|
- // Copyright 2010 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
-
- // TLS low level connection and record layer
-
- package trs
-
- import (
- "bytes"
- "crypto/cipher"
- "crypto/subtle"
- "crypto/x509"
- "encoding/binary"
- "errors"
- "fmt"
- "io"
- "net"
- "sync"
- "sync/atomic"
- "time"
- )
-
- // A Conn represents a secured connection.
- // It implements the net.Conn interface.
- type Conn struct {
- // constant
- conn net.Conn
- isClient bool
-
- phase handshakeStatus // protected by in.Mutex
- // handshakeConfirmed is an atomic bool for phase == handshakeConfirmed
- handshakeConfirmed int32
- // confirmMutex is held by any read operation before handshakeConfirmed
- confirmMutex sync.Mutex
-
- // constant after handshake; protected by handshakeMutex
- handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
- handshakeErr error // error resulting from handshake
- connID []byte // Random connection id
- clientHello []byte // ClientHello packet contents
- vers uint16 // TLS version
- haveVers bool // version has been negotiated
- config *Config // configuration passed to constructor
- // handshakeComplete is true if the connection reached application data
- // and it's equivalent to phase > handshakeRunning
- handshakeComplete bool
- // handshakes counts the number of handshakes performed on the
- // connection so far. If renegotiation is disabled then this is either
- // zero or one.
- handshakes int
- didResume bool // whether this connection was a session resumption
- cipherSuite uint16
- ocspResponse []byte // stapled OCSP response
- scts [][]byte // Signed certificate timestamps from server
- peerCertificates []*x509.Certificate
- // verifiedChains contains the certificate chains that we built, as
- // opposed to the ones presented by the server.
- verifiedChains [][]*x509.Certificate
- // verifiedDc is set by a client who negotiates the use of a valid delegated
- // credential.
- verifiedDc *delegatedCredential
- // serverName contains the server name indicated by the client, if any.
- serverName string
- // secureRenegotiation is true if the server echoed the secure
- // renegotiation extension. (This is meaningless as a server because
- // renegotiation is not supported in that case.)
- secureRenegotiation bool
- // indicates wether extended MasterSecret extension is used (see RFC7627)
- useEMS bool
-
- // clientFinishedIsFirst is true if the client sent the first Finished
- // message during the most recent handshake. This is recorded because
- // the first transmitted Finished message is the tls-unique
- // channel-binding value.
- clientFinishedIsFirst bool
-
- // closeNotifyErr is any error from sending the alertCloseNotify record.
- closeNotifyErr error
- // closeNotifySent is true if the Conn attempted to send an
- // alertCloseNotify record.
- closeNotifySent bool
-
- // clientFinished and serverFinished contain the Finished message sent
- // by the client or server in the most recent handshake. This is
- // retained to support the renegotiation extension and tls-unique
- // channel-binding.
- clientFinished [12]byte
- serverFinished [12]byte
-
- clientProtocol string
- clientProtocolFallback bool
-
- // ticketMaxEarlyData is the maximum bytes of 0-RTT application data
- // that the client is allowed to send on the ticket it used.
- ticketMaxEarlyData int64
-
- // input/output
- in, out halfConn // in.Mutex < out.Mutex
- rawInput *block // raw input, right off the wire
- input *block // application data waiting to be read
- hand bytes.Buffer // handshake data waiting to be read
- buffering bool // whether records are buffered in sendBuf
- sendBuf []byte // a buffer of records waiting to be sent
-
- // bytesSent counts the bytes of application data sent.
- // packetsSent counts packets.
- bytesSent int64
- packetsSent int64
-
- // warnCount counts the number of consecutive warning alerts received
- // by Conn.readRecord. Protected by in.Mutex.
- warnCount int
-
- // activeCall is an atomic int32; the low bit is whether Close has
- // been called. the rest of the bits are the number of goroutines
- // in Conn.Write.
- activeCall int32
-
- // TLS 1.3 needs the server state until it reaches the Client Finished
- hs *serverHandshakeState
-
- // earlyDataBytes is the number of bytes of early data received so
- // far. Tracked to enforce max_early_data_size.
- // We don't keep track of rejected 0-RTT data since there's no need
- // to ever buffer it. in.Mutex.
- earlyDataBytes int64
-
- // binder is the value of the PSK binder that was validated to
- // accept the 0-RTT data. Exposed as ConnectionState.Unique0RTTToken.
- binder []byte
-
- Group CurveID // ECDH group used
-
- tmp [16]byte
- }
-
- type handshakeStatus int
-
- const (
- handshakeRunning handshakeStatus = iota
- discardingEarlyData
- readingEarlyData
- waitingClientFinished
- readingClientFinished
- handshakeConfirmed
- )
-
- // Access to net.Conn methods.
- // Cannot just embed net.Conn because that would
- // export the struct field too.
-
- // LocalAddr returns the local network address.
- func (c *Conn) LocalAddr() net.Addr {
- return c.conn.LocalAddr()
- }
-
- // RemoteAddr returns the remote network address.
- func (c *Conn) RemoteAddr() net.Addr {
- return c.conn.RemoteAddr()
- }
-
- // SetDeadline sets the read and write deadlines associated with the connection.
- // A zero value for t means Read and Write will not time out.
- // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
- func (c *Conn) SetDeadline(t time.Time) error {
- return c.conn.SetDeadline(t)
- }
-
- // SetReadDeadline sets the read deadline on the underlying connection.
- // A zero value for t means Read will not time out.
- func (c *Conn) SetReadDeadline(t time.Time) error {
- return c.conn.SetReadDeadline(t)
- }
-
- // SetWriteDeadline sets the write deadline on the underlying connection.
- // A zero value for t means Write will not time out.
- // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
- func (c *Conn) SetWriteDeadline(t time.Time) error {
- return c.conn.SetWriteDeadline(t)
- }
-
- // A halfConn represents one direction of the record layer
- // connection, either sending or receiving.
- type halfConn struct {
- sync.Mutex
-
- err error // first permanent error
- version uint16 // protocol version
- cipher interface{} // cipher algorithm
- mac macFunction
- seq [8]byte // 64-bit sequence number
- bfree *block // list of free blocks
- additionalData [13]byte // to avoid allocs; interface method args escape
-
- nextCipher interface{} // next encryption state
- nextMac macFunction // next MAC algorithm
-
- // used to save allocating a new buffer for each MAC.
