Alternative TLS implementation in Go
25개 이상의 토픽을 선택하실 수 없습니다. Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1185 lines
40 KiB

  1. // Copyright 2009 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package tls
  5. import (
  6. "container/list"
  7. "crypto"
  8. "crypto/internal/cipherhw"
  9. "crypto/rand"
  10. "crypto/sha512"
  11. "crypto/x509"
  12. "errors"
  13. "fmt"
  14. "io"
  15. "math/big"
  16. "net"
  17. "strings"
  18. "sync"
  19. "time"
  20. )
  21. const (
  22. VersionSSL30 = 0x0300
  23. VersionTLS10 = 0x0301
  24. VersionTLS11 = 0x0302
  25. VersionTLS12 = 0x0303
  26. VersionTLS13 = 0x0304
  27. VersionTLS13Draft18 = 0x7f00 | 18
  28. VersionTLS13Draft21 = 0x7f00 | 21
  29. )
  30. const (
  31. maxPlaintext = 16384 // maximum plaintext payload length
  32. maxCiphertext = 16384 + 2048 // maximum ciphertext payload length
  33. recordHeaderLen = 5 // record header length
  34. maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB)
  35. maxWarnAlertCount = 5 // maximum number of consecutive warning alerts
  36. minVersion = VersionTLS10
  37. maxVersion = VersionTLS12
  38. )
  39. // TLS record types.
  40. type recordType uint8
  41. const (
  42. recordTypeChangeCipherSpec recordType = 20
  43. recordTypeAlert recordType = 21
  44. recordTypeHandshake recordType = 22
  45. recordTypeApplicationData recordType = 23
  46. )
  47. // TLS handshake message types.
  48. const (
  49. typeHelloRequest uint8 = 0
  50. typeClientHello uint8 = 1
  51. typeServerHello uint8 = 2
  52. typeNewSessionTicket uint8 = 4
  53. typeEndOfEarlyData uint8 = 5
  54. typeEncryptedExtensions uint8 = 8
  55. typeCertificate uint8 = 11
  56. typeServerKeyExchange uint8 = 12
  57. typeCertificateRequest uint8 = 13
  58. typeServerHelloDone uint8 = 14
  59. typeCertificateVerify uint8 = 15
  60. typeClientKeyExchange uint8 = 16
  61. typeFinished uint8 = 20
  62. typeCertificateStatus uint8 = 22
  63. typeNextProtocol uint8 = 67 // Not IANA assigned
  64. )
  65. // TLS compression types.
  66. const (
  67. compressionNone uint8 = 0
  68. )
  69. // TLS extension numbers
  70. const (
  71. extensionServerName uint16 = 0
  72. extensionStatusRequest uint16 = 5
  73. extensionSupportedCurves uint16 = 10 // Supported Groups in 1.3 nomenclature
  74. extensionSupportedPoints uint16 = 11
  75. extensionSignatureAlgorithms uint16 = 13
  76. extensionALPN uint16 = 16
  77. extensionSCT uint16 = 18 // https://tools.ietf.org/html/rfc6962#section-6
  78. extensionSessionTicket uint16 = 35
  79. extensionKeyShare uint16 = 40
  80. extensionPreSharedKey uint16 = 41
  81. extensionEarlyData uint16 = 42
  82. extensionSupportedVersions uint16 = 43
  83. extensionPSKKeyExchangeModes uint16 = 45
  84. extensionNextProtoNeg uint16 = 13172 // not IANA assigned
  85. extensionRenegotiationInfo uint16 = 0xff01
  86. )
  87. // TLS signaling cipher suite values
  88. const (
  89. scsvRenegotiation uint16 = 0x00ff
  90. )
  91. // PSK Key Exchange Modes
  92. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.7
  93. const (
  94. pskDHEKeyExchange uint8 = 1
  95. )
  96. // CurveID is the type of a TLS identifier for an elliptic curve. See
  97. // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8
  98. //
  99. // TLS 1.3 refers to these as Groups, but this library implements only
  100. // curve-based ones anyway. See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.4.
  101. type CurveID uint16
  102. const (
  103. CurveP256 CurveID = 23
  104. CurveP384 CurveID = 24
  105. CurveP521 CurveID = 25
  106. X25519 CurveID = 29
  107. )
  108. // TLS 1.3 Key Share
  109. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.5
  110. type keyShare struct {
  111. group CurveID
  112. data []byte
  113. }
  114. // TLS 1.3 PSK Identity and Binder, as sent by the client
  115. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.6
  116. type psk struct {
  117. identity []byte
  118. obfTicketAge uint32
  119. binder []byte
  120. }
  121. // TLS Elliptic Curve Point Formats
  122. // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
  123. const (
  124. pointFormatUncompressed uint8 = 0
  125. )
  126. // TLS CertificateStatusType (RFC 3546)
  127. const (
  128. statusTypeOCSP uint8 = 1
  129. )
  130. // Certificate types (for certificateRequestMsg)
  131. const (
  132. certTypeRSASign = 1 // A certificate containing an RSA key
  133. certTypeDSSSign = 2 // A certificate containing a DSA key
  134. certTypeRSAFixedDH = 3 // A certificate containing a static DH key
  135. certTypeDSSFixedDH = 4 // A certificate containing a static DH key
  136. // See RFC 4492 sections 3 and 5.5.
  137. certTypeECDSASign = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA.
  138. certTypeRSAFixedECDH = 65 // A certificate containing an ECDH-capable public key, signed with RSA.
  139. certTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA.
  140. // Rest of these are reserved by the TLS spec
  141. )
  142. // Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1)
  143. const (
  144. signaturePKCS1v15 uint8 = iota + 1
  145. signatureECDSA
  146. signatureRSAPSS
  147. )
  148. // supportedSignatureAlgorithms contains the signature and hash algorithms that
  149. // the code advertises as supported in a TLS 1.2 ClientHello and in a TLS 1.2
  150. // CertificateRequest. The two fields are merged to match with TLS 1.3.
