeComplete = c.handshakeComplete
  1179. state.ServerName = c.serverName
  1180. if c.handshakeComplete {
  1181. state.Version = c.vers
  1182. state.NegotiatedProtocol = c.clientProtocol
  1183. state.DidResume = c.didResume
  1184. state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1185. state.CipherSuite = c.cipherSuite
  1186. state.PeerCertificates = c.peerCertificates
  1187. state.VerifiedChains = c.verifiedChains
  1188. state.SignedCertificateTimestamps = c.scts
  1189. state.OCSPResponse = c.ocspResponse
  1190. if !c.didResume {
  1191. if c.clientFinishedIsFirst {
  1192. state.TLSUnique = c.clientFinished[:]
  1193. } else {
  1194. state.TLSUnique = c.serverFinished[:]
  1195. }
  1196. }
  1197. }
  1198. return state
  1199. }
  1200. // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1201. // any. (Only valid for client connections.)
  1202. func (c *Conn) OCSPResponse() []byte {
  1203. c.handshakeMutex.Lock()
  1204. defer c.handshakeMutex.Unlock()
  1205. return c.ocspResponse
  1206. }
  1207. // VerifyHostname checks that the peer certificate chain is valid for
  1208. // connecting to host. If so, it returns nil; if not, it returns an error
  1209. // describing the problem.
  1210. func (c *Conn) VerifyHostname(host string) error {
  1211. c.handshakeMutex.Lock()
  1212. defer c.handshakeMutex.Unlock()
  1213. if !c.isClient {
  1214. return errors.New("tls: VerifyHostname called on TLS server connection")
  1215. }
  1216. if !c.handshakeComplete {
  1217. return errors.New("tls: handshake has not yet been performed")
  1218. }
  1219. if len(c.verifiedChains) == 0 {
  1220. return errors.New("tls: handshake did not verify certificate chain")
  1221. }
  1222. return c.peerCertificates[0].VerifyHostname(host)
  1223. }