th5/conn.go
Dominik Honnef eab2fdedca all: delete dead non-test code
This change removes a lot of dead code. Some of the code has never been
used, not even when it was first commited. The rest shouldn't have
survived refactors.

This change doesn't remove unused routines helpful for debugging, nor
does it remove code that's used in commented out blocks of code that are
only unused temporarily. Furthermore, unused constants weren't removed
when they were part of a set of constants from specifications.

One noteworthy omission from this CL are about 1000 lines of unused code
in cmd/fix, 700 lines of which are the typechecker, which hasn't been
used ever since the pre-Go 1 fixes have been removed. I wasn't sure if
this code should stick around for future uses of cmd/fix or be culled as
well.

Change-Id: Ib714bc7e487edc11ad23ba1c3222d1fd02e4a549
Reviewed-on: https://go-review.googlesource.com/20926
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-03-25 06:28:13 +00:00

1159 lines
32 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TLS low level connection and record layer
package tls
import (
"bytes"
"crypto/cipher"
"crypto/subtle"
"crypto/x509"
"errors"
"fmt"
"io"
"net"
"sync"
"sync/atomic"
"time"
)
// A Conn represents a secured connection.
// It implements the net.Conn interface.
type Conn struct {
// constant
conn net.Conn
isClient bool
// constant after handshake; protected by handshakeMutex
handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
handshakeErr error // error resulting from handshake
vers uint16 // TLS version
haveVers bool // version has been negotiated
config *Config // configuration passed to constructor
handshakeComplete bool
didResume bool // whether this connection was a session resumption
cipherSuite uint16
ocspResponse []byte // stapled OCSP response
scts [][]byte // signed certificate timestamps from server
peerCertificates []*x509.Certificate
// verifiedChains contains the certificate chains that we built, as
// opposed to the ones presented by the server.
verifiedChains [][]*x509.Certificate
// serverName contains the server name indicated by the client, if any.
serverName string
// firstFinished contains the first Finished hash sent during the
// handshake. This is the "tls-unique" channel binding value.
firstFinished [12]byte
clientProtocol string
clientProtocolFallback bool
// input/output
in, out halfConn // in.Mutex < out.Mutex
rawInput *block // raw input, right off the wire
input *block // application data waiting to be read
hand bytes.Buffer // handshake data waiting to be read
// bytesSent counts the number of bytes of application data that have
// been sent.
bytesSent int64
// activeCall is an atomic int32; the low bit is whether Close has
// been called. the rest of the bits are the number of goroutines
// in Conn.Write.
activeCall int32
tmp [16]byte
}
// Access to net.Conn methods.
// Cannot just embed net.Conn because that would
// export the struct field too.
// LocalAddr returns the local network address.
func (c *Conn) LocalAddr() net.Addr {
return c.conn.LocalAddr()
}
// RemoteAddr returns the remote network address.
func (c *Conn) RemoteAddr() net.Addr {
return c.conn.RemoteAddr()
}
// SetDeadline sets the read and write deadlines associated with the connection.
// A zero value for t means Read and Write will not time out.
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
func (c *Conn) SetDeadline(t time.Time) error {
return c.conn.SetDeadline(t)
}
// SetReadDeadline sets the read deadline on the underlying connection.
// A zero value for t means Read will not time out.
func (c *Conn) SetReadDeadline(t time.Time) error {
return c.conn.SetReadDeadline(t)
}
// SetWriteDeadline sets the write deadline on the underlying connection.
// A zero value for t means Write will not time out.
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
func (c *Conn) SetWriteDeadline(t time.Time) error {
return c.conn.SetWriteDeadline(t)
}
// A halfConn represents one direction of the record layer
// connection, either sending or receiving.
type halfConn struct {
sync.Mutex
err error // first permanent error
version uint16 // protocol version
cipher interface{} // cipher algorithm
mac macFunction
seq [8]byte // 64-bit sequence number
bfree *block // list of free blocks
additionalData [13]byte // to avoid allocs; interface method args escape
nextCipher interface{} // next encryption state
nextMac macFunction // next MAC algorithm
// used to save allocating a new buffer for each MAC.
inDigestBuf, outDigestBuf []byte
}
func (hc *halfConn) setErrorLocked(err error) error {
hc.err = err
return err
}
func (hc *halfConn) error() error {
hc.Lock()
err := hc.err
hc.Unlock()
return err
}
// prepareCipherSpec sets the encryption and MAC states
// that a subsequent changeCipherSpec will use.