- inDigestBuf, outDigestBuf []byte
-
- traceErr func(error)
- }
-
- func (hc *halfConn) setErrorLocked(err error) error {
- hc.err = err
- if hc.traceErr != nil {
- hc.traceErr(err)
- }
- return err
- }
-
- // prepareCipherSpec sets the encryption and MAC states
- // that a subsequent changeCipherSpec will use.
- func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
- hc.version = version
- hc.nextCipher = cipher
- hc.nextMac = mac
- }
-
- // changeCipherSpec changes the encryption and MAC states
- // to the ones previously passed to prepareCipherSpec.
- func (hc *halfConn) changeCipherSpec() error {
- if hc.nextCipher == nil {
- return alertInternalError
- }
- hc.cipher = hc.nextCipher
- hc.mac = hc.nextMac
- hc.nextCipher = nil
- hc.nextMac = nil
- for i := range hc.seq {
- hc.seq[i] = 0
- }
- return nil
- }
-
- func (hc *halfConn) setCipher(version uint16, cipher interface{}) {
- hc.version = version
- hc.cipher = cipher
- for i := range hc.seq {
- hc.seq[i] = 0
- }
- }
-
- // incSeq increments the sequence number.
- func (hc *halfConn) incSeq() {
- for i := 7; i >= 0; i-- {
- hc.seq[i]++
- if hc.seq[i] != 0 {
- return
- }
- }
-
- // Not allowed to let sequence number wrap.
- // Instead, must renegotiate before it does.
- // Not likely enough to bother.
- panic("TLS: sequence number wraparound")
- }
-
- // extractPadding returns, in constant time, the length of the padding to remove
- // from the end of payload. It also returns a byte which is equal to 255 if the
- // padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
- func extractPadding(payload []byte) (toRemove int, good byte) {
- if len(payload) < 1 {
- return 0, 0
- }
-
- paddingLen := payload[len(payload)-1]
- t := uint(len(payload)-1) - uint(paddingLen)
- // if len(payload) >= (paddingLen - 1) then the MSB of t is zero
- good = byte(int32(^t) >> 31)
-
- // The maximum possible padding length plus the actual length field
- toCheck := 256
- // The length of the padded data is public, so we can use an if here
- if toCheck > len(payload) {
- toCheck = len(payload)
- }
-
- for i := 0; i < toCheck; i++ {
- t := uint(paddingLen) - uint(i)
- // if i <= paddingLen then the MSB of t is zero
- mask := byte(int32(^t) >> 31)
- b := payload[len(payload)-1-i]
- good &^= mask&paddingLen ^ mask&b
- }
-
- // We AND together the bits of good and replicate the result across
- // all the bits.
- good &= good << 4
- good &= good << 2
- good &= good << 1
- good = uint8(int8(good) >> 7)
-
- toRemove = int(paddingLen) + 1
- return
- }
-
- // extractPaddingSSL30 is a replacement for extractPadding in the case that the
- // protocol version is SSLv3. In this version, the contents of the padding
- // are random and cannot be checked.
- func extractPaddingSSL30(payload []byte) (toRemove int, good byte) {
- if len(payload) < 1 {
- return 0, 0
- }
-
- paddingLen := int(payload[len(payload)-1]) + 1
- if paddingLen > len(payload) {
- return 0, 0
- }
-
- return paddingLen, 255
- }
-
- func roundUp(a, b int) int {
- return a + (b-a%b)%b
- }
-
- // cbcMode is an interface for block ciphers using cipher block chaining.
- type cbcMode interface {
- cipher.BlockMode
- SetIV([]byte)
- }
-
- // decrypt checks and strips the mac and decrypts the data in b. Returns a
- // success boolean, the number of bytes to skip from the start of the record in
- // order to get the application payload, and an optional alert value.
- func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
- // pull out payload
- payload := b.data[recordHeaderLen:]
-
- macSize := 0
- if hc.mac != nil {
- macSize = hc.mac.Size()
- }
-
- paddingGood := byte(255)
- paddingLen := 0
- explicitIVLen := 0
-
- // decrypt
- if hc.cipher != nil {
- switch c := hc.cipher.(type) {
- case cipher.Stream:
- c.XORKeyStream(payload, payload)
- case aead:
- explicitIVLen = c.explicitNonceLen()
- if len(payload) < explicitIVLen {
- return false, 0, alertBadRecordMAC
- }
- nonce := payload[:explicitIVLen]
- payload = payload[explicitIVLen:]
-
- if len(nonce) == 0 {
- nonce = hc.seq[:]
- }
-
- var additionalData []byte
- if hc.version < VersionTLS13 {
- copy(hc.additionalData[:], hc.seq[:])
- copy(hc.additionalData[8:], b.data[:3])
- n := len(payload) - c.Overhead()
- hc.additionalData[11] = byte(n >> 8)
- hc.additionalData[12] = byte(n)
- additionalData = hc.additionalData[:]
- } else {
- if len(payload) > int((1<<14)+256) {
- return false, 0, alertRecordOverflow
- }
- // Check AD header, see 5.2 of RFC8446
- additionalData = make([]byte, 5)
- additionalData[0] = byte(recordTypeApplicationData)
- binary.BigEndian.PutUint16(additionalData[1:], VersionTLS12)
- binary.BigEndian.PutUint16(additionalData[3:], uint16(len(payload)))
- }
- var err error
- payload, err = c.Open(payload[:0], nonce, payload, additionalData)
- if err != nil {
- return false, 0, alertBadRecordMAC
- }
- b.resize(recordHeaderLen + explicitIVLen + len(payload))
- case cbcMode:
- blockSize := c.BlockSize()
- if hc.version >= VersionTLS11 {
- explicitIVLen = blockSize
- }
-
- if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
- return false, 0, alertBadRecordMAC
- }
-
- if explicitIVLen > 0 {
- c.SetIV(payload[:explicitIVLen])
- payload = payload[explicitIVLen:]
- }
- c.CryptBlocks(payload, payload)
- if hc.version == VersionSSL30 {
- paddingLen, paddingGood = extractPaddingSSL30(payload)
- } else {
- paddingLen, paddingGood = extractPadding(payload)
-
- // To protect against CBC padding oracles like Lucky13, the data
- // past paddingLen (which is secret) is passed to the MAC
- // function as extra data, to be fed into the HMAC after
- // computing the digest. This makes the MAC constant time as
- // long as the digest computation is constant time and does not
- // affect the subsequent write.