  151. // Note that in TLS 1.2, the ECDSA algorithms are not constrained to P-256, etc.
  152. var supportedSignatureAlgorithms = []SignatureScheme{
  153. PKCS1WithSHA256,
  154. ECDSAWithP256AndSHA256,
  155. PKCS1WithSHA384,
  156. ECDSAWithP384AndSHA384,
  157. PKCS1WithSHA512,
  158. ECDSAWithP521AndSHA512,
  159. PKCS1WithSHA1,
  160. ECDSAWithSHA1,
  161. }
  162. // supportedSignatureAlgorithms13 lists the advertised signature algorithms
  163. // allowed for digital signatures. It includes TLS 1.2 + PSS.
  164. var supportedSignatureAlgorithms13 = []SignatureScheme{
  165. PSSWithSHA256,
  166. PKCS1WithSHA256,
  167. ECDSAWithP256AndSHA256,
  168. PSSWithSHA384,
  169. PKCS1WithSHA384,
  170. ECDSAWithP384AndSHA384,
  171. PSSWithSHA512,
  172. PKCS1WithSHA512,
  173. ECDSAWithP521AndSHA512,
  174. PKCS1WithSHA1,
  175. ECDSAWithSHA1,
  176. }
  177. // ConnectionState records basic TLS details about the connection.
  178. type ConnectionState struct {
  179. ConnectionID []byte // Random unique connection id
  180. Version uint16 // TLS version used by the connection (e.g. VersionTLS12)
  181. HandshakeComplete bool // TLS handshake is complete
  182. DidResume bool // connection resumes a previous TLS connection
  183. CipherSuite uint16 // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...)
  184. NegotiatedProtocol string // negotiated next protocol (not guaranteed to be from Config.NextProtos)
  185. NegotiatedProtocolIsMutual bool // negotiated protocol was advertised by server (client side only)
  186. ServerName string // server name requested by client, if any (server side only)
  187. PeerCertificates []*x509.Certificate // certificate chain presented by remote peer
  188. VerifiedChains [][]*x509.Certificate // verified chains built from PeerCertificates
  189. SignedCertificateTimestamps [][]byte // SCTs from the server, if any
  190. OCSPResponse []byte // stapled OCSP response from server, if any
  191. // TLSUnique contains the "tls-unique" channel binding value (see RFC
  192. // 5929, section 3). For resumed sessions this value will be nil
  193. // because resumption does not include enough context (see
  194. // https://mitls.org/pages/attacks/3SHAKE#channelbindings). This will
  195. // change in future versions of Go once the TLS master-secret fix has
  196. // been standardized and implemented.
  197. TLSUnique []byte
  198. // HandshakeConfirmed is true once all data returned by Read
  199. // (past and future) is guaranteed not to be replayed.
  200. HandshakeConfirmed bool
  201. // Unique0RTTToken is a value that never repeats, and can be used
  202. // to detect replay attacks against 0-RTT connections.
  203. // Unique0RTTToken is only present if HandshakeConfirmed is false.
  204. Unique0RTTToken []byte
  205. ClientHello []byte // ClientHello packet
  206. }
  207. // ClientAuthType declares the policy the server will follow for
  208. // TLS Client Authentication.
  209. type ClientAuthType int
  210. const (
  211. NoClientCert ClientAuthType = iota
  212. RequestClientCert
  213. RequireAnyClientCert
  214. VerifyClientCertIfGiven
  215. RequireAndVerifyClientCert
  216. )
  217. // ClientSessionState contains the state needed by clients to resume TLS
  218. // sessions.
  219. type ClientSessionState struct {
  220. sessionTicket []uint8 // Encrypted ticket used for session resumption with server
  221. vers uint16 // SSL/TLS version negotiated for the session
  222. cipherSuite uint16 // Ciphersuite negotiated for the session
  223. masterSecret []byte // MasterSecret generated by client on a full handshake
  224. serverCertificates []*x509.Certificate // Certificate chain presented by the server
  225. verifiedChains [][]*x509.Certificate // Certificate chains we built for verification
  226. }
  227. // ClientSessionCache is a cache of ClientSessionState objects that can be used
  228. // by a client to resume a TLS session with a given server. ClientSessionCache
  229. // implementations should expect to be called concurrently from different
  230. // goroutines. Only ticket-based resumption is supported, not SessionID-based
  231. // resumption.
  232. type ClientSessionCache interface {
  233. // Get searches for a ClientSessionState associated with the given key.
  234. // On return, ok is true if one was found.
  235. Get(sessionKey string) (session *ClientSessionState, ok bool)
  236. // Put adds the ClientSessionState to the cache with the given key.
  237. Put(sessionKey string, cs *ClientSessionState)
  238. }
  239. // SignatureScheme identifies a signature algorithm supported by TLS. See
  240. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.3.
  241. type SignatureScheme uint16
  242. const (
  243. PKCS1WithSHA1 SignatureScheme = 0x0201
  244. PKCS1WithSHA256 SignatureScheme = 0x0401
  245. PKCS1WithSHA384 SignatureScheme = 0x0501
  246. PKCS1WithSHA512 SignatureScheme = 0x0601
  247. PSSWithSHA256 SignatureScheme = 0x0804
  248. PSSWithSHA384 SignatureScheme = 0x0805
  249. PSSWithSHA512 SignatureScheme = 0x0806
  250. ECDSAWithP256AndSHA256 SignatureScheme = 0x0403
  251. ECDSAWithP384AndSHA384 SignatureScheme = 0x0503
  252. ECDSAWithP521AndSHA512 SignatureScheme = 0x0603
  253. // Legacy signature and hash algorithms for TLS 1.2.