func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
hc.version = version
hc.nextCipher = cipher
hc.nextMac = mac
}
// changeCipherSpec changes the encryption and MAC states
// to the ones previously passed to prepareCipherSpec.
func (hc *halfConn) changeCipherSpec() error {
if hc.nextCipher == nil {
return alertInternalError
}
hc.cipher = hc.nextCipher
hc.mac = hc.nextMac
hc.nextCipher = nil
hc.nextMac = nil
for i := range hc.seq {
hc.seq[i] = 0
}
return nil
}
// incSeq increments the sequence number.
func (hc *halfConn) incSeq() {
for i := 7; i >= 0; i-- {
hc.seq[i]++
if hc.seq[i] != 0 {
return
}
}
// Not allowed to let sequence number wrap.
// Instead, must renegotiate before it does.
// Not likely enough to bother.
panic("TLS: sequence number wraparound")
}
// removePadding returns an unpadded slice, in constant time, which is a prefix
// of the input. It also returns a byte which is equal to 255 if the padding
// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
func removePadding(payload []byte) ([]byte, byte) {
if len(payload) < 1 {
return payload, 0
}
paddingLen := payload[len(payload)-1]
t := uint(len(payload)-1) - uint(paddingLen)
// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
good := byte(int32(^t) >> 31)
toCheck := 255 // the maximum possible padding length
// The length of the padded data is public, so we can use an if here
if toCheck+1 > len(payload) {
toCheck = len(payload) - 1
}
for i := 0; i < toCheck; i++ {
t := uint(paddingLen) - uint(i)
// if i <= paddingLen then the MSB of t is zero
mask := byte(int32(^t) >> 31)
b := payload[len(payload)-1-i]
good &^= mask&paddingLen ^ mask&b
}
// We AND together the bits of good and replicate the result across
// all the bits.
good &= good << 4
good &= good << 2
good &= good << 1
good = uint8(int8(good) >> 7)
toRemove := good&paddingLen + 1
return payload[:len(payload)-int(toRemove)], good
}
// removePaddingSSL30 is a replacement for removePadding in the case that the
// protocol version is SSLv3. In this version, the contents of the padding
// are random and cannot be checked.
func removePaddingSSL30(payload []byte) ([]byte, byte) {
if len(payload) < 1 {
return payload, 0
}
paddingLen := int(payload[len(payload)-1]) + 1
if paddingLen > len(payload) {
return payload, 0
}
return payload[:len(payload)-paddingLen], 255
}
func roundUp(a, b int) int {
return a + (b-a%b)%b
}
// cbcMode is an interface for block ciphers using cipher block chaining.
type cbcMode interface {
cipher.BlockMode
SetIV([]byte)
}
// decrypt checks and strips the mac and decrypts the data in b. Returns a
// success boolean, the number of bytes to skip from the start of the record in
// order to get the application payload, and an optional alert value.
func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
// pull out payload
payload := b.data[recordHeaderLen:]
macSize := 0
if hc.mac != nil {
macSize = hc.mac.Size()
}
paddingGood := byte(255)
explicitIVLen := 0
// decrypt
if hc.cipher != nil {
switch c := hc.cipher.(type) {
case cipher.Stream:
c.XORKeyStream(payload, payload)
case cipher.AEAD:
explicitIVLen = 8
if len(payload) < explicitIVLen {
return false, 0, alertBadRecordMAC
}
nonce := payload[:8]
payload = payload[8:]
copy(hc.additionalData[:], hc.seq[:])
copy(hc.additionalData[8:], b.data[:3])
n := len(payload) - c.Overhead()
hc.additionalData[11] = byte(n >> 8)
hc.additionalData[12] = byte(n)
var err error
payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:])
if err != nil {
return false, 0, alertBadRecordMAC
}
b.resize(recordHeaderLen + explicitIVLen + len(payload))
case cbcMode:
blockSize := c.BlockSize()
if hc.version >= VersionTLS11 {
explicitIVLen = blockSize
}
if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
return false, 0, alertBadRecordMAC
}
if explicitIVLen > 0 {
c.SetIV(payload[:explicitIVLen])
payload = payload[explicitIVLen:]
}
c.CryptBlocks(payload, payload)
if hc.version == VersionSSL30 {
payload, paddingGood = removePaddingSSL30(payload)
} else {
payload, paddingGood = removePadding(payload)
}
b.resize(recordHeaderLen + explicitIVLen + len(payload))
// note that we still have a timing side-channel in the
// MAC check, below. An attacker can align the record
// so that a correct padding will cause one less hash
// block to be calculated. Then they can iteratively
// decrypt a record by breaking each byte. See
// "Password Interception in a SSL/TLS Channel", Brice
// Canvel et al.