- }
- default:
- panic("unknown cipher type")
- }
- }
-
- // check, strip mac
- if hc.mac != nil {
- if len(payload) < macSize {
- return false, 0, alertBadRecordMAC
- }
-
- // strip mac off payload, b.data
- n := len(payload) - macSize - paddingLen
- n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
- b.data[3] = byte(n >> 8)
- b.data[4] = byte(n)
- remoteMAC := payload[n : n+macSize]
- localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:])
-
- if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
- return false, 0, alertBadRecordMAC
- }
- hc.inDigestBuf = localMAC
-
- b.resize(recordHeaderLen + explicitIVLen + n)
- }
- hc.incSeq()
-
- return true, recordHeaderLen + explicitIVLen, 0
- }
-
- // padToBlockSize calculates the needed padding block, if any, for a payload.
- // On exit, prefix aliases payload and extends to the end of the last full
- // block of payload. finalBlock is a fresh slice which contains the contents of
- // any suffix of payload as well as the needed padding to make finalBlock a
- // full block.
- func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
- overrun := len(payload) % blockSize
- paddingLen := blockSize - overrun
- prefix = payload[:len(payload)-overrun]
- finalBlock = make([]byte, blockSize)
- copy(finalBlock, payload[len(payload)-overrun:])
- for i := overrun; i < blockSize; i++ {
- finalBlock[i] = byte(paddingLen - 1)
- }
- return
- }
-
- // encrypt encrypts and macs the data in b.
- func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
- // mac
- if hc.mac != nil {
- mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil)
-
- n := len(b.data)
- b.resize(n + len(mac))
- copy(b.data[n:], mac)
- hc.outDigestBuf = mac
- }
-
- payload := b.data[recordHeaderLen:]
-
- // encrypt
- if hc.cipher != nil {
- switch c := hc.cipher.(type) {
- case cipher.Stream:
- c.XORKeyStream(payload, payload)
- case aead:
- // explicitIVLen is always 0 for TLS1.3
- payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
- payloadOffset := recordHeaderLen + explicitIVLen
- nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
- if len(nonce) == 0 {
- nonce = hc.seq[:]
- }
-
- var additionalData []byte
- if hc.version < VersionTLS13 {
- // make room in a buffer for payload + MAC
- b.resize(len(b.data) + c.Overhead())
-
- payload = b.data[payloadOffset : payloadOffset+payloadLen]
- copy(hc.additionalData[:], hc.seq[:])
- copy(hc.additionalData[8:], b.data[:3])
- binary.BigEndian.PutUint16(hc.additionalData[11:], uint16(payloadLen))
- additionalData = hc.additionalData[:]
- } else {
- // make room in a buffer for TLSCiphertext.encrypted_record:
- // payload + MAC + extra data if needed
- b.resize(len(b.data) + c.Overhead() + 1)
-
- payload = b.data[payloadOffset : payloadOffset+payloadLen+1]
- // 1 byte of content type is appended to payload and encrypted
- payload[len(payload)-1] = b.data[0]
-
- // opaque_type
- b.data[0] = byte(recordTypeApplicationData)
-
- // Add AD header, see 5.2 of RFC8446
- additionalData = make([]byte, 5)
- additionalData[0] = b.data[0]
- binary.BigEndian.PutUint16(additionalData[1:], VersionTLS12)
- binary.BigEndian.PutUint16(additionalData[3:], uint16(len(payload)+c.Overhead()))
- }
- c.Seal(payload[:0], nonce, payload, additionalData)
- case cbcMode:
- blockSize := c.BlockSize()
- if explicitIVLen > 0 {
- c.SetIV(payload[:explicitIVLen])
- payload = payload[explicitIVLen:]
- }
- prefix, finalBlock := padToBlockSize(payload, blockSize)
- b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
- c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
- c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
- default:
- panic("unknown cipher type")
- }
- }
-
- // update length to include MAC and any block padding needed.
- n := len(b.data) - recordHeaderLen
- b.data[3] = byte(n >> 8)
- b.data[4] = byte(n)
- hc.incSeq()
-
- return true, 0
- }
-
- // A block is a simple data buffer.
- type block struct {
- data []byte
- off int // index for Read
- link *block
- }
-
- // resize resizes block to be n bytes, growing if necessary.
- func (b *block) resize(n int) {
- if n > cap(b.data) {
- b.reserve(n)
- }
- b.data = b.data[0:n]
- }
-
- // reserve makes sure that block contains a capacity of at least n bytes.
- func (b *block) reserve(n int) {
- if cap(b.data) >= n {
- return
- }
- m := cap(b.data)
- if m == 0 {
- m = 1024
- }
- for m < n {
- m *= 2
- }
- data := make([]byte, len(b.data), m)
- copy(data, b.data)
- b.data = data
- }
-
- // readFromUntil reads from r into b until b contains at least n bytes
- // or else returns an error.
- func (b *block) readFromUntil(r io.Reader, n int) error {
- // quick case
- if len(b.data) >= n {
- return nil
- }
-
- // read until have enough.
- b.reserve(n)
- for {
- m, err := r.Read(b.data[len(b.data):cap(b.data)])
- b.data = b.data[0 : len(b.data)+m]
- if len(b.data) >= n {
- // TODO(bradfitz,agl): slightly suspicious
- // that we're throwing away r.Read's err here.
- break
- }
- if err != nil {
- return err
- }
- }
- return nil
- }
-
- func (b *block) Read(p []byte) (n int, err error) {
- n = copy(p, b.data[b.off:])
- b.off += n
- if b.off >= len(b.data) {
- err = io.EOF
- }
- return
- }
-
- // newBlock allocates a new block, from hc's free list if possible.
- func (hc *halfConn) newBlock() *block {
- b := hc.bfree
- if b == nil {
- return new(block)
- }
- hc.bfree = b.link
- b.link = nil
- b.resize(0)
- return b
- }
-
- // freeBlock returns a block to hc's free list.
- // The protocol is such that each side only has a block or two on
- // its free list at a time, so there's no need to worry about
- // trimming the list, etc.
- func (hc *halfConn) freeBlock(b *block) {
- b.link = hc.bfree
- hc.bfree = b
- }
-
- // splitBlock splits a block after the first n bytes,
- // returning a block with those n bytes and a
- // block with the remainder. the latter may be nil.
- func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
- if len(b.data) <= n {
- return b, nil
- }
- bb := hc.newBlock()
- bb.resize(len(b.data) - n)
- copy(bb.data, b.data[n:])
- b.data = b.data[0:n]
- return b, bb
- }
-
- // RecordHeaderError results when a TLS record header is invalid.
