No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.

common.go 37 KiB

crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
hace 9 años
crypto/tls: decouple handshake signatures from the handshake hash. Prior to TLS 1.2, the handshake had a pleasing property that one could incrementally hash it and, from that, get the needed hashes for both the CertificateVerify and Finished messages. TLS 1.2 introduced negotiation for the signature and hash and it became possible for the handshake hash to be, say, SHA-384, but for the CertificateVerify to sign the handshake with SHA-1. The problem is that one doesn't know in advance which hashes will be needed and thus the handshake needs to be buffered. Go ignored this, always kept a single handshake hash, and any signatures over the handshake had to use that hash. However, there are a set of servers that inspect the client's offered signature hash functions and will abort the handshake if one of the server's certificates is signed with a hash function outside of that set. https://robertsspaceindustries.com/ is an example of such a server. Clearly not a lot of thought happened when that server code was written, but its out there and we have to deal with it. This change decouples the handshake hash from the CertificateVerify hash. This lays the groundwork for advertising support for SHA-384 but doesn't actually make that change in the interests of reviewability. Updating the advertised hash functions will cause changes in many of the testdata/ files and some errors might get lost in the noise. This change only needs to update four testdata/ files: one because a SHA-384-based handshake is now being signed with SHA-256 and the others because the TLS 1.2 CertificateRequest message now includes SHA-1. This change also has the effect of adding support for client-certificates in SSLv3 servers. However, SSLv3 is now disabled by default so this should be moot. It would be possible to avoid much of this change and just support SHA-384 for the ServerKeyExchange as the SKX only signs over the nonces and SKX params (a design mistake in TLS). However, that would leave Go in the odd situation where it advertised support for SHA-384, but would only use the handshake hash when signing client certificates. I fear that'll just cause problems in the future. Much of this code was written by davidben@ for the purposes of testing BoringSSL. Partly addresses #9757 Change-Id: I5137a472b6076812af387a5a69fc62c7373cd485 Reviewed-on: https://go-review.googlesource.com/9415 Run-TryBot: Adam Langley <agl@golang.org> Reviewed-by: Adam Langley <agl@golang.org>
hace 9 años
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090
  1. // Copyright 2009 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package tls
  5. import (
  6. "container/list"
  7. "crypto"
  8. "crypto/internal/cipherhw"
  9. "crypto/rand"
  10. "crypto/sha512"
  11. "crypto/x509"
  12. "errors"
  13. "fmt"
  14. "io"
  15. "math/big"
  16. "net"
  17. "strings"
  18. "sync"
  19. "time"
  20. )
  21. const (
  22. VersionSSL30 = 0x0300
  23. VersionTLS10 = 0x0301
  24. VersionTLS11 = 0x0302
  25. VersionTLS12 = 0x0303
  26. VersionTLS13 = 0x0304
  27. VersionTLS13Draft18 = 0x7f00 | 18
  28. )
  29. const (
  30. maxPlaintext = 16384 // maximum plaintext payload length
  31. maxCiphertext = 16384 + 2048 // maximum ciphertext payload length
  32. recordHeaderLen = 5 // record header length
  33. maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB)
  34. minVersion = VersionTLS10
  35. maxVersion = VersionTLS12
  36. )
  37. // TLS record types.
  38. type recordType uint8
  39. const (
  40. recordTypeChangeCipherSpec recordType = 20
  41. recordTypeAlert recordType = 21
  42. recordTypeHandshake recordType = 22
  43. recordTypeApplicationData recordType = 23
  44. )
  45. // TLS handshake message types.
  46. const (
  47. typeHelloRequest uint8 = 0
  48. typeClientHello uint8 = 1
  49. typeServerHello uint8 = 2
  50. typeNewSessionTicket uint8 = 4
  51. typeEncryptedExtensions uint8 = 8
  52. typeCertificate uint8 = 11
  53. typeServerKeyExchange uint8 = 12
  54. typeCertificateRequest uint8 = 13
  55. typeServerHelloDone uint8 = 14
  56. typeCertificateVerify uint8 = 15
  57. typeClientKeyExchange uint8 = 16
  58. typeFinished uint8 = 20
  59. typeCertificateStatus uint8 = 22
  60. typeNextProtocol uint8 = 67 // Not IANA assigned
  61. )
  62. // TLS compression types.
  63. const (
  64. compressionNone uint8 = 0
  65. )
  66. // TLS extension numbers
  67. const (
  68. extensionServerName uint16 = 0
  69. extensionStatusRequest uint16 = 5
  70. extensionSupportedCurves uint16 = 10 // Supported Groups in 1.3 nomenclature
  71. extensionSupportedPoints uint16 = 11
  72. extensionSignatureAlgorithms uint16 = 13
  73. extensionALPN uint16 = 16
  74. extensionSCT uint16 = 18 // https://tools.ietf.org/html/rfc6962#section-6
  75. extensionSessionTicket uint16 = 35
  76. extensionKeyShare uint16 = 40
  77. extensionPreSharedKey uint16 = 41
  78. extensionEarlyData uint16 = 42
  79. extensionSupportedVersions uint16 = 43
  80. extensionPSKKeyExchangeModes uint16 = 45
  81. extensionTicketEarlyDataInfo uint16 = 46
  82. extensionNextProtoNeg uint16 = 13172 // not IANA assigned
  83. extensionRenegotiationInfo uint16 = 0xff01
  84. )
  85. // TLS signaling cipher suite values
  86. const (
  87. scsvRenegotiation uint16 = 0x00ff
  88. )
  89. // PSK Key Exchange Modes
  90. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.7
  91. const (
  92. pskDHEKeyExchange uint8 = 1
  93. )
  94. // CurveID is the type of a TLS identifier for an elliptic curve. See
  95. // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8
  96. //
  97. // TLS 1.3 refers to these as Groups, but this library implements only
  98. // curve-based ones anyway. See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.4.