//
// However, our behavior matches OpenSSL, so we leak
// only as much as they do.
default:
panic("unknown cipher type")
}
}
// check, strip mac
if hc.mac != nil {
if len(payload) < macSize {
return false, 0, alertBadRecordMAC
}
// strip mac off payload, b.data
n := len(payload) - macSize
b.data[3] = byte(n >> 8)
b.data[4] = byte(n)
b.resize(recordHeaderLen + explicitIVLen + n)
remoteMAC := payload[n:]
localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
return false, 0, alertBadRecordMAC
}
hc.inDigestBuf = localMAC
}
hc.incSeq()
return true, recordHeaderLen + explicitIVLen, 0
}
// padToBlockSize calculates the needed padding block, if any, for a payload.
// On exit, prefix aliases payload and extends to the end of the last full
// block of payload. finalBlock is a fresh slice which contains the contents of
// any suffix of payload as well as the needed padding to make finalBlock a
// full block.
func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
overrun := len(payload) % blockSize
paddingLen := blockSize - overrun
prefix = payload[:len(payload)-overrun]
finalBlock = make([]byte, blockSize)
copy(finalBlock, payload[len(payload)-overrun:])
for i := overrun; i < blockSize; i++ {
finalBlock[i] = byte(paddingLen - 1)
}
return
}
// encrypt encrypts and macs the data in b.
func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
// mac
if hc.mac != nil {
mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
n := len(b.data)
b.resize(n + len(mac))
copy(b.data[n:], mac)
hc.outDigestBuf = mac
}
payload := b.data[recordHeaderLen:]
// encrypt
if hc.cipher != nil {
switch c := hc.cipher.(type) {
case cipher.Stream:
c.XORKeyStream(payload, payload)
case cipher.AEAD:
payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
b.resize(len(b.data) + c.Overhead())
nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
payload := b.data[recordHeaderLen+explicitIVLen:]
payload = payload[:payloadLen]
copy(hc.additionalData[:], hc.seq[:])
copy(hc.additionalData[8:], b.data[:3])
hc.additionalData[11] = byte(payloadLen >> 8)
hc.additionalData[12] = byte(payloadLen)
c.Seal(payload[:0], nonce, payload, hc.additionalData[:])
case cbcMode:
blockSize := c.BlockSize()
if explicitIVLen > 0 {
c.SetIV(payload[:explicitIVLen])
payload = payload[explicitIVLen:]
}
prefix, finalBlock := padToBlockSize(payload, blockSize)
b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
default:
panic("unknown cipher type")
}
}
// update length to include MAC and any block padding needed.
n := len(b.data) - recordHeaderLen
b.data[3] = byte(n >> 8)
b.data[4] = byte(n)
hc.incSeq()
return true, 0
}
// A block is a simple data buffer.
type block struct {
data []byte
off int // index for Read
link *block
}
// resize resizes block to be n bytes, growing if necessary.
func (b *block) resize(n int) {
if n > cap(b.data) {
b.reserve(n)
}
b.data = b.data[0:n]
}
// reserve makes sure that block contains a capacity of at least n bytes.
func (b *block) reserve(n int) {
if cap(b.data) >= n {
return
}
m := cap(b.data)
if m == 0 {
m = 1024
}
for m < n {
m *= 2
}
data := make([]byte, len(b.data), m)
copy(data, b.data)
b.data = data
}
// readFromUntil reads from r into b until b contains at least n bytes
// or else returns an error.
func (b *block) readFromUntil(r io.Reader, n int) error {
// quick case
if len(b.data) >= n {
return nil
}
// read until have enough.
b.reserve(n)
for {
m, err := r.Read(b.data[len(b.data):cap(b.data)])
b.data = b.data[0 : len(b.data)+m]
if len(b.data) >= n {
// TODO(bradfitz,agl): slightly suspicious
// that we're throwing away r.Read's err here.
break
}
if err != nil {
return err
}
}
return nil
}
func (b *block) Read(p []byte) (n int, err error) {
n = copy(p, b.data[b.off:])
b.off += n
return
}
// newBlock allocates a new block, from hc's free list if possible.
func (hc *halfConn) newBlock() *block {
b := hc.bfree
if b == nil {
return new(block)
}
hc.bfree = b.link
b.link = nil
b.resize(0)
return b
}
// freeBlock returns a block to hc's free list.