- type RecordHeaderError struct {
- // Msg contains a human readable string that describes the error.
- Msg string
- // RecordHeader contains the five bytes of TLS record header that
- // triggered the error.
- RecordHeader [5]byte
- }
-
- func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
-
- func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
- err.Msg = msg
- copy(err.RecordHeader[:], c.rawInput.data)
- return err
- }
-
- // readRecord reads the next TLS record from the connection
- // and updates the record layer state.
- // c.in.Mutex <= L; c.input == nil.
- // c.input can still be nil after a call, retry if so.
- func (c *Conn) readRecord(want recordType) error {
- // Caller must be in sync with connection:
- // handshake data if handshake not yet completed,
- // else application data.
- switch want {
- default:
- c.sendAlert(alertInternalError)
- return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
- case recordTypeHandshake, recordTypeChangeCipherSpec:
- if c.phase != handshakeRunning && c.phase != readingClientFinished {
- c.sendAlert(alertInternalError)
- return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake"))
- }
- case recordTypeApplicationData:
- if c.phase == handshakeRunning || c.phase == readingClientFinished {
- c.sendAlert(alertInternalError)
- return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake"))
- }
- }
-
- Again:
- if c.rawInput == nil {
- c.rawInput = c.in.newBlock()
- }
- b := c.rawInput
-
- // Read header, payload.
- if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
- // RFC suggests that EOF without an alertCloseNotify is
- // an error, but popular web sites seem to do this,
- // so we can't make it an error.
- // if err == io.EOF {
- // err = io.ErrUnexpectedEOF
- // }
- if e, ok := err.(net.Error); !ok || !e.Temporary() {
- c.in.setErrorLocked(err)
- }
- return err
- }
- typ := recordType(b.data[0])
-
- // No valid TLS record has a type of 0x80, however SSLv2 handshakes
- // start with a uint16 length where the MSB is set and the first record
- // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
- // an SSLv2 client.
- if want == recordTypeHandshake && typ == 0x80 {
- c.sendAlert(alertProtocolVersion)
- return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
- }
-
- vers := uint16(b.data[1])<<8 | uint16(b.data[2])
- n := int(b.data[3])<<8 | int(b.data[4])
- if n > maxCiphertext {
- c.sendAlert(alertRecordOverflow)
- msg := fmt.Sprintf("oversized record received with length %d", n)
- return c.in.setErrorLocked(c.newRecordHeaderError(msg))
- }
- if !c.haveVers {
- // First message, be extra suspicious: this might not be a TLS
- // client. Bail out before reading a full 'body', if possible.
- // The current max version is 3.3 so if the version is >= 16.0,
- // it's probably not real.
- if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
- c.sendAlert(alertUnexpectedMessage)
- return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
- }
- }
- if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
- if err == io.EOF {
- err = io.ErrUnexpectedEOF
- }
- if e, ok := err.(net.Error); !ok || !e.Temporary() {
- c.in.setErrorLocked(err)
- }
- return err
- }
-
- // Process message.
- b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
-
- // TLS 1.3 middlebox compatibility: skip over unencrypted CCS.
- if c.vers >= VersionTLS13 && typ == recordTypeChangeCipherSpec && c.phase != handshakeConfirmed {
- if len(b.data) != 6 || b.data[5] != 1 {
- c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- }
- c.in.freeBlock(b)
- return c.in.err
- }
-
- peekedAlert := peekAlert(b) // peek at a possible alert before decryption
- ok, off, alertValue := c.in.decrypt(b)
- switch {
- case !ok && c.phase == discardingEarlyData:
- // If the client said that it's sending early data and we did not
- // accept it, we are expected to fail decryption.
- c.in.freeBlock(b)
- return nil
- case ok && c.phase == discardingEarlyData:
- c.phase = waitingClientFinished
- case !ok:
- c.in.traceErr, c.out.traceErr = nil, nil // not that interesting
- c.in.freeBlock(b)
- err := c.sendAlert(alertValue)
- // If decryption failed because the message is an unencrypted
- // alert, return a more meaningful error message
- if alertValue == alertBadRecordMAC && peekedAlert != nil {
- err = peekedAlert
- }
- return c.in.setErrorLocked(err)
- }
- b.off = off
- data := b.data[b.off:]
- if (c.vers < VersionTLS13 && len(data) > maxPlaintext) || len(data) > maxPlaintext+1 {
- c.in.freeBlock(b)
- return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
- }
-
- // After checking the plaintext length, remove 1.3 padding and
- // extract the real content type.
- // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-5.4.
- if c.vers >= VersionTLS13 {
- i := len(data) - 1
- for i >= 0 {
- if data[i] != 0 {
- break
- }
- i--
- }
- if i < 0 {
- c.in.freeBlock(b)
- return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- }
- typ = recordType(data[i])
- data = data[:i]
- b.resize(b.off + i) // shrinks, guaranteed not to reallocate
- }
-
- if typ != recordTypeAlert && len(data) > 0 {
- // this is a valid non-alert message: reset the count of alerts
- c.warnCount = 0
- }
-
- switch typ {
- default:
- c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
-
- case recordTypeAlert:
- if len(data) != 2 {
- c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- break
- }
- if alert(data[1]) == alertCloseNotify {
- c.in.setErrorLocked(io.EOF)
- break
- }
- switch data[0] {
- case alertLevelWarning:
- // drop on the floor
- c.in.freeBlock(b)
-
- c.warnCount++
- if c.warnCount > maxWarnAlertCount {
- c.sendAlert(alertUnexpectedMessage)
- return c.in.setErrorLocked(errors.New("tls: too many warn alerts"))
- }
-
- goto Again
- case alertLevelError:
- c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
- default:
- c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- }
-
- case recordTypeChangeCipherSpec:
- if typ != want || len(data) != 1 || data[0] != 1 || c.vers >= VersionTLS13 {
- c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- break
- }
- // Handshake messages are not allowed to fragment across the CCS
- if c.hand.Len() > 0 {
- c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- break
- }
- // Handshake messages are not allowed to fragment across the CCS
- if c.hand.Len() > 0 {
- c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- break
- }
- err := c.in.changeCipherSpec()
- if err != nil {
- c.in.setErrorLocked(c.sendAlert(err.(alert)))
- }
-
- case recordTypeApplicationData:
- if typ != want || c.phase == waitingClientFinished {
- c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- break
- }
- if c.phase == readingEarlyData {
- c.earlyDataBytes += int64(len(b.data) - b.off)
- if c.earlyDataBytes > c.ticketMaxEarlyData {
- return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- }
- }
- c.input = b
- b = nil
-
- case recordTypeHandshake:
- // TODO(rsc): Should at least pick off connection close.