  254. ECDSAWithSHA1 SignatureScheme = 0x0203
  255. )
  256. // ClientHelloInfo contains information from a ClientHello message in order to
  257. // guide certificate selection in the GetCertificate callback.
  258. type ClientHelloInfo struct {
  259. // CipherSuites lists the CipherSuites supported by the client (e.g.
  260. // TLS_RSA_WITH_RC4_128_SHA).
  261. CipherSuites []uint16
  262. // ServerName indicates the name of the server requested by the client
  263. // in order to support virtual hosting. ServerName is only set if the
  264. // client is using SNI (see
  265. // http://tools.ietf.org/html/rfc4366#section-3.1).
  266. ServerName string
  267. // SupportedCurves lists the elliptic curves supported by the client.
  268. // SupportedCurves is set only if the Supported Elliptic Curves
  269. // Extension is being used (see
  270. // http://tools.ietf.org/html/rfc4492#section-5.1.1).
  271. SupportedCurves []CurveID
  272. // SupportedPoints lists the point formats supported by the client.
  273. // SupportedPoints is set only if the Supported Point Formats Extension
  274. // is being used (see
  275. // http://tools.ietf.org/html/rfc4492#section-5.1.2).
  276. SupportedPoints []uint8
  277. // SignatureSchemes lists the signature and hash schemes that the client
  278. // is willing to verify. SignatureSchemes is set only if the Signature
  279. // Algorithms Extension is being used (see
  280. // https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1).
  281. SignatureSchemes []SignatureScheme
  282. // SupportedProtos lists the application protocols supported by the client.
  283. // SupportedProtos is set only if the Application-Layer Protocol
  284. // Negotiation Extension is being used (see
  285. // https://tools.ietf.org/html/rfc7301#section-3.1).
  286. //
  287. // Servers can select a protocol by setting Config.NextProtos in a
  288. // GetConfigForClient return value.
  289. SupportedProtos []string
  290. // SupportedVersions lists the TLS versions supported by the client.
  291. // For TLS versions less than 1.3, this is extrapolated from the max
  292. // version advertised by the client, so values other than the greatest
  293. // might be rejected if used.
  294. SupportedVersions []uint16
  295. // Conn is the underlying net.Conn for the connection. Do not read
  296. // from, or write to, this connection; that will cause the TLS
  297. // connection to fail.
  298. Conn net.Conn
  299. // Offered0RTTData is true if the client announced that it will send
  300. // 0-RTT data. If the server Config.Accept0RTTData is true, and the
  301. // client offered a session ticket valid for that purpose, it will
  302. // be notified that the 0-RTT data is accepted and it will be made
  303. // immediately available for Read.
  304. Offered0RTTData bool
  305. // The Fingerprint is an sequence of bytes unique to this Client Hello.
  306. // It can be used to prevent or mitigate 0-RTT data replays as it's
  307. // guaranteed that a replayed connection will have the same Fingerprint.
  308. Fingerprint []byte
  309. }
  310. // CertificateRequestInfo contains information from a server's
  311. // CertificateRequest message, which is used to demand a certificate and proof
  312. // of control from a client.
  313. type CertificateRequestInfo struct {
  314. // AcceptableCAs contains zero or more, DER-encoded, X.501
  315. // Distinguished Names. These are the names of root or intermediate CAs
  316. // that the server wishes the returned certificate to be signed by. An
  317. // empty slice indicates that the server has no preference.
  318. AcceptableCAs [][]byte
  319. // SignatureSchemes lists the signature schemes that the server is
  320. // willing to verify.
  321. SignatureSchemes []SignatureScheme
  322. }
  323. // RenegotiationSupport enumerates the different levels of support for TLS
  324. // renegotiation. TLS renegotiation is the act of performing subsequent
  325. // handshakes on a connection after the first. This significantly complicates
  326. // the state machine and has been the source of numerous, subtle security
  327. // issues. Initiating a renegotiation is not supported, but support for
  328. // accepting renegotiation requests may be enabled.
  329. //
  330. // Even when enabled, the server may not change its identity between handshakes
  331. // (i.e. the leaf certificate must be the same). Additionally, concurrent
  332. // handshake and application data flow is not permitted so renegotiation can
  333. // only be used with protocols that synchronise with the renegotiation, such as
  334. // HTTPS.
  335. type RenegotiationSupport int
  336. const (
  337. // RenegotiateNever disables renegotiation.
  338. RenegotiateNever RenegotiationSupport = iota
  339. // RenegotiateOnceAsClient allows a remote server to request
  340. // renegotiation once per connection.
  341. RenegotiateOnceAsClient
  342. // RenegotiateFreelyAsClient allows a remote server to repeatedly
  343. // request renegotiation.
  344. RenegotiateFreelyAsClient
  345. )
  346. // A Config structure is used to configure a TLS client or server.
  347. // After one has been passed to a TLS function it must not be
  348. // modified. A Config may be reused; the tls package will also not
  349. // modify it.
  350. type Config struct {
  351. // Rand provides the source of entropy for nonces and RSA blinding.
  352. // If Rand is nil, TLS uses the cryptographic random reader in package
  353. // crypto/rand.
  354. // The Reader must be safe for use by multiple goroutines.
  355. Rand io.Reader
  356. // Time returns the current time as the number of seconds since the epoch.
  357. // If Time is nil, TLS uses time.Now.
  358. Time func() time.Time
  359. // Certificates contains one or more certificate chains to present to
  360. // the other side of the connection. Server configurations must include
  361. // at least one certificate or else set GetCertificate. Clients doing
  362. // client-authentication may set either Certificates or
  363. // GetClientCertificate.
  364. Certificates []Certificate
  365. // NameToCertificate maps from a certificate name to an element of
  366. // Certificates. Note that a certificate name can be of the form
  367. // '*.example.com' and so doesn't have to be a domain name as such.