// The protocol is such that each side only has a block or two on
// its free list at a time, so there's no need to worry about
// trimming the list, etc.
func (hc *halfConn) freeBlock(b *block) {
b.link = hc.bfree
hc.bfree = b
}
// splitBlock splits a block after the first n bytes,
// returning a block with those n bytes and a
// block with the remainder. the latter may be nil.
func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
if len(b.data) <= n {
return b, nil
}
bb := hc.newBlock()
bb.resize(len(b.data) - n)
copy(bb.data, b.data[n:])
b.data = b.data[0:n]
return b, bb
}
// RecordHeaderError results when a TLS record header is invalid.
type RecordHeaderError struct {
// Msg contains a human readable string that describes the error.
Msg string
// RecordHeader contains the five bytes of TLS record header that
// triggered the error.
RecordHeader [5]byte
}
func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
err.Msg = msg
copy(err.RecordHeader[:], c.rawInput.data)
return err
}
// readRecord reads the next TLS record from the connection
// and updates the record layer state.
// c.in.Mutex <= L; c.input == nil.
func (c *Conn) readRecord(want recordType) error {
// Caller must be in sync with connection:
// handshake data if handshake not yet completed,
// else application data. (We don't support renegotiation.)
switch want {
default:
c.sendAlert(alertInternalError)
return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
case recordTypeHandshake, recordTypeChangeCipherSpec:
if c.handshakeComplete {
c.sendAlert(alertInternalError)
return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
}
case recordTypeApplicationData:
if !c.handshakeComplete {
c.sendAlert(alertInternalError)
return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
}
}
Again:
if c.rawInput == nil {
c.rawInput = c.in.newBlock()
}
b := c.rawInput
// Read header, payload.
if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
// RFC suggests that EOF without an alertCloseNotify is
// an error, but popular web sites seem to do this,
// so we can't make it an error.
// if err == io.EOF {
// err = io.ErrUnexpectedEOF
// }
if e, ok := err.(net.Error); !ok || !e.Temporary() {
c.in.setErrorLocked(err)
}
return err
}
typ := recordType(b.data[0])
// No valid TLS record has a type of 0x80, however SSLv2 handshakes
// start with a uint16 length where the MSB is set and the first record
// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
// an SSLv2 client.
if want == recordTypeHandshake && typ == 0x80 {
c.sendAlert(alertProtocolVersion)
return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
}
vers := uint16(b.data[1])<<8 | uint16(b.data[2])
n := int(b.data[3])<<8 | int(b.data[4])
if c.haveVers && vers != c.vers {
c.sendAlert(alertProtocolVersion)
msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
return c.in.setErrorLocked(c.newRecordHeaderError(msg))
}
if n > maxCiphertext {
c.sendAlert(alertRecordOverflow)
msg := fmt.Sprintf("oversized record received with length %d", n)
return c.in.setErrorLocked(c.newRecordHeaderError(msg))
}
if !c.haveVers {
// First message, be extra suspicious: this might not be a TLS
// client. Bail out before reading a full 'body', if possible.
// The current max version is 3.3 so if the version is >= 16.0,
// it's probably not real.
if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
c.sendAlert(alertUnexpectedMessage)
return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
}
}
if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
if e, ok := err.(net.Error); !ok || !e.Temporary() {
c.in.setErrorLocked(err)
}
return err
}
// Process message.