  99. type CurveID uint16
  100. const (
  101. CurveP256 CurveID = 23
  102. CurveP384 CurveID = 24
  103. CurveP521 CurveID = 25
  104. X25519 CurveID = 29
  105. )
  106. // TLS 1.3 Key Share
  107. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.5
  108. type keyShare struct {
  109. group CurveID
  110. data []byte
  111. }
  112. // TLS 1.3 PSK Identity and Binder, as sent by the client
  113. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.6
  114. type psk struct {
  115. identity []byte
  116. obfTicketAge uint32
  117. binder []byte
  118. }
  119. // TLS Elliptic Curve Point Formats
  120. // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
  121. const (
  122. pointFormatUncompressed uint8 = 0
  123. )
  124. // TLS CertificateStatusType (RFC 3546)
  125. const (
  126. statusTypeOCSP uint8 = 1
  127. )
  128. // Certificate types (for certificateRequestMsg)
  129. const (
  130. certTypeRSASign = 1 // A certificate containing an RSA key
  131. certTypeDSSSign = 2 // A certificate containing a DSA key
  132. certTypeRSAFixedDH = 3 // A certificate containing a static DH key
  133. certTypeDSSFixedDH = 4 // A certificate containing a static DH key
  134. // See RFC 4492 sections 3 and 5.5.
  135. certTypeECDSASign = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA.
  136. certTypeRSAFixedECDH = 65 // A certificate containing an ECDH-capable public key, signed with RSA.
  137. certTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA.
  138. // Rest of these are reserved by the TLS spec
  139. )
  140. // Hash functions for TLS 1.2 (See RFC 5246, section A.4.1)
  141. const (
  142. hashSHA1 uint8 = 2
  143. hashSHA256 uint8 = 4
  144. hashSHA384 uint8 = 5
  145. )
  146. // Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1)
  147. const (
  148. signatureRSA uint8 = 1
  149. signatureECDSA uint8 = 3
  150. )
  151. // signatureAndHash mirrors the TLS 1.2, SignatureAndHashAlgorithm struct. See
  152. // RFC 5246, section A.4.1.
  153. type signatureAndHash struct {
  154. hash, signature uint8
  155. }
  156. // supportedSignatureAlgorithms contains the signature and hash algorithms that
  157. // the code advertises as supported in a TLS 1.2 ClientHello and in a TLS 1.2
  158. // CertificateRequest.
  159. var supportedSignatureAlgorithms = []signatureAndHash{
  160. {hashSHA256, signatureRSA},
  161. {hashSHA256, signatureECDSA},
  162. {hashSHA384, signatureRSA},
  163. {hashSHA384, signatureECDSA},
  164. {hashSHA1, signatureRSA},
  165. {hashSHA1, signatureECDSA},
  166. }
  167. // ConnectionState records basic TLS details about the connection.
  168. type ConnectionState struct {
  169. ConnectionID []byte // Random unique connection id
  170. Version uint16 // TLS version used by the connection (e.g. VersionTLS12)
  171. HandshakeComplete bool // TLS handshake is complete
  172. DidResume bool // connection resumes a previous TLS connection
  173. CipherSuite uint16 // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...)
  174. NegotiatedProtocol string // negotiated next protocol (not guaranteed to be from Config.NextProtos)
  175. NegotiatedProtocolIsMutual bool // negotiated protocol was advertised by server (client side only)
  176. ServerName string // server name requested by client, if any (server side only)
  177. PeerCertificates []*x509.Certificate // certificate chain presented by remote peer
  178. VerifiedChains [][]*x509.Certificate // verified chains built from PeerCertificates
  179. SignedCertificateTimestamps [][]byte // SCTs from the server, if any
  180. OCSPResponse []byte // stapled OCSP response from server, if any
  181. // TLSUnique contains the "tls-unique" channel binding value (see RFC
  182. // 5929, section 3). For resumed sessions this value will be nil
  183. // because resumption does not include enough context (see
  184. // https://mitls.org/pages/attacks/3SHAKE#channelbindings). This will
  185. // change in future versions of Go once the TLS master-secret fix has
  186. // been standardized and implemented.
  187. TLSUnique []byte
  188. // HandshakeConfirmed is true once all data returned by Read
  189. // (past and future) is guaranteed not to be replayed.
  190. HandshakeConfirmed bool
  191. ClientHello []byte // ClientHello packet
  192. }
  193. // ClientAuthType declares the policy the server will follow for
  194. // TLS Client Authentication.
  195. type ClientAuthType int
  196. const (
  197. NoClientCert ClientAuthType = iota
  198. RequestClientCert
  199. RequireAnyClientCert
  200. VerifyClientCertIfGiven
  201. RequireAndVerifyClientCert
  202. )
  203. // ClientSessionState contains the state needed by clients to resume TLS
  204. // sessions.