  368. // See Config.BuildNameToCertificate
  369. // The nil value causes the first element of Certificates to be used
  370. // for all connections.
  371. NameToCertificate map[string]*Certificate
  372. // GetCertificate returns a Certificate based on the given
  373. // ClientHelloInfo. It will only be called if the client supplies SNI
  374. // information or if Certificates is empty.
  375. //
  376. // If GetCertificate is nil or returns nil, then the certificate is
  377. // retrieved from NameToCertificate. If NameToCertificate is nil, the
  378. // first element of Certificates will be used.
  379. GetCertificate func(*ClientHelloInfo) (*Certificate, error)
  380. // GetClientCertificate, if not nil, is called when a server requests a
  381. // certificate from a client. If set, the contents of Certificates will
  382. // be ignored.
  383. //
  384. // If GetClientCertificate returns an error, the handshake will be
  385. // aborted and that error will be returned. Otherwise
  386. // GetClientCertificate must return a non-nil Certificate. If
  387. // Certificate.Certificate is empty then no certificate will be sent to
  388. // the server. If this is unacceptable to the server then it may abort
  389. // the handshake.
  390. //
  391. // GetClientCertificate may be called multiple times for the same
  392. // connection if renegotiation occurs or if TLS 1.3 is in use.
  393. GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error)
  394. // GetConfigForClient, if not nil, is called after a ClientHello is
  395. // received from a client. It may return a non-nil Config in order to
  396. // change the Config that will be used to handle this connection. If
  397. // the returned Config is nil, the original Config will be used. The
  398. // Config returned by this callback may not be subsequently modified.
  399. //
  400. // If GetConfigForClient is nil, the Config passed to Server() will be
  401. // used for all connections.
  402. //
  403. // Uniquely for the fields in the returned Config, session ticket keys
  404. // will be duplicated from the original Config if not set.
  405. // Specifically, if SetSessionTicketKeys was called on the original
  406. // config but not on the returned config then the ticket keys from the
  407. // original config will be copied into the new config before use.
  408. // Otherwise, if SessionTicketKey was set in the original config but
  409. // not in the returned config then it will be copied into the returned
  410. // config before use. If neither of those cases applies then the key
  411. // material from the returned config will be used for session tickets.
  412. GetConfigForClient func(*ClientHelloInfo) (*Config, error)
  413. // VerifyPeerCertificate, if not nil, is called after normal
  414. // certificate verification by either a TLS client or server. It
  415. // receives the raw ASN.1 certificates provided by the peer and also
  416. // any verified chains that normal processing found. If it returns a
  417. // non-nil error, the handshake is aborted and that error results.
  418. //
  419. // If normal verification fails then the handshake will abort before
  420. // considering this callback. If normal verification is disabled by
  421. // setting InsecureSkipVerify then this callback will be considered but
  422. // the verifiedChains argument will always be nil.
  423. VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error
  424. // RootCAs defines the set of root certificate authorities
  425. // that clients use when verifying server certificates.
  426. // If RootCAs is nil, TLS uses the host's root CA set.
  427. RootCAs *x509.CertPool
  428. // NextProtos is a list of supported, application level protocols.
  429. NextProtos []string
  430. // ServerName is used to verify the hostname on the returned
  431. // certificates unless InsecureSkipVerify is given. It is also included
  432. // in the client's handshake to support virtual hosting unless it is
  433. // an IP address.
  434. ServerName string
  435. // ClientAuth determines the server's policy for
  436. // TLS Client Authentication. The default is NoClientCert.
  437. ClientAuth ClientAuthType
  438. // ClientCAs defines the set of root certificate authorities
  439. // that servers use if required to verify a client certificate
  440. // by the policy in ClientAuth.
  441. ClientCAs *x509.CertPool
  442. // InsecureSkipVerify controls whether a client verifies the
  443. // server's certificate chain and host name.
  444. // If InsecureSkipVerify is true, TLS accepts any certificate
  445. // presented by the server and any host name in that certificate.
  446. // In this mode, TLS is susceptible to man-in-the-middle attacks.
  447. // This should be used only for testing.
  448. InsecureSkipVerify bool
  449. // CipherSuites is a list of supported cipher suites to be used in
  450. // TLS 1.0-1.2. If CipherSuites is nil, TLS uses a list of suites
  451. // supported by the implementation.
  452. CipherSuites []uint16
  453. // PreferServerCipherSuites controls whether the server selects the
  454. // client's most preferred ciphersuite, or the server's most preferred
  455. // ciphersuite. If true then the server's preference, as expressed in
  456. // the order of elements in CipherSuites, is used.
  457. PreferServerCipherSuites bool
  458. // SessionTicketsDisabled may be set to true to disable session ticket
  459. // (resumption) support.
  460. SessionTicketsDisabled bool
  461. // SessionTicketKey is used by TLS servers to provide session
  462. // resumption. See RFC 5077. If zero, it will be filled with
  463. // random data before the first server handshake.
  464. //
  465. // If multiple servers are terminating connections for the same host
  466. // they should all have the same SessionTicketKey. If the
  467. // SessionTicketKey leaks, previously recorded and future TLS
  468. // connections using that key are compromised.
  469. SessionTicketKey [32]byte
  470. // ClientSessionCache is a cache of ClientSessionState entries for TLS
  471. // session resumption.
  472. ClientSessionCache ClientSessionCache
  473. // MinVersion contains the minimum SSL/TLS version that is acceptable.
  474. // If zero, then TLS 1.0 is taken as the minimum.
  475. MinVersion uint16
  476. // MaxVersion contains the maximum SSL/TLS version that is acceptable.
  477. // If zero, then the maximum version supported by this package is used,
  478. // which is currently TLS 1.2.