b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
ok, off, err := c.in.decrypt(b)
if !ok {
c.in.setErrorLocked(c.sendAlert(err))
}
b.off = off
data := b.data[b.off:]
if len(data) > maxPlaintext {
err := c.sendAlert(alertRecordOverflow)
c.in.freeBlock(b)
return c.in.setErrorLocked(err)
}
switch typ {
default:
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
case recordTypeAlert:
if len(data) != 2 {
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
break
}
if alert(data[1]) == alertCloseNotify {
c.in.setErrorLocked(io.EOF)
break
}
switch data[0] {
case alertLevelWarning:
// drop on the floor
c.in.freeBlock(b)
goto Again
case alertLevelError:
c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
default:
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
case recordTypeChangeCipherSpec:
if typ != want || len(data) != 1 || data[0] != 1 {
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
break
}
err := c.in.changeCipherSpec()
if err != nil {
c.in.setErrorLocked(c.sendAlert(err.(alert)))
}
case recordTypeApplicationData:
if typ != want {
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
break
}
c.input = b
b = nil
case recordTypeHandshake:
// TODO(rsc): Should at least pick off connection close.
if typ != want {
return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
}
c.hand.Write(data)
}
if b != nil {
c.in.freeBlock(b)
}
return c.in.err
}
// sendAlert sends a TLS alert message.
// c.out.Mutex <= L.
func (c *Conn) sendAlertLocked(err alert) error {
switch err {
case alertNoRenegotiation, alertCloseNotify:
c.tmp[0] = alertLevelWarning
default:
c.tmp[0] = alertLevelError
}
c.tmp[1] = byte(err)
_, writeErr := c.writeRecord(recordTypeAlert, c.tmp[0:2])
if err == alertCloseNotify {
// closeNotify is a special case in that it isn't an error.
return writeErr
}
return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
}
// sendAlert sends a TLS alert message.
// L < c.out.Mutex.
func (c *Conn) sendAlert(err alert) error {
c.out.Lock()
defer c.out.Unlock()
return c.sendAlertLocked(err)
}
const (
// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
// size (MSS). A constant is used, rather than querying the kernel for
// the actual MSS, to avoid complexity. The value here is the IPv6
// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
// bytes) and a TCP header with timestamps (32 bytes).
tcpMSSEstimate = 1208
// recordSizeBoostThreshold is the number of bytes of application data
// sent after which the TLS record size will be increased to the
// maximum.
recordSizeBoostThreshold = 1 * 1024 * 1024
)
// maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
// next application data record. There is the following trade-off:
//
// - For latency-sensitive applications, such as web browsing, each TLS
// record should fit in one TCP segment.
// - For throughput-sensitive applications, such as large file transfers,
// larger TLS records better amortize framing and encryption overheads.
//
// A simple heuristic that works well in practice is to use small records for
// the first 1MB of data, then use larger records for subsequent data, and
// reset back to smaller records after the connection becomes idle. See "High
// Performance Web Networking", Chapter 4, or:
// https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
//
// In the interests of simplicity and determinism, this code does not attempt
// to reset the record size once the connection is idle, however.
//
// c.out.Mutex <= L.
func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
return maxPlaintext
}
if c.bytesSent >= recordSizeBoostThreshold {
return maxPlaintext
}
// Subtract TLS overheads to get the maximum payload size.
macSize := 0
if c.out.mac != nil {
macSize = c.out.mac.Size()
}
payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen
if c.out.cipher != nil {
switch ciph := c.out.cipher.(type) {
case cipher.Stream:
payloadBytes -= macSize
case cipher.AEAD:
payloadBytes -= ciph.Overhead()
case cbcMode:
blockSize := ciph.BlockSize()
// The payload must fit in a multiple of blockSize, with
// room for at least one padding byte.
payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
// The MAC is appended before padding so affects the
// payload size directly.
payloadBytes -= macSize
default:
panic("unknown cipher type")
}
}
return payloadBytes
}
// writeRecord writes a TLS record with the given type and payload
// to the connection and updates the record layer state.
// c.out.Mutex <= L.
func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
b := c.out.newBlock()
defer c.out.freeBlock(b)
var n int
for len(data) > 0 {
explicitIVLen := 0
explicitIVIsSeq := false
var cbc cbcMode
if c.out.version >= VersionTLS11 {
var ok bool
if cbc, ok = c.out.cipher.(cbcMode); ok {
explicitIVLen = cbc.BlockSize()
}
}
if explicitIVLen == 0 {
if _, ok := c.out.cipher.(cipher.AEAD); ok {
explicitIVLen = 8
// The AES-GCM construction in TLS has an
// explicit nonce so that the nonce can be
// random. However, the nonce is only 8 bytes
// which is too small for a secure, random
// nonce. Therefore we use the sequence number
// as the nonce.