  205. type ClientSessionState struct {
  206. sessionTicket []uint8 // Encrypted ticket used for session resumption with server
  207. vers uint16 // SSL/TLS version negotiated for the session
  208. cipherSuite uint16 // Ciphersuite negotiated for the session
  209. masterSecret []byte // MasterSecret generated by client on a full handshake
  210. serverCertificates []*x509.Certificate // Certificate chain presented by the server
  211. verifiedChains [][]*x509.Certificate // Certificate chains we built for verification
  212. }
  213. // ClientSessionCache is a cache of ClientSessionState objects that can be used
  214. // by a client to resume a TLS session with a given server. ClientSessionCache
  215. // implementations should expect to be called concurrently from different
  216. // goroutines. Only ticket-based resumption is supported, not SessionID-based
  217. // resumption.
  218. type ClientSessionCache interface {
  219. // Get searches for a ClientSessionState associated with the given key.
  220. // On return, ok is true if one was found.
  221. Get(sessionKey string) (session *ClientSessionState, ok bool)
  222. // Put adds the ClientSessionState to the cache with the given key.
  223. Put(sessionKey string, cs *ClientSessionState)
  224. }
  225. // SignatureScheme identifies a signature algorithm supported by TLS. See
  226. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.3.
  227. type SignatureScheme uint16
  228. const (
  229. PKCS1WithSHA1 SignatureScheme = 0x0201
  230. PKCS1WithSHA256 SignatureScheme = 0x0401
  231. PKCS1WithSHA384 SignatureScheme = 0x0501
  232. PKCS1WithSHA512 SignatureScheme = 0x0601
  233. PSSWithSHA256 SignatureScheme = 0x0804
  234. PSSWithSHA384 SignatureScheme = 0x0805
  235. PSSWithSHA512 SignatureScheme = 0x0806
  236. ECDSAWithP256AndSHA256 SignatureScheme = 0x0403
  237. ECDSAWithP384AndSHA384 SignatureScheme = 0x0503
  238. ECDSAWithP521AndSHA512 SignatureScheme = 0x0603
  239. )
  240. // ClientHelloInfo contains information from a ClientHello message in order to
  241. // guide certificate selection in the GetCertificate callback.
  242. type ClientHelloInfo struct {
  243. // CipherSuites lists the CipherSuites supported by the client (e.g.
  244. // TLS_RSA_WITH_RC4_128_SHA).
  245. CipherSuites []uint16
  246. // ServerName indicates the name of the server requested by the client
  247. // in order to support virtual hosting. ServerName is only set if the
  248. // client is using SNI (see
  249. // http://tools.ietf.org/html/rfc4366#section-3.1).
  250. ServerName string
  251. // SupportedCurves lists the elliptic curves supported by the client.
  252. // SupportedCurves is set only if the Supported Elliptic Curves
  253. // Extension is being used (see
  254. // http://tools.ietf.org/html/rfc4492#section-5.1.1).
  255. SupportedCurves []CurveID
  256. // SupportedPoints lists the point formats supported by the client.
  257. // SupportedPoints is set only if the Supported Point Formats Extension
  258. // is being used (see
  259. // http://tools.ietf.org/html/rfc4492#section-5.1.2).
  260. SupportedPoints []uint8
  261. // SignatureSchemes lists the signature and hash schemes that the client
  262. // is willing to verify. SignatureSchemes is set only if the Signature
  263. // Algorithms Extension is being used (see
  264. // https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1).
  265. SignatureSchemes []SignatureScheme
  266. // SupportedProtos lists the application protocols supported by the client.
  267. // SupportedProtos is set only if the Application-Layer Protocol
  268. // Negotiation Extension is being used (see
  269. // https://tools.ietf.org/html/rfc7301#section-3.1).
  270. //
  271. // Servers can select a protocol by setting Config.NextProtos in a
  272. // GetConfigForClient return value.
  273. SupportedProtos []string
  274. // SupportedVersions lists the TLS versions supported by the client.
  275. // For TLS versions less than 1.3, this is extrapolated from the max
  276. // version advertised by the client, so values other than the greatest
  277. // might be rejected if used.
  278. SupportedVersions []uint16
  279. // Conn is the underlying net.Conn for the connection. Do not read
  280. // from, or write to, this connection; that will cause the TLS
  281. // connection to fail.
  282. Conn net.Conn
  283. // Offered0RTTData is true if the client announced that it will send
  284. // 0-RTT data. If the server Config.Accept0RTTData is true, and the
  285. // client offered a session ticket valid for that purpose, it will
  286. // be notified that the 0-RTT data is accepted and it will be made
  287. // immediately available for Read.
  288. Offered0RTTData bool
  289. // The Fingerprint is an sequence of bytes unique to this Client Hello.
  290. // It can be used to prevent or mitigate 0-RTT data replays as it's
  291. // guaranteed that a replayed connection will have the same Fingerprint.
  292. Fingerprint []byte
  293. }
  294. // CertificateRequestInfo contains information from a server's
  295. // CertificateRequest message, which is used to demand a certificate and proof
  296. // of control from a client.
