Alternative TLS implementation in Go
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

397 linhas
14 KiB

  1. // Copyright 2010 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package tls
  5. import (
  6. "crypto/aes"
  7. "crypto/cipher"
  8. "crypto/des"
  9. "crypto/hmac"
  10. "crypto/rc4"
  11. "crypto/sha1"
  12. "crypto/sha256"
  13. "crypto/x509"
  14. "hash"
  15. "golang_org/x/crypto/chacha20poly1305"
  16. )
  17. // a keyAgreement implements the client and server side of a TLS key agreement
  18. // protocol by generating and processing key exchange messages.
  19. type keyAgreement interface {
  20. // On the server side, the first two methods are called in order.
  21. // In the case that the key agreement protocol doesn't use a
  22. // ServerKeyExchange message, generateServerKeyExchange can return nil,
  23. // nil.
  24. generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
  25. processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
  26. // On the client side, the next two methods are called in order.
  27. // This method may not be called if the server doesn't send a
  28. // ServerKeyExchange message.
  29. processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
  30. generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
  31. }
  32. const (
  33. // suiteECDH indicates that the cipher suite involves elliptic curve
  34. // Diffie-Hellman. This means that it should only be selected when the
  35. // client indicates that it supports ECC with a curve and point format
  36. // that we're happy with.
  37. suiteECDHE = 1 << iota
  38. // suiteECDSA indicates that the cipher suite involves an ECDSA
  39. // signature and therefore may only be selected when the server's
  40. // certificate is ECDSA. If this is not set then the cipher suite is
  41. // RSA based.
  42. suiteECDSA
  43. // suiteTLS12 indicates that the cipher suite should only be advertised
  44. // and accepted when using TLS 1.2.
  45. suiteTLS12
  46. // suiteSHA384 indicates that the cipher suite uses SHA384 as the
  47. // handshake hash.
  48. suiteSHA384
  49. // suiteDefaultOff indicates that this cipher suite is not included by
  50. // default.
  51. suiteDefaultOff
  52. )
  53. // A cipherSuite is a specific combination of key agreement, cipher and MAC
  54. // function. All cipher suites currently assume RSA key agreement.
  55. type cipherSuite struct {
  56. id uint16
  57. // the lengths, in bytes, of the key material needed for each component.
  58. keyLen int
  59. macLen int
  60. ivLen int
  61. ka func(version uint16) keyAgreement
  62. // flags is a bitmask of the suite* values, above.
  63. flags int
  64. cipher func(key, iv []byte, isRead bool) interface{}
  65. mac func(version uint16, macKey []byte) macFunction
  66. aead func(key, fixedNonce []byte) cipher.AEAD
  67. }
  68. var cipherSuites = []*cipherSuite{
  69. // Ciphersuite order is chosen so that ECDHE comes before plain RSA and
  70. // AEADs are the top preference.
  71. {TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
  72. {TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
  73. {TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
  74. {TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM},
  75. {TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
  76. {TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
  77. {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
  78. {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
  79. {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
  80. {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
  81. {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
  82. {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
  83. {TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
  84. {TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
  85. {TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12 | suiteDefaultOff, cipherAES, macSHA256, nil},
  86. {TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
  87. {TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
  88. {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
  89. {TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
  90. // RC4-based cipher suites are disabled by default.
  91. {TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, suiteDefaultOff, cipherRC4, macSHA1, nil},
  92. {TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE | suiteDefaultOff, cipherRC4, macSHA1, nil},
  93. {TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteDefaultOff, cipherRC4, macSHA1, nil},
  94. }
  95. func cipherRC4(key, iv []byte, isRead bool) interface{} {
  96. cipher, _ := rc4.NewCipher(key)
  97. return cipher
  98. }
  99. func cipher3DES(key, iv []byte, isRead bool) interface{} {
  100. block, _ := des.NewTripleDESCipher(key)
  101. if isRead {
  102. return cipher.NewCBCDecrypter(block, iv)
  103. }
  104. return cipher.NewCBCEncrypter(block, iv)
  105. }
  106. func cipherAES(key, iv []byte, isRead bool) interface{} {
  107. block, _ := aes.NewCipher(key)
  108. if isRead {
  109. return cipher.NewCBCDecrypter(block, iv)
  110. }
  111. return cipher.NewCBCEncrypter(block, iv)
  112. }
  113. // macSHA1 returns a macFunction for the given protocol version.