explicitIVIsSeq = true
}
}
m := len(data)
if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload {
m = maxPayload
}
b.resize(recordHeaderLen + explicitIVLen + m)
b.data[0] = byte(typ)
vers := c.vers
if vers == 0 {
// Some TLS servers fail if the record version is
// greater than TLS 1.0 for the initial ClientHello.
vers = VersionTLS10
}
b.data[1] = byte(vers >> 8)
b.data[2] = byte(vers)
b.data[3] = byte(m >> 8)
b.data[4] = byte(m)
if explicitIVLen > 0 {
explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
if explicitIVIsSeq {
copy(explicitIV, c.out.seq[:])
} else {
if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil {
return n, err
}
}
}
copy(b.data[recordHeaderLen+explicitIVLen:], data)
c.out.encrypt(b, explicitIVLen)
if _, err := c.conn.Write(b.data); err != nil {
return n, err
}
c.bytesSent += int64(m)
n += m
data = data[m:]
}
if typ == recordTypeChangeCipherSpec {
if err := c.out.changeCipherSpec(); err != nil {
return n, c.sendAlertLocked(err.(alert))
}
}
return n, nil
}
// readHandshake reads the next handshake message from
// the record layer.
// c.in.Mutex < L; c.out.Mutex < L.
func (c *Conn) readHandshake() (interface{}, error) {
for c.hand.Len() < 4 {
if err := c.in.err; err != nil {
return nil, err
}
if err := c.readRecord(recordTypeHandshake); err != nil {
return nil, err
}
}
data := c.hand.Bytes()
n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
if n > maxHandshake {
c.sendAlertLocked(alertInternalError)
return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
}
for c.hand.Len() < 4+n {
if err := c.in.err; err != nil {
return nil, err
}
if err := c.readRecord(recordTypeHandshake); err != nil {
return nil, err
}
}
data = c.hand.Next(4 + n)
var m handshakeMessage
switch data[0] {
case typeClientHello:
m = new(clientHelloMsg)
case typeServerHello:
m = new(serverHelloMsg)
case typeNewSessionTicket:
m = new(newSessionTicketMsg)
case typeCertificate:
m = new(certificateMsg)
case typeCertificateRequest:
m = &certificateRequestMsg{
hasSignatureAndHash: c.vers >= VersionTLS12,
}
case typeCertificateStatus:
m = new(certificateStatusMsg)
case typeServerKeyExchange:
m = new(serverKeyExchangeMsg)
case typeServerHelloDone:
m = new(serverHelloDoneMsg)
case typeClientKeyExchange:
m = new(clientKeyExchangeMsg)
case typeCertificateVerify:
m = &certificateVerifyMsg{
hasSignatureAndHash: c.vers >= VersionTLS12,
}
case typeNextProtocol:
m = new(nextProtoMsg)
case typeFinished:
m = new(finishedMsg)
default:
return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
// The handshake message unmarshallers
// expect to be able to keep references to data,
// so pass in a fresh copy that won't be overwritten.
data = append([]byte(nil), data...)
if !m.unmarshal(data) {
return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
return m, nil
}
var errClosed = errors.New("crypto/tls: use of closed connection")
// Write writes data to the connection.
func (c *Conn) Write(b []byte) (int, error) {
// interlock with Close below
for {
x := atomic.LoadInt32(&c.activeCall)
if x&1 != 0 {
return 0, errClosed
}
if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
defer atomic.AddInt32(&c.activeCall, -2)
break
}
}
if err := c.Handshake(); err != nil {
return 0, err
}
c.out.Lock()
defer c.out.Unlock()
if err := c.out.err; err != nil {
return 0, err
}
if !c.handshakeComplete {
return 0, alertInternalError
}
// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
// attack when using block mode ciphers due to predictable IVs.
// This can be prevented by splitting each Application Data
// record into two records, effectively randomizing the IV.