  297. type CertificateRequestInfo struct {
  298. // AcceptableCAs contains zero or more, DER-encoded, X.501
  299. // Distinguished Names. These are the names of root or intermediate CAs
  300. // that the server wishes the returned certificate to be signed by. An
  301. // empty slice indicates that the server has no preference.
  302. AcceptableCAs [][]byte
  303. // SignatureSchemes lists the signature schemes that the server is
  304. // willing to verify.
  305. SignatureSchemes []SignatureScheme
  306. }
  307. // RenegotiationSupport enumerates the different levels of support for TLS
  308. // renegotiation. TLS renegotiation is the act of performing subsequent
  309. // handshakes on a connection after the first. This significantly complicates
  310. // the state machine and has been the source of numerous, subtle security
  311. // issues. Initiating a renegotiation is not supported, but support for
  312. // accepting renegotiation requests may be enabled.
  313. //
  314. // Even when enabled, the server may not change its identity between handshakes
  315. // (i.e. the leaf certificate must be the same). Additionally, concurrent
  316. // handshake and application data flow is not permitted so renegotiation can
  317. // only be used with protocols that synchronise with the renegotiation, such as
  318. // HTTPS.
  319. type RenegotiationSupport int
  320. const (
  321. // RenegotiateNever disables renegotiation.
  322. RenegotiateNever RenegotiationSupport = iota
  323. // RenegotiateOnceAsClient allows a remote server to request
  324. // renegotiation once per connection.
  325. RenegotiateOnceAsClient
  326. // RenegotiateFreelyAsClient allows a remote server to repeatedly
  327. // request renegotiation.
  328. RenegotiateFreelyAsClient
  329. )
  330. // A Config structure is used to configure a TLS client or server.
  331. // After one has been passed to a TLS function it must not be
  332. // modified. A Config may be reused; the tls package will also not
  333. // modify it.
  334. type Config struct {
  335. // Rand provides the source of entropy for nonces and RSA blinding.
  336. // If Rand is nil, TLS uses the cryptographic random reader in package
  337. // crypto/rand.
  338. // The Reader must be safe for use by multiple goroutines.
  339. Rand io.Reader
  340. // Time returns the current time as the number of seconds since the epoch.
  341. // If Time is nil, TLS uses time.Now.
  342. Time func() time.Time
  343. // Certificates contains one or more certificate chains to present to
  344. // the other side of the connection. Server configurations must include
  345. // at least one certificate or else set GetCertificate. Clients doing
  346. // client-authentication may set either Certificates or
  347. // GetClientCertificate.
  348. Certificates []Certificate
  349. // NameToCertificate maps from a certificate name to an element of
  350. // Certificates. Note that a certificate name can be of the form
  351. // '*.example.com' and so doesn't have to be a domain name as such.
  352. // See Config.BuildNameToCertificate
  353. // The nil value causes the first element of Certificates to be used
  354. // for all connections.
  355. NameToCertificate map[string]*Certificate
  356. // GetCertificate returns a Certificate based on the given
  357. // ClientHelloInfo. It will only be called if the client supplies SNI
  358. // information or if Certificates is empty.
  359. //
  360. // If GetCertificate is nil or returns nil, then the certificate is
  361. // retrieved from NameToCertificate. If NameToCertificate is nil, the
  362. // first element of Certificates will be used.
  363. GetCertificate func(*ClientHelloInfo) (*Certificate, error)
  364. // GetClientCertificate, if not nil, is called when a server requests a
  365. // certificate from a client. If set, the contents of Certificates will
  366. // be ignored.
  367. //
  368. // If GetClientCertificate returns an error, the handshake will be
  369. // aborted and that error will be returned. Otherwise
  370. // GetClientCertificate must return a non-nil Certificate. If
  371. // Certificate.Certificate is empty then no certificate will be sent to
  372. // the server. If this is unacceptable to the server then it may abort
  373. // the handshake.
  374. //
  375. // GetClientCertificate may be called multiple times for the same
  376. // connection if renegotiation occurs or if TLS 1.3 is in use.
  377. GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error)
  378. // GetConfigForClient, if not nil, is called after a ClientHello is
  379. // received from a client. It may return a non-nil Config in order to
  380. // change the Config that will be used to handle this connection. If
  381. // the returned Config is nil, the original Config will be used. The
  382. // Config returned by this callback may not be subsequently modified.
  383. //
  384. // If GetConfigForClient is nil, the Config passed to Server() will be
  385. // used for all connections.
  386. //
  387. // Uniquely for the fields in the returned Config, session ticket keys
  388. // will be duplicated from the original Config if not set.
  389. // Specifically, if SetSessionTicketKeys was called on the original
  390. // config but not on the returned config then the ticket keys from the
  391. // original config will be copied into the new config before use.
  392. // Otherwise, if SessionTicketKey was set in the original config but
  393. // not in the returned config then it will be copied into the returned
  394. // config before use. If neither of those cases applies then the key
  395. // material from the returned config will be used for session tickets.
  396. GetConfigForClient func(*ClientHelloInfo) (*Config, error)
  397. // VerifyPeerCertificate, if not nil, is called after normal
  398. // certificate verification by either a TLS client or server. It
  399. // receives the raw ASN.1 certificates provided by the peer and also
  400. // any verified chains that normal processing found. If it returns a
  401. // non-nil error, the handshake is aborted and that error results.