  114. func macSHA1(version uint16, key []byte) macFunction {
  115. if version == VersionSSL30 {
  116. mac := ssl30MAC{
  117. h: sha1.New(),
  118. key: make([]byte, len(key)),
  119. }
  120. copy(mac.key, key)
  121. return mac
  122. }
  123. return tls10MAC{hmac.New(newConstantTimeHash(sha1.New), key)}
  124. }
  125. // macSHA256 returns a SHA-256 based MAC. These are only supported in TLS 1.2
  126. // so the given version is ignored.
  127. func macSHA256(version uint16, key []byte) macFunction {
  128. return tls10MAC{hmac.New(sha256.New, key)}
  129. }
  130. type macFunction interface {
  131. Size() int
  132. MAC(digestBuf, seq, header, data, extra []byte) []byte
  133. }
  134. type aead interface {
  135. cipher.AEAD
  136. // explicitIVLen returns the number of bytes used by the explicit nonce
  137. // that is included in the record. This is eight for older AEADs and
  138. // zero for modern ones.
  139. explicitNonceLen() int
  140. }
  141. // fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
  142. // each call.
  143. type fixedNonceAEAD struct {
  144. // nonce contains the fixed part of the nonce in the first four bytes.
  145. nonce [12]byte
  146. aead cipher.AEAD
  147. }
  148. func (f *fixedNonceAEAD) NonceSize() int { return 8 }
  149. func (f *fixedNonceAEAD) Overhead() int { return f.aead.Overhead() }
  150. func (f *fixedNonceAEAD) explicitNonceLen() int { return 8 }
  151. func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
  152. copy(f.nonce[4:], nonce)
  153. return f.aead.Seal(out, f.nonce[:], plaintext, additionalData)
  154. }
  155. func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
  156. copy(f.nonce[4:], nonce)
  157. return f.aead.Open(out, f.nonce[:], plaintext, additionalData)
  158. }
  159. // xoredNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce
  160. // before each call.
  161. type xorNonceAEAD struct {
  162. nonceMask [12]byte
  163. aead cipher.AEAD
  164. }
  165. func (f *xorNonceAEAD) NonceSize() int { return 8 }
  166. func (f *xorNonceAEAD) Overhead() int { return f.aead.Overhead() }
  167. func (f *xorNonceAEAD) explicitNonceLen() int { return 0 }
  168. func (f *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
  169. for i, b := range nonce {
  170. f.nonceMask[4+i] ^= b
  171. }
  172. result := f.aead.Seal(out, f.nonceMask[:], plaintext, additionalData)
  173. for i, b := range nonce {
  174. f.nonceMask[4+i] ^= b
  175. }
  176. return result
  177. }
  178. func (f *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
  179. for i, b := range nonce {
  180. f.nonceMask[4+i] ^= b
  181. }
  182. result, err := f.aead.Open(out, f.nonceMask[:], plaintext, additionalData)
  183. for i, b := range nonce {
  184. f.nonceMask[4+i] ^= b
  185. }
  186. return result, err
  187. }
  188. func aeadAESGCM(key, fixedNonce []byte) cipher.AEAD {
  189. aes, err := aes.NewCipher(key)
  190. if err != nil {
  191. panic(err)
  192. }
  193. aead, err := cipher.NewGCM(aes)
  194. if err != nil {
  195. panic(err)
  196. }
  197. ret := &fixedNonceAEAD{aead: aead}
  198. copy(ret.nonce[:], fixedNonce)
  199. return ret
  200. }
  201. func aeadChaCha20Poly1305(key, fixedNonce []byte) cipher.AEAD {
  202. aead, err := chacha20poly1305.New(key)
  203. if err != nil {
  204. panic(err)
  205. }
  206. ret := &xorNonceAEAD{aead: aead}
  207. copy(ret.nonceMask[:], fixedNonce)
  208. return ret
  209. }
  210. // ssl30MAC implements the SSLv3 MAC function, as defined in
  211. // www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 5.2.3.1
  212. type ssl30MAC struct {
  213. h hash.Hash
  214. key []byte
  215. }
  216. func (s ssl30MAC) Size() int {
  217. return s.h.Size()
  218. }
  219. var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36}
  220. var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c}
  221. // MAC does not offer constant timing guarantees for SSL v3.0, since it's deemed
  222. // useless considering the similar, protocol-level POODLE vulnerability.
