f4b6e2236c
The key/value format of X.500 names means that it's possible to encode a name with multiple values for, say, organisation. RFC5280 doesn't seem to consider this, but there are Verisign root certificates which do this and, in order to find the correct root certificate in some cases, we need to handle it. Also, CA certificates should set the CA flag and we now check this. After looking at the other X.509 extensions it appears that they are universally ignored/bit rotted away so we ignore them. R=rsc CC=golang-dev https://golang.org/cl/2249042
284 lines
8.0 KiB
Go
284 lines
8.0 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package tls
|
||
|
||
import (
|
||
"crypto/hmac"
|
||
"crypto/rc4"
|
||
"crypto/rsa"
|
||
"crypto/subtle"
|
||
"crypto/x509"
|
||
"io"
|
||
"os"
|
||
)
|
||
|
||
func (c *Conn) clientHandshake() os.Error {
|
||
finishedHash := newFinishedHash()
|
||
|
||
if c.config == nil {
|
||
c.config = defaultConfig()
|
||
}
|
||
|
||
hello := &clientHelloMsg{
|
||
vers: maxVersion,
|
||
cipherSuites: []uint16{TLS_RSA_WITH_RC4_128_SHA},
|
||
compressionMethods: []uint8{compressionNone},
|
||
random: make([]byte, 32),
|
||
ocspStapling: true,
|
||
serverName: c.config.ServerName,
|
||
}
|
||
|
||
t := uint32(c.config.Time())
|
||
hello.random[0] = byte(t >> 24)
|
||
hello.random[1] = byte(t >> 16)
|
||
hello.random[2] = byte(t >> 8)
|
||
hello.random[3] = byte(t)
|
||
_, err := io.ReadFull(c.config.Rand, hello.random[4:])
|
||
if err != nil {
|
||
return c.sendAlert(alertInternalError)
|
||
}
|
||
|
||
finishedHash.Write(hello.marshal())
|
||
c.writeRecord(recordTypeHandshake, hello.marshal())
|
||
|
||
msg, err := c.readHandshake()
|
||
if err != nil {
|
||
return err
|
||
}
|
||
serverHello, ok := msg.(*serverHelloMsg)
|
||
if !ok {
|
||
return c.sendAlert(alertUnexpectedMessage)
|
||
}
|
||
finishedHash.Write(serverHello.marshal())
|
||
|
||
vers, ok := mutualVersion(serverHello.vers)
|
||
if !ok {
|
||
c.sendAlert(alertProtocolVersion)
|
||
}
|
||
c.vers = vers
|
||
c.haveVers = true
|
||
|
||
if serverHello.cipherSuite != TLS_RSA_WITH_RC4_128_SHA ||
|
||
serverHello.compressionMethod != compressionNone {
|
||
return c.sendAlert(alertUnexpectedMessage)
|
||
}
|
||
|
||
msg, err = c.readHandshake()
|
||
if err != nil {
|
||
return err
|
||
}
|
||
certMsg, ok := msg.(*certificateMsg)
|
||
if !ok || len(certMsg.certificates) == 0 {
|
||
return c.sendAlert(alertUnexpectedMessage)
|
||
}
|
||
finishedHash.Write(certMsg.marshal())
|
||
|
||
certs := make([]*x509.Certificate, len(certMsg.certificates))
|
||
for i, asn1Data := range certMsg.certificates {
|
||
cert, err := x509.ParseCertificate(asn1Data)
|
||
if err != nil {
|
||
return c.sendAlert(alertBadCertificate)
|
||
}
|
||
certs[i] = cert
|
||
}
|
||
|
||
for i := 1; i < len(certs); i++ {
|
||
if !certs[i].BasicConstraintsValid || !certs[i].IsCA {
|
||
return c.sendAlert(alertBadCertificate)
|
||
}
|
||
// KeyUsage status flags are ignored. From Engineering
|
||
// Security, Peter Gutmann:
|
||
// A European government CA marked its signing certificates as
|
||
// being valid for encryption only, but no-one noticed. Another
|
||
// European CA marked its signature keys as not being valid for
|
||
// signatures. A different CA marked its own trusted root
|
||
// certificate as being invalid for certificate signing.