  402. //
  403. // If normal verification fails then the handshake will abort before
  404. // considering this callback. If normal verification is disabled by
  405. // setting InsecureSkipVerify then this callback will be considered but
  406. // the verifiedChains argument will always be nil.
  407. VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error
  408. // RootCAs defines the set of root certificate authorities
  409. // that clients use when verifying server certificates.
  410. // If RootCAs is nil, TLS uses the host's root CA set.
  411. RootCAs *x509.CertPool
  412. // NextProtos is a list of supported, application level protocols.
  413. NextProtos []string
  414. // ServerName is used to verify the hostname on the returned
  415. // certificates unless InsecureSkipVerify is given. It is also included
  416. // in the client's handshake to support virtual hosting unless it is
  417. // an IP address.
  418. ServerName string
  419. // ClientAuth determines the server's policy for
  420. // TLS Client Authentication. The default is NoClientCert.
  421. ClientAuth ClientAuthType
  422. // ClientCAs defines the set of root certificate authorities
  423. // that servers use if required to verify a client certificate
  424. // by the policy in ClientAuth.
  425. ClientCAs *x509.CertPool
  426. // InsecureSkipVerify controls whether a client verifies the
  427. // server's certificate chain and host name.
  428. // If InsecureSkipVerify is true, TLS accepts any certificate
  429. // presented by the server and any host name in that certificate.
  430. // In this mode, TLS is susceptible to man-in-the-middle attacks.
  431. // This should be used only for testing.
  432. InsecureSkipVerify bool
  433. // CipherSuites is a list of supported cipher suites to be used in
  434. // TLS 1.0-1.2. If CipherSuites is nil, TLS uses a list of suites
  435. // supported by the implementation.
  436. CipherSuites []uint16
  437. // TLS13CipherSuites is a list of supported cipher suites to be used in
  438. // TLS 1.3. If nil, uses a list of suites supported by the implementation.
  439. TLS13CipherSuites []uint16
  440. // PreferServerCipherSuites controls whether the server selects the
  441. // client's most preferred ciphersuite, or the server's most preferred
  442. // ciphersuite. If true then the server's preference, as expressed in
  443. // the order of elements in CipherSuites, is used.
  444. PreferServerCipherSuites bool
  445. // SessionTicketsDisabled may be set to true to disable session ticket
  446. // (resumption) support.
  447. SessionTicketsDisabled bool
  448. // SessionTicketKey is used by TLS servers to provide session
  449. // resumption. See RFC 5077. If zero, it will be filled with
  450. // random data before the first server handshake.
  451. //
  452. // If multiple servers are terminating connections for the same host
  453. // they should all have the same SessionTicketKey. If the
  454. // SessionTicketKey leaks, previously recorded and future TLS
  455. // connections using that key are compromised.
  456. SessionTicketKey [32]byte
  457. // SessionCache is a cache of ClientSessionState entries for TLS session
  458. // resumption.
  459. ClientSessionCache ClientSessionCache
  460. // MinVersion contains the minimum SSL/TLS version that is acceptable.
  461. // If zero, then TLS 1.0 is taken as the minimum.
  462. MinVersion uint16
  463. // MaxVersion contains the maximum SSL/TLS version that is acceptable.
  464. // If zero, then the maximum version supported by this package is used,
  465. // which is currently TLS 1.2.
  466. MaxVersion uint16
  467. // CurvePreferences contains the elliptic curves that will be used in
  468. // an ECDHE handshake, in preference order. If empty, the default will
  469. // be used.
  470. CurvePreferences []CurveID
  471. // DynamicRecordSizingDisabled disables adaptive sizing of TLS records.
  472. // When true, the largest possible TLS record size is always used. When
  473. // false, the size of TLS records may be adjusted in an attempt to
  474. // improve latency.
  475. DynamicRecordSizingDisabled bool
  476. // Renegotiation controls what types of renegotiation are supported.
  477. // The default, none, is correct for the vast majority of applications.
  478. Renegotiation RenegotiationSupport
  479. // KeyLogWriter optionally specifies a destination for TLS master secrets
  480. // in NSS key log format that can be used to allow external programs
  481. // such as Wireshark to decrypt TLS connections.
  482. // See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format.
  483. // Use of KeyLogWriter compromises security and should only be
  484. // used for debugging.
  485. KeyLogWriter io.Writer
  486. // If Max0RTTDataSize is not zero, the client will be allowed to use
  487. // session tickets to send at most this number of bytes of 0-RTT data.
  488. // 0-RTT data is subject to replay and has memory DoS implications.
  489. // The server will later be able to refuse the 0-RTT data with
  490. // Accept0RTTData, or wait for the client to prove that it's not
  491. // replayed with Conn.ConfirmHandshake.
  492. //
  493. // It has no meaning on the client.
  494. //
  495. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
  496. Max0RTTDataSize uint32
  497. // Accept0RTTData makes the 0-RTT data received from the client
  498. // immediately available to Read. 0-RTT data is subject to replay.
  499. // Use Conn.ConfirmHandshake to wait until the data is known not
  500. // to be replayed after reading it.
  501. //
  502. // It has no meaning on the client.
  503. //
  504. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
  505. Accept0RTTData bool
  506. serverInitOnce sync.Once // guards calling (*Config).serverInit
  507. // mutex protects sessionTicketKeys.