  223. func (s ssl30MAC) MAC(digestBuf, seq, header, data, extra []byte) []byte {
  224. padLength := 48
  225. if s.h.Size() == 20 {
  226. padLength = 40
  227. }
  228. s.h.Reset()
  229. s.h.Write(s.key)
  230. s.h.Write(ssl30Pad1[:padLength])
  231. s.h.Write(seq)
  232. s.h.Write(header[:1])
  233. s.h.Write(header[3:5])
  234. s.h.Write(data)
  235. digestBuf = s.h.Sum(digestBuf[:0])
  236. s.h.Reset()
  237. s.h.Write(s.key)
  238. s.h.Write(ssl30Pad2[:padLength])
  239. s.h.Write(digestBuf)
  240. return s.h.Sum(digestBuf[:0])
  241. }
  242. type constantTimeHash interface {
  243. hash.Hash
  244. ConstantTimeSum(b []byte) []byte
  245. }
  246. // cthWrapper wraps any hash.Hash that implements ConstantTimeSum, and replaces
  247. // with that all calls to Sum. It's used to obtain a ConstantTimeSum-based HMAC.
  248. type cthWrapper struct {
  249. h constantTimeHash
  250. }
  251. func (c *cthWrapper) Size() int { return c.h.Size() }
  252. func (c *cthWrapper) BlockSize() int { return c.h.BlockSize() }
  253. func (c *cthWrapper) Reset() { c.h.Reset() }
  254. func (c *cthWrapper) Write(p []byte) (int, error) { return c.h.Write(p) }
  255. func (c *cthWrapper) Sum(b []byte) []byte { return c.h.ConstantTimeSum(b) }
  256. func newConstantTimeHash(h func() hash.Hash) func() hash.Hash {
  257. return func() hash.Hash {
  258. return &cthWrapper{h().(constantTimeHash)}
  259. }
  260. }
  261. // tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3.
  262. type tls10MAC struct {
  263. h hash.Hash
  264. }
  265. func (s tls10MAC) Size() int {
  266. return s.h.Size()
  267. }
  268. // MAC is guaranteed to take constant time, as long as
  269. // len(seq)+len(header)+len(data)+len(extra) is constant. extra is not fed into
  270. // the MAC, but is only provided to make the timing profile constant.
  271. func (s tls10MAC) MAC(digestBuf, seq, header, data, extra []byte) []byte {
  272. s.h.Reset()
  273. s.h.Write(seq)
  274. s.h.Write(header)
  275. s.h.Write(data)
  276. res := s.h.Sum(digestBuf[:0])
  277. if extra != nil {
  278. s.h.Write(extra)
  279. }
  280. return res
  281. }
  282. func rsaKA(version uint16) keyAgreement {
  283. return rsaKeyAgreement{}
  284. }
  285. func ecdheECDSAKA(version uint16) keyAgreement {
  286. return &ecdheKeyAgreement{
  287. sigType: signatureECDSA,
  288. version: version,
  289. }
  290. }
  291. func ecdheRSAKA(version uint16) keyAgreement {
  292. return &ecdheKeyAgreement{
  293. sigType: signatureRSA,
  294. version: version,
  295. }
  296. }
  297. // mutualCipherSuite returns a cipherSuite given a list of supported
  298. // ciphersuites and the id requested by the peer.
  299. func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
  300. for _, id := range have {
  301. if id == want {
  302. for _, suite := range cipherSuites {
  303. if suite.id == want {
  304. return suite
  305. }
  306. }
  307. return nil
  308. }
  309. }
  310. return nil
  311. }
  312. // A list of cipher suite IDs that are, or have been, implemented by this
  313. // package.
  314. //
  315. // Taken from http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
  316. const (
  317. TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005
  318. TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a
  319. TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f
  320. TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035
  321. TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c
  322. TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c
  323. TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d
  324. TLS_ECDHE_ECDSA_WITH_RC4_128_SHA uint16 = 0xc007
  325. TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009
  326. TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a
  327. TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xc011
  328. TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012
  329. TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013
  330. TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014
  331. TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023
  332. TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027
  333. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f
  334. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b
  335. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030
  336. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c
  337. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca8
  338. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 uint16 = 0xcca9
  339. // TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator
  340. // that the client is doing version fallback. See
  341. // https://tools.ietf.org/html/rfc7507.
  342. TLS_FALLBACK_SCSV uint16 = 0x5600
  343. )