- // If early data was being read, a Finished message is expected
- // instead of (early) application data. Other post-handshake
- // messages include HelloRequest and NewSessionTicket.
- if typ != want && want != recordTypeApplicationData {
- return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- }
- c.hand.Write(data)
- }
-
- if b != nil {
- c.in.freeBlock(b)
- }
- return c.in.err
- }
-
- // peekAlert looks at a message to spot an unencrypted alert. It must be
- // called before decryption to avoid a side channel, and its result must
- // only be used if decryption fails, to avoid false positives.
- func peekAlert(b *block) error {
- if len(b.data) < 7 {
- return nil
- }
- if recordType(b.data[0]) != recordTypeAlert {
- return nil
- }
- return &net.OpError{Op: "remote error", Err: alert(b.data[6])}
- }
-
- // sendAlert sends a TLS alert message.
- // c.out.Mutex <= L.
- func (c *Conn) sendAlertLocked(err alert) error {
- switch err {
- case alertNoRenegotiation, alertCloseNotify:
- c.tmp[0] = alertLevelWarning
- default:
- c.tmp[0] = alertLevelError
- }
- c.tmp[1] = byte(err)
-
- _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
- if err == alertCloseNotify {
- // closeNotify is a special case in that it isn't an error.
- return writeErr
- }
-
- return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
- }
-
- // sendAlert sends a TLS alert message.
- // L < c.out.Mutex.
- func (c *Conn) sendAlert(err alert) error {
- c.out.Lock()
- defer c.out.Unlock()
- return c.sendAlertLocked(err)
- }
-
- const (
- // tcpMSSEstimate is a conservative estimate of the TCP maximum segment
- // size (MSS). A constant is used, rather than querying the kernel for
- // the actual MSS, to avoid complexity. The value here is the IPv6
- // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
- // bytes) and a TCP header with timestamps (32 bytes).
- tcpMSSEstimate = 1208
-
- // recordSizeBoostThreshold is the number of bytes of application data
- // sent after which the TLS record size will be increased to the
- // maximum.
- recordSizeBoostThreshold = 128 * 1024
- )
-
- // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
- // next application data record. There is the following trade-off:
- //
- // - For latency-sensitive applications, such as web browsing, each TLS
- // record should fit in one TCP segment.
- // - For throughput-sensitive applications, such as large file transfers,
- // larger TLS records better amortize framing and encryption overheads.
- //
- // A simple heuristic that works well in practice is to use small records for
- // the first 1MB of data, then use larger records for subsequent data, and
- // reset back to smaller records after the connection becomes idle. See "High
- // Performance Web Networking", Chapter 4, or:
- // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
- //
- // In the interests of simplicity and determinism, this code does not attempt
- // to reset the record size once the connection is idle, however.
- //
- // c.out.Mutex <= L.
- func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
- if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
- return maxPlaintext
- }
-
- if c.bytesSent >= recordSizeBoostThreshold {
- return maxPlaintext
- }
-
- // Subtract TLS overheads to get the maximum payload size.
- macSize := 0
- if c.out.mac != nil {
- macSize = c.out.mac.Size()
- }
-
- payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen
- if c.out.cipher != nil {
- switch ciph := c.out.cipher.(type) {
- case cipher.Stream:
- payloadBytes -= macSize
- case cipher.AEAD:
- payloadBytes -= ciph.Overhead()
- if c.vers >= VersionTLS13 {
- payloadBytes -= 1 // ContentType
- }
- case cbcMode:
- blockSize := ciph.BlockSize()
- // The payload must fit in a multiple of blockSize, with
- // room for at least one padding byte.
- payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
- // The MAC is appended before padding so affects the
- // payload size directly.
- payloadBytes -= macSize
- default:
- panic("unknown cipher type")
- }
- }
-
- // Allow packet growth in arithmetic progression up to max.
- pkt := c.packetsSent
- c.packetsSent++
- if pkt > 1000 {
- return maxPlaintext // avoid overflow in multiply below
- }
-
- n := payloadBytes * int(pkt+1)
- if n > maxPlaintext {
- n = maxPlaintext
- }
- return n
- }
-
- // c.out.Mutex <= L.
- func (c *Conn) write(data []byte) (int, error) {
- if c.buffering {
- c.sendBuf = append(c.sendBuf, data...)
- return len(data), nil
- }
-
- n, err := c.conn.Write(data)
- c.bytesSent += int64(n)
- return n, err
- }
-
- func (c *Conn) flush() (int, error) {
- if len(c.sendBuf) == 0 {
- return 0, nil
- }
-
- n, err := c.conn.Write(c.sendBuf)
- c.bytesSent += int64(n)
- c.sendBuf = nil
- c.buffering = false
- return n, err
- }
-
- // writeRecordLocked writes a TLS record with the given type and payload to the
- // connection and updates the record layer state.
- // c.out.Mutex <= L.
- func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
- b := c.out.newBlock()
- defer c.out.freeBlock(b)
-
- var n int
- for len(data) > 0 {
- explicitIVLen := 0
- explicitIVIsSeq := false
-
- var cbc cbcMode
- if c.out.version >= VersionTLS11 {
- var ok bool
- if cbc, ok = c.out.cipher.(cbcMode); ok {
- explicitIVLen = cbc.BlockSize()
- }
- }
- if explicitIVLen == 0 {
- if c, ok := c.out.cipher.(aead); ok {
- explicitIVLen = c.explicitNonceLen()
-
- // The AES-GCM construction in TLS has an
- // explicit nonce so that the nonce can be
- // random. However, the nonce is only 8 bytes
- // which is too small for a secure, random
- // nonce. Therefore we use the sequence number
- // as the nonce.
- explicitIVIsSeq = explicitIVLen > 0
- }
- }
- m := len(data)
- if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload {
- m = maxPayload
- }
- b.resize(recordHeaderLen + explicitIVLen + m)
- b.data[0] = byte(typ)
- vers := c.vers
- if vers == 0 {
- // Some TLS servers fail if the record version is
- // greater than TLS 1.0 for the initial ClientHello.
- vers = VersionTLS10
- }
- if c.vers >= VersionTLS13 {
- // TLS 1.3 froze the record layer version at { 3, 1 }.
- // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-5.1.
- // But for draft 22, this was changed to { 3, 3 }.
- vers = VersionTLS12
- }
- b.data[1] = byte(vers >> 8)
- b.data[2] = byte(vers)
- b.data[3] = byte(m >> 8)
- b.data[4] = byte(m)
- if explicitIVLen > 0 {
- explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
- if explicitIVIsSeq {
- copy(explicitIV, c.out.seq[:])
- } else {
- if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil {
- return n, err
- }
- }
- }
- copy(b.data[recordHeaderLen+explicitIVLen:], data)
- c.out.encrypt(b, explicitIVLen)
- if _, err := c.write(b.data); err != nil {
- return n, err
- }
- n += m
- data = data[m:]
- }
-
- if typ == recordTypeChangeCipherSpec && c.vers < VersionTLS13 {
- if err := c.out.changeCipherSpec(); err != nil {
- return n, c.sendAlertLocked(err.(alert))
- }
- }
-
- return n, nil
- }
-
- // writeRecord writes a TLS record with the given type and payload to the
- // connection and updates the record layer state.
- // L < c.out.Mutex.
- func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
- c.out.Lock()
- defer c.out.Unlock()
-
- return c.writeRecordLocked(typ, data)
- }
-
- // readHandshake reads the next handshake message from
- // the record layer.
- // c.in.Mutex < L; c.out.Mutex < L.
- func (c *Conn) readHandshake() (interface{}, error) {
- for c.hand.Len() < 4 {
- if err := c.in.err; err != nil {
- return nil, err
- }
- if err := c.readRecord(recordTypeHandshake); err != nil {
- return nil, err
- }
- }
-
- data := c.hand.Bytes()
- n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
- if n > maxHandshake {
- c.sendAlertLocked(alertInternalError)
- return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
- }
- for c.hand.Len() < 4+n {
- if err := c.in.err; err != nil {
- return nil, err
- }
- if err := c.readRecord(recordTypeHandshake); err != nil {
- return nil, err
- }
- }
- data = c.hand.Next(4 + n)
- var m handshakeMessage
- switch data[0] {
- case typeHelloRequest:
- m = new(helloRequestMsg)
- case typeClientHello:
- m = new(clientHelloMsg)
- case typeServerHello:
- m = new(serverHelloMsg)
- case typeEncryptedExtensions:
- m = new(encryptedExtensionsMsg)
- case typeNewSessionTicket:
- if c.vers >= VersionTLS13 {
- m = new(newSessionTicketMsg13)
- } else {
- m = new(newSessionTicketMsg)
- }
- case typeEndOfEarlyData:
- m = new(endOfEarlyDataMsg)
- case typeCertificate:
- if c.vers >= VersionTLS13 {
- m = new(certificateMsg13)
- } else {
- m = new(certificateMsg)
- }
- case typeCertificateRequest:
- if c.vers >= VersionTLS13 {
- m = new(certificateRequestMsg13)
- } else {
- m = &certificateRequestMsg{
- hasSignatureAndHash: c.vers >= VersionTLS12,
- }
- }
- case typeCertificateStatus:
- m = new(certificateStatusMsg)
- case typeServerKeyExchange:
- m = new(serverKeyExchangeMsg)
- case typeServerHelloDone:
- m = new(serverHelloDoneMsg)
- case typeClientKeyExchange:
- m = new(clientKeyExchangeMsg)
- case typeCertificateVerify:
- m = &certificateVerifyMsg{
- hasSignatureAndHash: c.vers >= VersionTLS12,
- }
- case typeNextProtocol:
- m = new(nextProtoMsg)
- case typeFinished:
- m = new(finishedMsg)
- default:
- return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
- }
-
- // The handshake message unmarshalers
- // expect to be able to keep references to data,
- // so pass in a fresh copy that won't be overwritten.
- data = append([]byte(nil), data...)
-
- if unmarshalAlert := m.unmarshal(data); unmarshalAlert != alertSuccess {
- return nil, c.in.setErrorLocked(c.sendAlert(unmarshalAlert))
- }
- return m, nil
- }
-
- var (
- errClosed = errors.New("tls: use of closed connection")
- errShutdown = errors.New("tls: protocol is shutdown")
- )
-
- // Write writes data to the connection.
- func (c *Conn) Write(b []byte) (int, error) {
- // interlock with Close below
- for {
- x := atomic.LoadInt32(&c.activeCall)
- if x&1 != 0 {
- return 0, errClosed
- }
- if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
- defer atomic.AddInt32(&c.activeCall, -2)
- break
- }
- }
-
- if err := c.Handshake(); err != nil {
- return 0, err
- }
-
- c.out.Lock()
- defer c.out.Unlock()
-
- if err := c.out.err; err != nil {
- return 0, err
- }
-
- if !c.handshakeComplete {
- return 0, alertInternalError
- }
-
- if c.closeNotifySent {
- return 0, errShutdown
- }
-
- // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
- // attack when using block mode ciphers due to predictable IVs.
- // This can be prevented by splitting each Application Data
- // record into two records, effectively randomizing the IV.
- //
- // http://www.openssl.org/~bodo/tls-cbc.txt
- // https://bugzilla.mozilla.org/show_bug.cgi?id=665814
- // http://www.imperialviolet.org/2012/01/15/beastfollowup.html
-
- var m int
- if len(b) > 1 && c.vers <= VersionTLS10 {
- if _, ok := c.out.cipher.(cipher.BlockMode); ok {
- n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
- if err != nil {
- return n, c.out.setErrorLocked(err)
- }
- m, b = 1, b[1:]
- }
- }
-
- n, err := c.writeRecordLocked(recordTypeApplicationData, b)
- return n + m, c.out.setErrorLocked(err)
- }
-
- // Process Handshake messages after the handshake has completed.
- // c.in.Mutex <= L
- func (c *Conn) handlePostHandshake() error {
- msg, err := c.readHandshake()
- if err != nil {
- return err
- }
-
- switch hm := msg.(type) {
- case *helloRequestMsg:
- return c.handleRenegotiation(hm)
- case *newSessionTicketMsg13:
- if !c.isClient {
- c.sendAlert(alertUnexpectedMessage)
- return alertUnexpectedMessage
- }
- return nil // TODO implement session tickets
- default:
- c.sendAlert(alertUnexpectedMessage)
- return alertUnexpectedMessage
- }
- }
-
- // handleRenegotiation processes a HelloRequest handshake message.