  508. mutex sync.RWMutex
  509. // sessionTicketKeys contains zero or more ticket keys. If the length
  510. // is zero, SessionTicketsDisabled must be true. The first key is used
  511. // for new tickets and any subsequent keys can be used to decrypt old
  512. // tickets.
  513. sessionTicketKeys []ticketKey
  514. }
  515. // ticketKeyNameLen is the number of bytes of identifier that is prepended to
  516. // an encrypted session ticket in order to identify the key used to encrypt it.
  517. const ticketKeyNameLen = 16
  518. // ticketKey is the internal representation of a session ticket key.
  519. type ticketKey struct {
  520. // keyName is an opaque byte string that serves to identify the session
  521. // ticket key. It's exposed as plaintext in every session ticket.
  522. keyName [ticketKeyNameLen]byte
  523. aesKey [16]byte
  524. hmacKey [16]byte
  525. }
  526. // ticketKeyFromBytes converts from the external representation of a session
  527. // ticket key to a ticketKey. Externally, session ticket keys are 32 random
  528. // bytes and this function expands that into sufficient name and key material.
  529. func ticketKeyFromBytes(b [32]byte) (key ticketKey) {
  530. hashed := sha512.Sum512(b[:])
  531. copy(key.keyName[:], hashed[:ticketKeyNameLen])
  532. copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16])
  533. copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32])
  534. return key
  535. }
  536. // Clone returns a shallow clone of c. It is safe to clone a Config that is
  537. // being used concurrently by a TLS client or server.
  538. func (c *Config) Clone() *Config {
  539. // Running serverInit ensures that it's safe to read
  540. // SessionTicketsDisabled.
  541. c.serverInitOnce.Do(func() { c.serverInit(nil) })
  542. var sessionTicketKeys []ticketKey
  543. c.mutex.RLock()
  544. sessionTicketKeys = c.sessionTicketKeys
  545. c.mutex.RUnlock()
  546. return &Config{
  547. Rand: c.Rand,
  548. Time: c.Time,
  549. Certificates: c.Certificates,
  550. NameToCertificate: c.NameToCertificate,
  551. GetCertificate: c.GetCertificate,
  552. GetClientCertificate: c.GetClientCertificate,
  553. GetConfigForClient: c.GetConfigForClient,
  554. VerifyPeerCertificate: c.VerifyPeerCertificate,
  555. RootCAs: c.RootCAs,
  556. NextProtos: c.NextProtos,
  557. ServerName: c.ServerName,
  558. ClientAuth: c.ClientAuth,
  559. ClientCAs: c.ClientCAs,
  560. InsecureSkipVerify: c.InsecureSkipVerify,
  561. CipherSuites: c.CipherSuites,
  562. TLS13CipherSuites: c.TLS13CipherSuites,
  563. PreferServerCipherSuites: c.PreferServerCipherSuites,
  564. SessionTicketsDisabled: c.SessionTicketsDisabled,
  565. SessionTicketKey: c.SessionTicketKey,
  566. ClientSessionCache: c.ClientSessionCache,
  567. MinVersion: c.MinVersion,
  568. MaxVersion: c.MaxVersion,
  569. CurvePreferences: c.CurvePreferences,
  570. DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
  571. Renegotiation: c.Renegotiation,
  572. KeyLogWriter: c.KeyLogWriter,
  573. Accept0RTTData: c.Accept0RTTData,
  574. Max0RTTDataSize: c.Max0RTTDataSize,
  575. sessionTicketKeys: sessionTicketKeys,
  576. }
  577. }
  578. // serverInit is run under c.serverInitOnce to do initialization of c. If c was
  579. // returned by a GetConfigForClient callback then the argument should be the
  580. // Config that was passed to Server, otherwise it should be nil.
  581. func (c *Config) serverInit(originalConfig *Config) {
  582. if c.SessionTicketsDisabled || len(c.ticketKeys()) != 0 {
  583. return
  584. }
  585. alreadySet := false
  586. for _, b := range c.SessionTicketKey {
  587. if b != 0 {
  588. alreadySet = true
  589. break
  590. }
  591. }
  592. if !alreadySet {
  593. if originalConfig != nil {
  594. copy(c.SessionTicketKey[:], originalConfig.SessionTicketKey[:])
  595. } else if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
  596. c.SessionTicketsDisabled = true
  597. return
  598. }
  599. }
  600. if originalConfig != nil {
  601. originalConfig.mutex.RLock()
  602. c.sessionTicketKeys = originalConfig.sessionTicketKeys
  603. originalConfig.mutex.RUnlock()
  604. } else {
  605. c.sessionTicketKeys = []ticketKey{ticketKeyFromBytes(c.SessionTicketKey)}
  606. }
  607. }
  608. func (c *Config) ticketKeys() []ticketKey {
  609. c.mutex.RLock()
  610. // c.sessionTicketKeys is constant once created. SetSessionTicketKeys
  611. // will only update it by replacing it with a new value.
  612. ret := c.sessionTicketKeys
  613. c.mutex.RUnlock()
  614. return ret
  615. }
  616. // SetSessionTicketKeys updates the session ticket keys for a server. The first
  617. // key will be used when creating new tickets, while all keys can be used for
  618. // decrypting tickets. It is safe to call this function while the server is
  619. // running in order to rotate the session ticket keys. The function will panic
  620. // if keys is empty.