|
||
// Another national CA distributed a certificate to be used to
|
||
// encrypt data for the country’s tax authority that was marked
|
||
// as only being usable for digital signatures but not for
|
||
// encryption. Yet another CA reversed the order of the bit
|
||
// flags in the keyUsage due to confusion over encoding
|
||
// endianness, essentially setting a random keyUsage in
|
||
// certificates that it issued. Another CA created a
|
||
// self-invalidating certificate by adding a certificate policy
|
||
// statement stipulating that the certificate had to be used
|
||
// strictly as specified in the keyUsage, and a keyUsage
|
||
// containing a flag indicating that the RSA encryption key
|
||
// could only be used for Diffie-Hellman key agreement.
|
||
|
||
if err := certs[i-1].CheckSignatureFrom(certs[i]); err != nil {
|
||
return c.sendAlert(alertBadCertificate)
|
||
}
|
||
}
|
||
|
||
// TODO(rsc): Find certificates for OS X 10.6.
|
||
if c.config.RootCAs != nil {
|
||
root := c.config.RootCAs.FindParent(certs[len(certs)-1])
|
||
if root == nil {
|
||
return c.sendAlert(alertBadCertificate)
|
||
}
|
||
if certs[len(certs)-1].CheckSignatureFrom(root) != nil {
|
||
return c.sendAlert(alertBadCertificate)
|
||
}
|
||
}
|
||
|
||
pub, ok := certs[0].PublicKey.(*rsa.PublicKey)
|
||
if !ok {
|
||
return c.sendAlert(alertUnsupportedCertificate)
|
||
}
|
||
|
||
c.peerCertificates = certs
|
||
|
||
if serverHello.certStatus {
|
||
msg, err = c.readHandshake()
|
||
if err != nil {
|
||
return err
|
||
}
|
||
cs, ok := msg.(*certificateStatusMsg)
|
||
if !ok {
|
||
return c.sendAlert(alertUnexpectedMessage)
|
||
}
|
||
finishedHash.Write(cs.marshal())
|
||
|
||
if cs.statusType == statusTypeOCSP {
|
||
c.ocspResponse = cs.response
|
||
}
|
||
}
|
||
|
||
msg, err = c.readHandshake()
|
||
if err != nil {
|
||
return err
|
||
}
|
||
|
||
transmitCert := false
|
||
certReq, ok := msg.(*certificateRequestMsg)
|
||
if ok {
|
||
// We only accept certificates with RSA keys.
|
||
rsaAvail := false
|
||
for _, certType := range certReq.certificateTypes {
|
||
if certType == certTypeRSASign {
|
||
rsaAvail = true
|
||
break
|
||
}
|
||
}
|
||
|
||
// For now, only send a certificate back if the server gives us an
|
||
// empty list of certificateAuthorities.
|
||
//
|
||
// RFC 4346 on the certificateAuthorities field:
|
||
// A list of the distinguished names of acceptable certificate
|
||
// authorities. These distinguished names may specify a desired
|
||
// distinguished name for a root CA or for a subordinate CA; thus,
|
||
// this message can be used to describe both known roots and a
|
||
// desired authorization space. If the certificate_authorities
|
||
// list is empty then the client MAY send any certificate of the
|
||
// appropriate ClientCertificateType, unless there is some
|
||
// external arrangement to the contrary.