- // c.in.Mutex <= L
- func (c *Conn) handleRenegotiation(*helloRequestMsg) error {
- if !c.isClient {
- return c.sendAlert(alertNoRenegotiation)
- }
-
- if c.vers >= VersionTLS13 {
- return c.sendAlert(alertNoRenegotiation)
- }
-
- switch c.config.Renegotiation {
- case RenegotiateNever:
- return c.sendAlert(alertNoRenegotiation)
- case RenegotiateOnceAsClient:
- if c.handshakes > 1 {
- return c.sendAlert(alertNoRenegotiation)
- }
- case RenegotiateFreelyAsClient:
- // Ok.
- default:
- c.sendAlert(alertInternalError)
- return errors.New("tls: unknown Renegotiation value")
- }
-
- c.handshakeMutex.Lock()
- defer c.handshakeMutex.Unlock()
-
- c.phase = handshakeRunning
- c.handshakeComplete = false
- if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
- c.handshakes++
- }
- return c.handshakeErr
- }
-
- // ConfirmHandshake waits for the handshake to reach a point at which
- // the connection is certainly not replayed. That is, after receiving
- // the Client Finished.
- //
- // If ConfirmHandshake returns an error and until ConfirmHandshake
- // returns, the 0-RTT data should not be trusted not to be replayed.
- //
- // This is only meaningful in TLS 1.3 when Accept0RTTData is true and the
- // client sent valid 0-RTT data. In any other case it's equivalent to
- // calling Handshake.
- func (c *Conn) ConfirmHandshake() error {
- if c.isClient {
- panic("ConfirmHandshake should only be called for servers")
- }
-
- if err := c.Handshake(); err != nil {
- return err
- }
-
- if c.vers < VersionTLS13 {
- return nil
- }
-
- c.confirmMutex.Lock()
- if atomic.LoadInt32(&c.handshakeConfirmed) == 1 { // c.phase == handshakeConfirmed
- c.confirmMutex.Unlock()
- return nil
- } else {
- defer func() {
- // If we transitioned to handshakeConfirmed we already released the lock,
- // otherwise do it here.
- if c.phase != handshakeConfirmed {
- c.confirmMutex.Unlock()
- }
- }()
- }
-
- c.in.Lock()
- defer c.in.Unlock()
-
- var input *block
- // Try to read all data (if phase==readingEarlyData) or extract the
- // remaining data from the previous read that could not fit in the read
- // buffer (if c.input != nil).
- if c.phase == readingEarlyData || c.input != nil {
- buf := &bytes.Buffer{}
- if _, err := buf.ReadFrom(earlyDataReader{c}); err != nil {
- c.in.setErrorLocked(err)
- return err
- }
- input = &block{data: buf.Bytes()}
- }
-
- // At this point, earlyDataReader has read all early data and received
- // the end_of_early_data signal. Expect a Finished message.
- // Locks held so far: c.confirmMutex, c.in
- // not confirmed implies c.phase == discardingEarlyData || c.phase == waitingClientFinished
- for c.phase != handshakeConfirmed {
- if err := c.hs.readClientFinished13(true); err != nil {
- c.in.setErrorLocked(err)
- return err
- }
- }
-
- if c.phase != handshakeConfirmed {
- panic("should have reached handshakeConfirmed state")
- }
- if c.input != nil {
- panic("should not have read past the Client Finished")
- }
-
- c.input = input
-
- return nil
- }
-
- // earlyDataReader wraps a Conn and reads only early data, both buffered
- // and still on the wire.
- type earlyDataReader struct {
- c *Conn
- }
-
- // c.in.Mutex <= L
- func (r earlyDataReader) Read(b []byte) (n int, err error) {
- c := r.c
-
- if c.phase == handshakeConfirmed {
- // c.input might not be early data
- panic("earlyDataReader called at handshakeConfirmed")
- }
-
- for c.input == nil && c.in.err == nil && c.phase == readingEarlyData {
- if err := c.readRecord(recordTypeApplicationData); err != nil {
- return 0, err
- }
- if c.hand.Len() > 0 {
- if err := c.handleEndOfEarlyData(); err != nil {
- return 0, err
- }
- }
- }
- if err := c.in.err; err != nil {
- return 0, err
- }
-
- if c.input != nil {
- n, err = c.input.Read(b)
- if err == io.EOF {
- err = nil
- c.in.freeBlock(c.input)
- c.input = nil
- }
- }
-
- // Following early application data, an end_of_early_data is expected.
- if err == nil && c.phase != readingEarlyData && c.input == nil {
- err = io.EOF
- }
- return
- }
-
- // Read can be made to time out and return a net.Error with Timeout() == true
- // after a fixed time limit; see SetDeadline and SetReadDeadline.
- func (c *Conn) Read(b []byte) (n int, err error) {
- if err = c.Handshake(); err != nil {
- return
- }
- if len(b) == 0 {
- // Put this after Handshake, in case people were calling
- // Read(nil) for the side effect of the Handshake.
- return
- }
-
- c.confirmMutex.Lock()
- if atomic.LoadInt32(&c.handshakeConfirmed) == 1 { // c.phase == handshakeConfirmed
- c.confirmMutex.Unlock()
- } else {
- defer func() {
- // If we transitioned to handshakeConfirmed we already released the lock,
- // otherwise do it here.
- if c.phase != handshakeConfirmed {
- c.confirmMutex.Unlock()
- }
- }()
- }
-
- c.in.Lock()
- defer c.in.Unlock()
-
- // Some OpenSSL servers send empty records in order to randomize the
- // CBC IV. So this loop ignores a limited number of empty records.
- const maxConsecutiveEmptyRecords = 100
- for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
- for c.input == nil && c.in.err == nil {
- if err := c.readRecord(recordTypeApplicationData); err != nil {
- // Soft error, like EAGAIN
- return 0, err
- }
- if c.hand.Len() > 0 {
- if c.phase == readingEarlyData || c.phase == waitingClientFinished {
- if c.phase == readingEarlyData {
- if err := c.handleEndOfEarlyData(); err != nil {
- return 0, err
- }
- }
- // Server has received all early data, confirm
- // by reading the Client Finished message.