  621. func (c *Config) SetSessionTicketKeys(keys [][32]byte) {
  622. if len(keys) == 0 {
  623. panic("tls: keys must have at least one key")
  624. }
  625. newKeys := make([]ticketKey, len(keys))
  626. for i, bytes := range keys {
  627. newKeys[i] = ticketKeyFromBytes(bytes)
  628. }
  629. c.mutex.Lock()
  630. c.sessionTicketKeys = newKeys
  631. c.mutex.Unlock()
  632. }
  633. func (c *Config) rand() io.Reader {
  634. r := c.Rand
  635. if r == nil {
  636. return rand.Reader
  637. }
  638. return r
  639. }
  640. func (c *Config) time() time.Time {
  641. t := c.Time
  642. if t == nil {
  643. t = time.Now
  644. }
  645. return t()
  646. }
  647. func (c *Config) cipherSuites(version uint16) []uint16 {
  648. if version >= VersionTLS13 {
  649. s := c.TLS13CipherSuites
  650. if s == nil {
  651. s = defaultTLS13CipherSuites()
  652. }
  653. return s
  654. }
  655. s := c.CipherSuites
  656. if s == nil {
  657. s = defaultCipherSuites()
  658. }
  659. return s
  660. }
  661. func (c *Config) minVersion() uint16 {
  662. if c == nil || c.MinVersion == 0 {
  663. return minVersion
  664. }
  665. return c.MinVersion
  666. }
  667. func (c *Config) maxVersion() uint16 {
  668. if c == nil || c.MaxVersion == 0 {
  669. return maxVersion
  670. }
  671. return c.MaxVersion
  672. }
  673. var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521}
  674. func (c *Config) curvePreferences() []CurveID {
  675. if c == nil || len(c.CurvePreferences) == 0 {
  676. return defaultCurvePreferences
  677. }
  678. return c.CurvePreferences
  679. }
  680. // mutualVersion returns the protocol version to use given the advertised
  681. // version of the peer.
  682. func (c *Config) mutualVersion(vers uint16) (uint16, bool) {
  683. minVersion := c.minVersion()
  684. maxVersion := c.maxVersion()
  685. if vers < minVersion {
  686. return 0, false
  687. }
  688. if vers > maxVersion {
  689. vers = maxVersion
  690. }
  691. return vers, true
  692. }
  693. // getCertificate returns the best certificate for the given ClientHelloInfo,
  694. // defaulting to the first element of c.Certificates.
  695. func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) {
  696. if c.GetCertificate != nil &&
  697. (len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) {
  698. cert, err := c.GetCertificate(clientHello)
  699. if cert != nil || err != nil {
  700. return cert, err
  701. }
  702. }
  703. if len(c.Certificates) == 0 {
  704. return nil, errors.New("tls: no certificates configured")
  705. }
  706. if len(c.Certificates) == 1 || c.NameToCertificate == nil {
  707. // There's only one choice, so no point doing any work.
  708. return &c.Certificates[0], nil
  709. }
  710. name := strings.ToLower(clientHello.ServerName)
  711. for len(name) > 0 && name[len(name)-1] == '.' {
  712. name = name[:len(name)-1]
  713. }
  714. if cert, ok := c.NameToCertificate[name]; ok {
  715. return cert, nil
  716. }
  717. // try replacing labels in the name with wildcards until we get a
  718. // match.
  719. labels := strings.Split(name, ".")
  720. for i := range labels {
  721. labels[i] = "*"
  722. candidate := strings.Join(labels, ".")
  723. if cert, ok := c.NameToCertificate[candidate]; ok {
  724. return cert, nil
  725. }
  726. }
  727. // If nothing matches, return the first certificate.
  728. return &c.Certificates[0], nil
  729. }
  730. // BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
  731. // from the CommonName and SubjectAlternateName fields of each of the leaf
  732. // certificates.
  733. func (c *Config) BuildNameToCertificate() {
  734. c.NameToCertificate = make(map[string]*Certificate)
  735. for i := range c.Certificates {
  736. cert := &c.Certificates[i]
  737. x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
  738. if err != nil {
  739. continue
  740. }
  741. if len(x509Cert.Subject.CommonName) > 0 {
  742. c.NameToCertificate[x509Cert.Subject.CommonName] = cert
  743. }
  744. for _, san := range x509Cert.DNSNames {
  745. c.NameToCertificate[san] = cert
  746. }
  747. }
  748. }
  749. // writeKeyLog logs client random and master secret if logging was enabled by
  750. // setting c.KeyLogWriter.
  751. func (c *Config) writeKeyLog(clientRandom, masterSecret []byte) error {
  752. if c.KeyLogWriter == nil {
  753. return nil
  754. }
  755. logLine := []byte(fmt.Sprintf("CLIENT_RANDOM %x %x\n", clientRandom, masterSecret))
  756. writerMutex.Lock()
  757. _, err := c.KeyLogWriter.Write(logLine)
  758. writerMutex.Unlock()
  759. return err
  760. }
  761. // writerMutex protects all KeyLogWriters globally. It is rarely enabled,
  762. // and is only for debugging, so a global mutex saves space.
  763. var writerMutex sync.Mutex
  764. // A Certificate is a chain of one or more certificates, leaf first.