|
||
if rsaAvail && len(certReq.certificateAuthorities) == 0 {
|
||
transmitCert = true
|
||
}
|
||
|
||
finishedHash.Write(certReq.marshal())
|
||
|
||
msg, err = c.readHandshake()
|
||
if err != nil {
|
||
return err
|
||
}
|
||
}
|
||
|
||
shd, ok := msg.(*serverHelloDoneMsg)
|
||
if !ok {
|
||
return c.sendAlert(alertUnexpectedMessage)
|
||
}
|
||
finishedHash.Write(shd.marshal())
|
||
|
||
var cert *x509.Certificate
|
||
if transmitCert {
|
||
certMsg = new(certificateMsg)
|
||
if len(c.config.Certificates) > 0 {
|
||
cert, err = x509.ParseCertificate(c.config.Certificates[0].Certificate[0])
|
||
if err == nil && cert.PublicKeyAlgorithm == x509.RSA {
|
||
certMsg.certificates = c.config.Certificates[0].Certificate
|
||
} else {
|
||
cert = nil
|
||
}
|
||
}
|
||
finishedHash.Write(certMsg.marshal())
|
||
c.writeRecord(recordTypeHandshake, certMsg.marshal())
|
||
}
|
||
|
||
ckx := new(clientKeyExchangeMsg)
|
||
preMasterSecret := make([]byte, 48)
|
||
preMasterSecret[0] = byte(hello.vers >> 8)
|
||
preMasterSecret[1] = byte(hello.vers)
|
||
_, err = io.ReadFull(c.config.Rand, preMasterSecret[2:])
|
||
if err != nil {
|
||
return c.sendAlert(alertInternalError)
|
||
}
|
||
|
||
ckx.ciphertext, err = rsa.EncryptPKCS1v15(c.config.Rand, pub, preMasterSecret)
|
||
if err != nil {
|
||
return c.sendAlert(alertInternalError)
|
||
}
|
||
|
||
finishedHash.Write(ckx.marshal())
|
||
c.writeRecord(recordTypeHandshake, ckx.marshal())
|
||
|
||
if cert != nil {
|
||
certVerify := new(certificateVerifyMsg)
|
||
var digest [36]byte
|
||
copy(digest[0:16], finishedHash.serverMD5.Sum())
|
||
copy(digest[16:36], finishedHash.serverSHA1.Sum())
|
||
signed, err := rsa.SignPKCS1v15(c.config.Rand, c.config.Certificates[0].PrivateKey, rsa.HashMD5SHA1, digest[0:])
|
||
if err != nil {
|
||
return c.sendAlert(alertInternalError)
|
||
}
|
||
certVerify.signature = signed
|
||
|
||
finishedHash.Write(certVerify.marshal())
|
||
c.writeRecord(recordTypeHandshake, certVerify.marshal())
|
||
}
|
||
|
||
suite := cipherSuites[0]
|
||
masterSecret, clientMAC, serverMAC, clientKey, serverKey :=
|
||
keysFromPreMasterSecret11(preMasterSecret, hello.random, serverHello.random, suite.hashLength, suite.cipherKeyLength)
|
||
|
||
cipher, _ := rc4.NewCipher(clientKey)
|
||
|
||
c.out.prepareCipherSpec(cipher, hmac.NewSHA1(clientMAC))
|
||
c.writeRecord(recordTypeChangeCipherSpec, []byte{1})
|
||
|
||
finished := new(finishedMsg)
|
||
finished.verifyData = finishedHash.clientSum(masterSecret)
|
||
finishedHash.Write(finished.marshal())
|
||
c.writeRecord(recordTypeHandshake, finished.marshal())
|
||
|
||
cipher2, _ := rc4.NewCipher(serverKey)
|
||
c.in.prepareCipherSpec(cipher2, hmac.NewSHA1(serverMAC))
|
||
c.readRecord(recordTypeChangeCipherSpec)
|
||
if c.err != nil {
|
||
return c.err
|
||
}
|
||
|
||
msg, err = c.readHandshake()
|
||
if err != nil {
|
||
return err
|
||
}
|
||
serverFinished, ok := msg.(*finishedMsg)
|
||
if !ok {
|
||
return c.sendAlert(alertUnexpectedMessage)
|
||
}
|
||
|
||
verify := finishedHash.serverSum(masterSecret)
|
||
if len(verify) != len(serverFinished.verifyData) ||
|
||
subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 {
|
||
return c.sendAlert(alertHandshakeFailure)
|
||
}
|
||
|
||
c.handshakeComplete = true
|
||
c.cipherSuite = TLS_RSA_WITH_RC4_128_SHA
|
||
return nil
|
||
}
|