- if err := c.hs.readClientFinished13(true); err != nil {
- c.in.setErrorLocked(err)
- return 0, err
- }
- continue
- }
- if err := c.handlePostHandshake(); err != nil {
- return 0, err
- }
- }
- }
- if err := c.in.err; err != nil {
- return 0, err
- }
-
- n, err = c.input.Read(b)
- if err == io.EOF {
- err = nil
- c.in.freeBlock(c.input)
- c.input = nil
- }
-
- // If a close-notify alert is waiting, read it so that
- // we can return (n, EOF) instead of (n, nil), to signal
- // to the HTTP response reading goroutine that the
- // connection is now closed. This eliminates a race
- // where the HTTP response reading goroutine would
- // otherwise not observe the EOF until its next read,
- // by which time a client goroutine might have already
- // tried to reuse the HTTP connection for a new
- // request.
- // See https://codereview.appspot.com/76400046
- // and https://golang.org/issue/3514
- if ri := c.rawInput; ri != nil &&
- n != 0 && err == nil &&
- c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
- if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
- err = recErr // will be io.EOF on closeNotify
- }
- }
-
- if n != 0 || err != nil {
- return n, err
- }
- }
-
- return 0, io.ErrNoProgress
- }
-
- // Close closes the connection.
- func (c *Conn) Close() error {
- // Interlock with Conn.Write above.
- var x int32
- for {
- x = atomic.LoadInt32(&c.activeCall)
- if x&1 != 0 {
- return errClosed
- }
- if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
- break
- }
- }
- if x != 0 {
- // io.Writer and io.Closer should not be used concurrently.
- // If Close is called while a Write is currently in-flight,
- // interpret that as a sign that this Close is really just
- // being used to break the Write and/or clean up resources and
- // avoid sending the alertCloseNotify, which may block
- // waiting on handshakeMutex or the c.out mutex.
- return c.conn.Close()
- }
-
- var alertErr error
-
- c.handshakeMutex.Lock()
- if c.handshakeComplete {
- alertErr = c.closeNotify()
- }
- c.handshakeMutex.Unlock()
-
- if err := c.conn.Close(); err != nil {
- return err
- }
- return alertErr
- }
-
- var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
-
- // CloseWrite shuts down the writing side of the connection. It should only be
- // called once the handshake has completed and does not call CloseWrite on the
- // underlying connection. Most callers should just use Close.
- func (c *Conn) CloseWrite() error {
- c.handshakeMutex.Lock()
- defer c.handshakeMutex.Unlock()
- if !c.handshakeComplete {
- return errEarlyCloseWrite
- }
-
- return c.closeNotify()
- }
-
- func (c *Conn) closeNotify() error {
- c.out.Lock()
- defer c.out.Unlock()
-
- if !c.closeNotifySent {
- c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
- c.closeNotifySent = true
- }
- return c.closeNotifyErr
- }
-
- // Handshake runs the client or server handshake
- // protocol if it has not yet been run.
- // Most uses of this package need not call Handshake
- // explicitly: the first Read or Write will call it automatically.
- //
- // In TLS 1.3 Handshake returns after the client and server first flights,
- // without waiting for the Client Finished.
- func (c *Conn) Handshake() error {
- c.handshakeMutex.Lock()
- defer c.handshakeMutex.Unlock()
-
- if err := c.handshakeErr; err != nil {
- return err
- }
- if c.handshakeComplete {
- return nil
- }
-
- c.in.Lock()
- defer c.in.Unlock()
-
- // The handshake cannot have completed when handshakeMutex was unlocked
- // because this goroutine set handshakeCond.
- if c.handshakeErr != nil || c.handshakeComplete {
- panic("handshake should not have been able to complete after handshakeCond was set")
- }
-
- c.connID = make([]byte, 8)
- if _, err := io.ReadFull(c.config.rand(), c.connID); err != nil {
- return err
- }
-
- if c.isClient {
- c.handshakeErr = c.clientHandshake()
- } else {
- c.handshakeErr = c.serverHandshake()
- }
- if c.handshakeErr == nil {
- c.handshakes++
- } else {
- // If an error occurred during the hadshake try to flush the
- // alert that might be left in the buffer.
- c.flush()
- }
-
- if c.handshakeErr == nil && !c.handshakeComplete {
- panic("handshake should have had a result.")
- }
-
- return c.handshakeErr
- }
-
- // ConnectionState returns basic TLS details about the connection.
- func (c *Conn) ConnectionState() ConnectionState {
- c.handshakeMutex.Lock()
- defer c.handshakeMutex.Unlock()
-
- var state ConnectionState
- state.HandshakeComplete = c.handshakeComplete
- state.ServerName = c.serverName
-
- if c.handshakeComplete {
- state.ConnectionID = c.connID
- state.ClientHello = c.clientHello
- state.Version = c.vers
- state.NegotiatedProtocol = c.clientProtocol
- state.DidResume = c.didResume
- state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
- state.CipherSuite = c.cipherSuite
- state.PeerCertificates = c.peerCertificates
- state.VerifiedChains = c.verifiedChains
- state.SignedCertificateTimestamps = c.scts
- state.OCSPResponse = c.ocspResponse
- if c.verifiedDc != nil {
- state.DelegatedCredential = c.verifiedDc.raw
- }
- state.HandshakeConfirmed = atomic.LoadInt32(&c.handshakeConfirmed) == 1
- if !state.HandshakeConfirmed {
- state.Unique0RTTToken = c.binder
- }
- if !c.didResume {
- if c.clientFinishedIsFirst {
- state.TLSUnique = c.clientFinished[:]
- } else {
- state.TLSUnique = c.serverFinished[:]
- }
- }
- state.Group = c.Group
- }
-
- return state
- }
-
- // OCSPResponse returns the stapled OCSP response from the TLS server, if
- // any. (Only valid for client connections.)
- func (c *Conn) OCSPResponse() []byte {
- c.handshakeMutex.Lock()
- defer c.handshakeMutex.Unlock()
-
- return c.ocspResponse
- }
-
- // VerifyHostname checks that the peer certificate chain is valid for
- // connecting to host. If so, it returns nil; if not, it returns an error
- // describing the problem.
- func (c *Conn) VerifyHostname(host string) error {
- c.handshakeMutex.Lock()
- defer c.handshakeMutex.Unlock()
- if !c.isClient {
- return errors.New("tls: VerifyHostname called on TLS server connection")
- }
- if !c.handshakeComplete {
- return errors.New("tls: handshake has not yet been performed")
- }
- if len(c.verifiedChains) == 0 {
- return errors.New("tls: handshake did not verify certificate chain")
- }
- return c.peerCertificates[0].VerifyHostname(host)
- }
-
- func (con *Conn) UsedEMS() bool {
- return con.useEMS
- }
|