  479. MaxVersion uint16
  480. // CurvePreferences contains the elliptic curves that will be used in
  481. // an ECDHE handshake, in preference order. If empty, the default will
  482. // be used.
  483. CurvePreferences []CurveID
  484. // DynamicRecordSizingDisabled disables adaptive sizing of TLS records.
  485. // When true, the largest possible TLS record size is always used. When
  486. // false, the size of TLS records may be adjusted in an attempt to
  487. // improve latency.
  488. DynamicRecordSizingDisabled bool
  489. // Renegotiation controls what types of renegotiation are supported.
  490. // The default, none, is correct for the vast majority of applications.
  491. Renegotiation RenegotiationSupport
  492. // KeyLogWriter optionally specifies a destination for TLS master secrets
  493. // in NSS key log format that can be used to allow external programs
  494. // such as Wireshark to decrypt TLS connections.
  495. // See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format.
  496. // Use of KeyLogWriter compromises security and should only be
  497. // used for debugging.
  498. KeyLogWriter io.Writer
  499. // If Max0RTTDataSize is not zero, the client will be allowed to use
  500. // session tickets to send at most this number of bytes of 0-RTT data.
  501. // 0-RTT data is subject to replay and has memory DoS implications.
  502. // The server will later be able to refuse the 0-RTT data with
  503. // Accept0RTTData, or wait for the client to prove that it's not
  504. // replayed with Conn.ConfirmHandshake.
  505. //
  506. // It has no meaning on the client.
  507. //
  508. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
  509. Max0RTTDataSize uint32
  510. // Accept0RTTData makes the 0-RTT data received from the client
  511. // immediately available to Read. 0-RTT data is subject to replay.
  512. // Use Conn.ConfirmHandshake to wait until the data is known not
  513. // to be replayed after reading it.
  514. //
  515. // It has no meaning on the client.
  516. //
  517. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
  518. Accept0RTTData bool
  519. // SessionTicketSealer, if not nil, is used to wrap and unwrap
  520. // session tickets, instead of SessionTicketKey.
  521. SessionTicketSealer SessionTicketSealer
  522. serverInitOnce sync.Once // guards calling (*Config).serverInit
  523. // mutex protects sessionTicketKeys.
  524. mutex sync.RWMutex
  525. // sessionTicketKeys contains zero or more ticket keys. If the length
  526. // is zero, SessionTicketsDisabled must be true. The first key is used
  527. // for new tickets and any subsequent keys can be used to decrypt old
  528. // tickets.
  529. sessionTicketKeys []ticketKey
  530. }
  531. // ticketKeyNameLen is the number of bytes of identifier that is prepended to
  532. // an encrypted session ticket in order to identify the key used to encrypt it.
  533. const ticketKeyNameLen = 16
  534. // ticketKey is the internal representation of a session ticket key.
  535. type ticketKey struct {
  536. // keyName is an opaque byte string that serves to identify the session
  537. // ticket key. It's exposed as plaintext in every session ticket.
  538. keyName [ticketKeyNameLen]byte
  539. aesKey [16]byte
  540. hmacKey [16]byte
  541. }
  542. // ticketKeyFromBytes converts from the external representation of a session
  543. // ticket key to a ticketKey. Externally, session ticket keys are 32 random
  544. // bytes and this function expands that into sufficient name and key material.
  545. func ticketKeyFromBytes(b [32]byte) (key ticketKey) {
  546. hashed := sha512.Sum512(b[:])
  547. copy(key.keyName[:], hashed[:ticketKeyNameLen])
  548. copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16])
  549. copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32])
  550. return key
  551. }
  552. // Clone returns a shallow clone of c. It is safe to clone a Config that is
  553. // being used concurrently by a TLS client or server.
  554. func (c *Config) Clone() *Config {
  555. // Running serverInit ensures that it's safe to read
  556. // SessionTicketsDisabled.
  557. c.serverInitOnce.Do(func() { c.serverInit(nil) })
  558. var sessionTicketKeys []ticketKey
  559. c.mutex.RLock()
  560. sessionTicketKeys = c.sessionTicketKeys
  561. c.mutex.RUnlock()
  562. return &Config{
  563. Rand: c.Rand,
  564. Time: c.Time,
  565. Certificates: c.Certificates,
  566. NameToCertificate: c.NameToCertificate,
  567. GetCertificate: c.GetCertificate,
  568. GetClientCertificate: c.GetClientCertificate,
  569. GetConfigForClient: c.GetConfigForClient,
  570. VerifyPeerCertificate: c.VerifyPeerCertificate,
  571. RootCAs: c.RootCAs,
  572. NextProtos: c.NextProtos,
  573. ServerName: c.ServerName,
  574. ClientAuth: c.ClientAuth,
  575. ClientCAs: c.ClientCAs,
  576. InsecureSkipVerify: c.InsecureSkipVerify,
  577. CipherSuites: c.CipherSuites,
  578. PreferServerCipherSuites: c.PreferServerCipherSuites,
  579. SessionTicketsDisabled: c.SessionTicketsDisabled,
  580. SessionTicketKey: c.SessionTicketKey,
  581. ClientSessionCache: c.ClientSessionCache,
  582. MinVersion: c.MinVersion,
  583. MaxVersion: c.MaxVersion,
  584. CurvePreferences: c.CurvePreferences,
  585. DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
  586. Renegotiation: c.Renegotiation,
  587. KeyLogWriter: c.KeyLogWriter,
  588. Accept0RTTData: c.Accept0RTTData,
  589. Max0RTTDataSize: c.Max0RTTDataSize,
  590. SessionTicketSealer: c.SessionTicketSealer,
  591. sessionTicketKeys: sessionTicketKeys,
  592. }
  593. }
  594. // serverInit is run under c.serverInitOnce to do initialization of c. If c was
  595. // returned by a GetConfigForClient callback then the argument should be the
  596. // Config that was passed to Server, otherwise it should be nil.