//
// http://www.openssl.org/~bodo/tls-cbc.txt
// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
var m int
if len(b) > 1 && c.vers <= VersionTLS10 {
if _, ok := c.out.cipher.(cipher.BlockMode); ok {
n, err := c.writeRecord(recordTypeApplicationData, b[:1])
if err != nil {
return n, c.out.setErrorLocked(err)
}
m, b = 1, b[1:]
}
}
n, err := c.writeRecord(recordTypeApplicationData, b)
return n + m, c.out.setErrorLocked(err)
}
// Read can be made to time out and return a net.Error with Timeout() == true
// after a fixed time limit; see SetDeadline and SetReadDeadline.
func (c *Conn) Read(b []byte) (n int, err error) {
if err = c.Handshake(); err != nil {
return
}
if len(b) == 0 {
// Put this after Handshake, in case people were calling
// Read(nil) for the side effect of the Handshake.
return
}
c.in.Lock()
defer c.in.Unlock()
// Some OpenSSL servers send empty records in order to randomize the
// CBC IV. So this loop ignores a limited number of empty records.
const maxConsecutiveEmptyRecords = 100
for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
for c.input == nil && c.in.err == nil {
if err := c.readRecord(recordTypeApplicationData); err != nil {
// Soft error, like EAGAIN
return 0, err
}
}
if err := c.in.err; err != nil {
return 0, err
}
n, err = c.input.Read(b)
if c.input.off >= len(c.input.data) {
c.in.freeBlock(c.input)
c.input = nil
}
// If a close-notify alert is waiting, read it so that
// we can return (n, EOF) instead of (n, nil), to signal
// to the HTTP response reading goroutine that the
// connection is now closed. This eliminates a race
// where the HTTP response reading goroutine would
// otherwise not observe the EOF until its next read,
// by which time a client goroutine might have already
// tried to reuse the HTTP connection for a new
// request.
// See https://codereview.appspot.com/76400046
// and https://golang.org/issue/3514
if ri := c.rawInput; ri != nil &&
n != 0 && err == nil &&
c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
err = recErr // will be io.EOF on closeNotify
}
}
if n != 0 || err != nil {
return n, err
}
}
return 0, io.ErrNoProgress
}
// Close closes the connection.
func (c *Conn) Close() error {
// Interlock with Conn.Write above.
var x int32
for {
x = atomic.LoadInt32(&c.activeCall)
if x&1 != 0 {
return errClosed
}
if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
break
}
}
if x != 0 {
// io.Writer and io.Closer should not be used concurrently.
// If Close is called while a Write is currently in-flight,
// interpret that as a sign that this Close is really just
// being used to break the Write and/or clean up resources and
// avoid sending the alertCloseNotify, which may block
// waiting on handshakeMutex or the c.out mutex.
return c.conn.Close()
}
var alertErr error
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
if c.handshakeComplete {
alertErr = c.sendAlert(alertCloseNotify)
}
if err := c.conn.Close(); err != nil {
return err
}
return alertErr
}
// Handshake runs the client or server handshake
// protocol if it has not yet been run.
// Most uses of this package need not call Handshake
// explicitly: the first Read or Write will call it automatically.
func (c *Conn) Handshake() error {
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
if err := c.handshakeErr; err != nil {
return err
}
if c.handshakeComplete {
return nil
}
if c.isClient {
c.handshakeErr = c.clientHandshake()
} else {
c.handshakeErr = c.serverHandshake()
}
return c.handshakeErr
}
// ConnectionState returns basic TLS details about the connection.
func (c *Conn) ConnectionState() ConnectionState {
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
var state ConnectionState
state.HandshakeComplete = c.handshakeComplete
if c.handshakeComplete {
state.Version = c.vers
state.NegotiatedProtocol = c.clientProtocol
state.DidResume = c.didResume
state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
state.CipherSuite = c.cipherSuite
state.PeerCertificates = c.peerCertificates
state.VerifiedChains = c.verifiedChains
state.ServerName = c.serverName
state.SignedCertificateTimestamps = c.scts
state.OCSPResponse = c.ocspResponse
if !c.didResume {
state.TLSUnique = c.firstFinished[:]
}
}
return state
}
// OCSPResponse returns the stapled OCSP response from the TLS server, if
// any. (Only valid for client connections.)
func (c *Conn) OCSPResponse() []byte {
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
return c.ocspResponse
}
// VerifyHostname checks that the peer certificate chain is valid for
// connecting to host. If so, it returns nil; if not, it returns an error
// describing the problem.
func (c *Conn) VerifyHostname(host string) error {
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
if !c.isClient {
return errors.New("tls: VerifyHostname called on TLS server connection")
}
if !c.handshakeComplete {
return errors.New("tls: handshake has not yet been performed")
}
if len(c.verifiedChains) == 0 {
return errors.New("tls: handshake did not verify certificate chain")
}
return c.peerCertificates[0].VerifyHostname(host)
}