  597. func (c *Config) serverInit(originalConfig *Config) {
  598. if c.SessionTicketsDisabled || len(c.ticketKeys()) != 0 || c.SessionTicketSealer != nil {
  599. return
  600. }
  601. alreadySet := false
  602. for _, b := range c.SessionTicketKey {
  603. if b != 0 {
  604. alreadySet = true
  605. break
  606. }
  607. }
  608. if !alreadySet {
  609. if originalConfig != nil {
  610. copy(c.SessionTicketKey[:], originalConfig.SessionTicketKey[:])
  611. } else if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
  612. c.SessionTicketsDisabled = true
  613. return
  614. }
  615. }
  616. if originalConfig != nil {
  617. originalConfig.mutex.RLock()
  618. c.sessionTicketKeys = originalConfig.sessionTicketKeys
  619. originalConfig.mutex.RUnlock()
  620. } else {
  621. c.sessionTicketKeys = []ticketKey{ticketKeyFromBytes(c.SessionTicketKey)}
  622. }
  623. }
  624. func (c *Config) ticketKeys() []ticketKey {
  625. c.mutex.RLock()
  626. // c.sessionTicketKeys is constant once created. SetSessionTicketKeys
  627. // will only update it by replacing it with a new value.
  628. ret := c.sessionTicketKeys
  629. c.mutex.RUnlock()
  630. return ret
  631. }
  632. // SetSessionTicketKeys updates the session ticket keys for a server. The first
  633. // key will be used when creating new tickets, while all keys can be used for
  634. // decrypting tickets. It is safe to call this function while the server is
  635. // running in order to rotate the session ticket keys. The function will panic
  636. // if keys is empty.
  637. func (c *Config) SetSessionTicketKeys(keys [][32]byte) {
  638. if len(keys) == 0 {
  639. panic("tls: keys must have at least one key")
  640. }
  641. newKeys := make([]ticketKey, len(keys))
  642. for i, bytes := range keys {
  643. newKeys[i] = ticketKeyFromBytes(bytes)
  644. }
  645. c.mutex.Lock()
  646. c.sessionTicketKeys = newKeys
  647. c.mutex.Unlock()
  648. }
  649. func (c *Config) rand() io.Reader {
  650. r := c.Rand
  651. if r == nil {
  652. return rand.Reader
  653. }
  654. return r
  655. }
  656. func (c *Config) time() time.Time {
  657. t := c.Time
  658. if t == nil {
  659. t = time.Now
  660. }
  661. return t()
  662. }
  663. func hasOverlappingCipherSuites(cs1, cs2 []uint16) bool {
  664. for _, c1 := range cs1 {
  665. for _, c2 := range cs2 {
  666. if c1 == c2 {
  667. return true
  668. }
  669. }
  670. }
  671. return false
  672. }
  673. func (c *Config) cipherSuites() []uint16 {
  674. s := c.CipherSuites
  675. if s == nil {
  676. s = defaultCipherSuites()
  677. } else if c.maxVersion() >= VersionTLS13 {
  678. // Ensure that TLS 1.3 suites are always present, but respect
  679. // the application cipher suite preferences.
  680. s13 := defaultTLS13CipherSuites()
  681. if !hasOverlappingCipherSuites(s, s13) {
  682. allSuites := make([]uint16, len(s13)+len(s))
  683. allSuites = append(allSuites, s13...)
  684. s = append(allSuites, s...)
  685. }
  686. }
  687. return s
  688. }
  689. func (c *Config) minVersion() uint16 {
  690. if c == nil || c.MinVersion == 0 {
  691. return minVersion
  692. }
  693. return c.MinVersion
  694. }
  695. func (c *Config) maxVersion() uint16 {
  696. if c == nil || c.MaxVersion == 0 {
  697. return maxVersion
  698. }
  699. return c.MaxVersion
  700. }
  701. var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521}
  702. func (c *Config) curvePreferences() []CurveID {
  703. if c == nil || len(c.CurvePreferences) == 0 {
  704. return defaultCurvePreferences
  705. }
  706. return c.CurvePreferences
  707. }
  708. // mutualVersion returns the protocol version to use given the advertised
  709. // version of the peer using the legacy non-extension methods.
  710. func (c *Config) mutualVersion(vers uint16) (uint16, bool) {
  711. minVersion := c.minVersion()
  712. maxVersion := c.maxVersion()
  713. // Version 1.3 and higher are not negotiated via this mechanism.
  714. if maxVersion > VersionTLS12 {
  715. maxVersion = VersionTLS12
  716. }
  717. if vers < minVersion {
  718. return 0, false
  719. }
  720. if vers > maxVersion {
  721. vers = maxVersion
  722. }
  723. return vers, true
  724. }
  725. // pickVersion returns the protocol version to use given the advertised
  726. // versions of the peer using the Supported Versions extension.
  727. func (c *Config) pickVersion(peerSupportedVersions []uint16) (uint16, bool) {
  728. supportedVersions := c.getSupportedVersions()
  729. for _, supportedVersion := range supportedVersions {
  730. for _, version := range peerSupportedVersions {
  731. if version == supportedVersion {
  732. return version, true
  733. }
  734. }
  735. }
  736. return 0, false
  737. }
  738. // configSuppVersArray is the backing array of Config.getSupportedVersions
  739. var configSuppVersArray = [...]uint16{VersionTLS13, VersionTLS12, VersionTLS11, VersionTLS10, VersionSSL30}
  740. // tls13DraftSuppVersArray is the backing array of Config.getSupportedVersions
  741. // with TLS 1.3 draft versions included.
  742. //
  743. // TODO: remove once TLS 1.3 is finalised.
  744. var tls13DraftSuppVersArray = [...]uint16{VersionTLS13Draft21, VersionTLS12, VersionTLS11, VersionTLS10, VersionSSL30}
  745. // getSupportedVersions returns the protocol versions that are supported by the
  746. // current configuration.
  747. func (c *Config) getSupportedVersions() []uint16 {
  748. minVersion := c.minVersion()
  749. maxVersion := c.maxVersion()
  750. // Sanity check to avoid advertising unsupported versions.
  751. if minVersion < VersionSSL30 {
  752. minVersion = VersionSSL30
  753. }
  754. if maxVersion > VersionTLS13 {
  755. maxVersion = VersionTLS13
  756. }
  757. if maxVersion < minVersion {
  758. return nil
  759. }
  760. // TODO: remove once TLS 1.3 is finalised.
  761. if maxVersion == VersionTLS13 {
  762. return tls13DraftSuppVersArray[:len(tls13DraftSuppVersArray)-int(minVersion-VersionSSL30)]
  763. }
  764. return configSuppVersArray[VersionTLS13-maxVersion : VersionTLS13-minVersion+1]
  765. }
  766. // getCertificate returns the best certificate for the given ClientHelloInfo,
  767. // defaulting to the first element of c.Certificates.
  768. func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) {
  769. if c.GetCertificate != nil &&
  770. (len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) {
  771. cert, err := c.GetCertificate(clientHello)
  772. if cert != nil || err != nil {
  773. return cert, err
  774. }
  775. }
  776. if len(c.Certificates) == 0 {
  777. return nil, errors.New("tls: no certificates configured")
  778. }
  779. if len(c.Certificates) == 1 || c.NameToCertificate == nil {
  780. // There's only one choice, so no point doing any work.
  781. return &c.Certificates[0], nil
  782. }
  783. name := strings.ToLower(clientHello.ServerName)
  784. for len(name) > 0 && name[len(name)-1] == '.' {
  785. name = name[:len(name)-1]
  786. }
  787. if cert, ok := c.NameToCertificate[name]; ok {
  788. return cert, nil
  789. }
  790. // try replacing labels in the name with wildcards until we get a
  791. // match.
  792. labels := strings.Split(name, ".")
  793. for i := range labels {
  794. labels[i] = "*"
  795. candidate := strings.Join(labels, ".")
  796. if cert, ok := c.NameToCertificate[candidate]; ok {
  797. return cert, nil
  798. }
  799. }
  800. // If nothing matches, return the first certificate.
  801. return &c.Certificates[0], nil
  802. }
  803. // BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
  804. // from the CommonName and SubjectAlternateName fields of each of the leaf
  805. // certificates.
  806. func (c *Config) BuildNameToCertificate() {
  807. c.NameToCertificate = make(map[string]*Certificate)
  808. for i := range c.Certificates {
  809. cert := &c.Certificates[i]
  810. x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
  811. if err != nil {
  812. continue
  813. }
  814. if len(x509Cert.Subject.CommonName) > 0 {
  815. c.NameToCertificate[x509Cert.Subject.CommonName] = cert
  816. }
  817. for _, san := range x509Cert.DNSNames {
  818. c.NameToCertificate[san] = cert
  819. }
  820. }
  821. }
  822. // writeKeyLog logs client random and master secret if logging was enabled by
  823. // setting c.KeyLogWriter.
  824. func (c *Config) writeKeyLog(what string, clientRandom, masterSecret []byte) error {
  825. if c.KeyLogWriter == nil {
  826. return nil
  827. }
  828. logLine := []byte(fmt.Sprintf("%s %x %x\n", what, clientRandom, masterSecret))
  829. writerMutex.Lock()
  830. _, err := c.KeyLogWriter.Write(logLine)
  831. writerMutex.Unlock()
  832. return err
  833. }
  834. // writerMutex protects all KeyLogWriters globally. It is rarely enabled,
  835. // and is only for debugging, so a global mutex saves space.
  836. var writerMutex sync.Mutex
  837. // A Certificate is a chain of one or more certificates, leaf first.
  838. type Certificate struct {
  839. Certificate [][]byte
  840. // PrivateKey contains the private key corresponding to the public key
  841. // in Leaf. For a server, this must implement crypto.Signer and/or
  842. // crypto.Decrypter, with an RSA or ECDSA PublicKey. For a client
  843. // (performing client authentication), this must be a crypto.Signer
  844. // with an RSA or ECDSA PublicKey.
  845. PrivateKey crypto.PrivateKey
  846. // OCSPStaple contains an optional OCSP response which will be served
  847. // to clients that request it.
  848. OCSPStaple []byte
  849. // SignedCertificateTimestamps contains an optional list of Signed
  850. // Certificate Timestamps which will be served to clients that request it.
  851. SignedCertificateTimestamps [][]byte
  852. // Leaf is the parsed form of the leaf certificate, which may be
  853. // initialized using x509.ParseCertificate to reduce per-handshake
  854. // processing for TLS clients doing client authentication. If nil, the
  855. // leaf certificate will be parsed as needed.
  856. Leaf *x509.Certificate
  857. }
  858. type handshakeMessage interface {
  859. marshal() []byte
  860. unmarshal([]byte) alert
  861. }
  862. // lruSessionCache is a ClientSessionCache implementation that uses an LRU
  863. // caching strategy.
  864. type lruSessionCache struct {
  865. sync.Mutex
  866. m map[string]*list.Element
  867. q *list.List
  868. capacity int
  869. }
  870. type lruSessionCacheEntry struct {
  871. sessionKey string
  872. state *ClientSessionState
  873. }
  874. // NewLRUClientSessionCache returns a ClientSessionCache with the given
  875. // capacity that uses an LRU strategy. If capacity is < 1, a default capacity
  876. // is used instead.
  877. func NewLRUClientSessionCache(capacity int) ClientSessionCache {
  878. const defaultSessionCacheCapacity = 64
  879. if capacity < 1 {
  880. capacity = defaultSessionCacheCapacity
  881. }
  882. return &lruSessionCache{
  883. m: make(map[string]*list.Element),
  884. q: list.New(),
  885. capacity: capacity,
  886. }
  887. }
  888. // Put adds the provided (sessionKey, cs) pair to the cache.
  889. func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
  890. c.Lock()
  891. defer c.Unlock()
  892. if elem, ok := c.m[sessionKey]; ok {
  893. entry := elem.Value.(*lruSessionCacheEntry)
  894. entry.state = cs
  895. c.q.MoveToFront(elem)
  896. return
  897. }
  898. if c.q.Len() < c.capacity {
  899. entry := &lruSessionCacheEntry{sessionKey, cs}
  900. c.m[sessionKey] = c.q.PushFront(entry)
  901. return
  902. }
  903. elem := c.q.Back()
  904. entry := elem.Value.(*lruSessionCacheEntry)
  905. delete(c.m, entry.sessionKey)
  906. entry.sessionKey = sessionKey
  907. entry.state = cs
  908. c.q.MoveToFront(elem)
  909. c.m[sessionKey] = elem
  910. }
  911. // Get returns the ClientSessionState value associated with a given key. It
  912. // returns (nil, false) if no value is found.
  913. func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
  914. c.Lock()
  915. defer c.Unlock()
  916. if elem, ok := c.m[sessionKey]; ok {
  917. c.q.MoveToFront(elem)
  918. return elem.Value.(*lruSessionCacheEntry).state, true
  919. }
  920. return nil, false
  921. }
  922. // TODO(jsing): Make these available to both crypto/x509 and crypto/tls.
  923. type dsaSignature struct {
  924. R, S *big.Int
  925. }
  926. type ecdsaSignature dsaSignature
  927. var emptyConfig Config
  928. func defaultConfig() *Config {
  929. return &emptyConfig
  930. }
  931. var (
  932. once sync.Once
  933. varDefaultCipherSuites []uint16
  934. varDefaultTLS13CipherSuites []uint16
  935. )
  936. func defaultCipherSuites() []uint16 {
  937. once.Do(initDefaultCipherSuites)
  938. return varDefaultCipherSuites
  939. }
  940. func defaultTLS13CipherSuites() []uint16 {
  941. once.Do(initDefaultCipherSuites)
  942. return varDefaultTLS13CipherSuites
  943. }
  944. func initDefaultCipherSuites() {
  945. var topCipherSuites, topTLS13CipherSuites []uint16
  946. if cipherhw.AESGCMSupport() {
  947. // If AES-GCM hardware is provided then prioritise AES-GCM
  948. // cipher suites.
  949. topTLS13CipherSuites = []uint16{
  950. TLS_AES_128_GCM_SHA256,
  951. TLS_AES_256_GCM_SHA384,
  952. TLS_CHACHA20_POLY1305_SHA256,
  953. }
  954. topCipherSuites = []uint16{
  955. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  956. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  957. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  958. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  959. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  960. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  961. }
  962. } else {
  963. // Without AES-GCM hardware, we put the ChaCha20-Poly1305
  964. // cipher suites first.
  965. topTLS13CipherSuites = []uint16{
  966. TLS_CHACHA20_POLY1305_SHA256,
  967. TLS_AES_128_GCM_SHA256,
  968. TLS_AES_256_GCM_SHA384,
  969. }
  970. topCipherSuites = []uint16{
  971. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  972. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  973. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  974. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  975. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  976. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  977. }
  978. }
  979. varDefaultTLS13CipherSuites = make([]uint16, 0, len(cipherSuites))
  980. varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, topTLS13CipherSuites...)
  981. varDefaultCipherSuites = make([]uint16, 0, len(cipherSuites))
  982. varDefaultCipherSuites = append(varDefaultCipherSuites, topCipherSuites...)
  983. NextCipherSuite:
  984. for _, suite := range cipherSuites {
  985. if suite.flags&suiteDefaultOff != 0 {
  986. continue
  987. }
  988. if suite.flags&suiteTLS13 != 0 {
  989. for _, existing := range varDefaultTLS13CipherSuites {
  990. if existing == suite.id {
  991. continue NextCipherSuite
  992. }
  993. }
  994. varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, suite.id)
  995. } else {
  996. for _, existing := range varDefaultCipherSuites {
  997. if existing == suite.id {
  998. continue NextCipherSuite
  999. }
  1000. }
  1001. varDefaultCipherSuites = append(varDefaultCipherSuites, suite.id)
  1002. }
  1003. }
  1004. varDefaultCipherSuites = append(varDefaultTLS13CipherSuites, varDefaultCipherSuites...)
  1005. }
  1006. func unexpectedMessageError(wanted, got interface{}) error {
  1007. return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
  1008. }
  1009. func isSupportedSignatureAlgorithm(sigAlg SignatureScheme, supportedSignatureAlgorithms []SignatureScheme) bool {
  1010. for _, s := range supportedSignatureAlgorithms {
  1011. if s == sigAlg {
  1012. return true
  1013. }
  1014. }
  1015. return false
  1016. }
  1017. // signatureFromSignatureScheme maps a signature algorithm to the underlying
  1018. // signature method (without hash function).
  1019. func signatureFromSignatureScheme(signatureAlgorithm SignatureScheme) uint8 {
  1020. switch signatureAlgorithm {
  1021. case PKCS1WithSHA1, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512:
  1022. return signaturePKCS1v15
  1023. case PSSWithSHA256, PSSWithSHA384, PSSWithSHA512:
  1024. return signatureRSAPSS
  1025. case ECDSAWithSHA1, ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512:
  1026. return signatureECDSA
  1027. default:
  1028. return 0
  1029. }
  1030. }