  765. type Certificate struct {
  766. Certificate [][]byte
  767. // PrivateKey contains the private key corresponding to the public key
  768. // in Leaf. For a server, this must implement crypto.Signer and/or
  769. // crypto.Decrypter, with an RSA or ECDSA PublicKey. For a client
  770. // (performing client authentication), this must be a crypto.Signer
  771. // with an RSA or ECDSA PublicKey.
  772. PrivateKey crypto.PrivateKey
  773. // OCSPStaple contains an optional OCSP response which will be served
  774. // to clients that request it.
  775. OCSPStaple []byte
  776. // SignedCertificateTimestamps contains an optional list of Signed
  777. // Certificate Timestamps which will be served to clients that request it.
  778. SignedCertificateTimestamps [][]byte
  779. // Leaf is the parsed form of the leaf certificate, which may be
  780. // initialized using x509.ParseCertificate to reduce per-handshake
  781. // processing for TLS clients doing client authentication. If nil, the
  782. // leaf certificate will be parsed as needed.
  783. Leaf *x509.Certificate
  784. }
  785. type handshakeMessage interface {
  786. marshal() []byte
  787. unmarshal([]byte) bool
  788. }
  789. // lruSessionCache is a ClientSessionCache implementation that uses an LRU
  790. // caching strategy.
  791. type lruSessionCache struct {
  792. sync.Mutex
  793. m map[string]*list.Element
  794. q *list.List
  795. capacity int
  796. }
  797. type lruSessionCacheEntry struct {
  798. sessionKey string
  799. state *ClientSessionState
  800. }
  801. // NewLRUClientSessionCache returns a ClientSessionCache with the given
  802. // capacity that uses an LRU strategy. If capacity is < 1, a default capacity
  803. // is used instead.
  804. func NewLRUClientSessionCache(capacity int) ClientSessionCache {
  805. const defaultSessionCacheCapacity = 64
  806. if capacity < 1 {
  807. capacity = defaultSessionCacheCapacity
  808. }
  809. return &lruSessionCache{
  810. m: make(map[string]*list.Element),
  811. q: list.New(),
  812. capacity: capacity,
  813. }
  814. }
  815. // Put adds the provided (sessionKey, cs) pair to the cache.
  816. func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
  817. c.Lock()
  818. defer c.Unlock()
  819. if elem, ok := c.m[sessionKey]; ok {
  820. entry := elem.Value.(*lruSessionCacheEntry)
  821. entry.state = cs
  822. c.q.MoveToFront(elem)
  823. return
  824. }
  825. if c.q.Len() < c.capacity {
  826. entry := &lruSessionCacheEntry{sessionKey, cs}
  827. c.m[sessionKey] = c.q.PushFront(entry)
  828. return
  829. }
  830. elem := c.q.Back()
  831. entry := elem.Value.(*lruSessionCacheEntry)
  832. delete(c.m, entry.sessionKey)
  833. entry.sessionKey = sessionKey
  834. entry.state = cs
  835. c.q.MoveToFront(elem)
  836. c.m[sessionKey] = elem
  837. }
  838. // Get returns the ClientSessionState value associated with a given key. It
  839. // returns (nil, false) if no value is found.
  840. func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
  841. c.Lock()
  842. defer c.Unlock()
  843. if elem, ok := c.m[sessionKey]; ok {
  844. c.q.MoveToFront(elem)
  845. return elem.Value.(*lruSessionCacheEntry).state, true
  846. }
  847. return nil, false
  848. }
  849. // TODO(jsing): Make these available to both crypto/x509 and crypto/tls.
  850. type dsaSignature struct {
  851. R, S *big.Int
  852. }
  853. type ecdsaSignature dsaSignature
  854. var emptyConfig Config
  855. func defaultConfig() *Config {
  856. return &emptyConfig
  857. }
  858. var (
  859. once sync.Once
  860. varDefaultCipherSuites []uint16
  861. varDefaultTLS13CipherSuites []uint16
  862. )
  863. func defaultCipherSuites() []uint16 {
  864. once.Do(initDefaultCipherSuites)
  865. return varDefaultCipherSuites
  866. }
  867. func defaultTLS13CipherSuites() []uint16 {
  868. once.Do(initDefaultCipherSuites)
  869. return varDefaultTLS13CipherSuites
  870. }
  871. func initDefaultCipherSuites() {
  872. var topCipherSuites, topTLS13CipherSuites []uint16
  873. if cipherhw.AESGCMSupport() {
  874. // If AES-GCM hardware is provided then prioritise AES-GCM
  875. // cipher suites.
  876. topTLS13CipherSuites = []uint16{
  877. TLS_AES_128_GCM_SHA256,
  878. TLS_AES_256_GCM_SHA384,
  879. TLS_CHACHA20_POLY1305_SHA256,
  880. }
  881. topCipherSuites = []uint16{
  882. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  883. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  884. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  885. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  886. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  887. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  888. }
  889. } else {
  890. // Without AES-GCM hardware, we put the ChaCha20-Poly1305
  891. // cipher suites first.
  892. topTLS13CipherSuites = []uint16{
  893. TLS_CHACHA20_POLY1305_SHA256,
  894. TLS_AES_128_GCM_SHA256,
  895. TLS_AES_256_GCM_SHA384,
  896. }
  897. topCipherSuites = []uint16{
  898. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  899. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  900. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  901. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  902. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  903. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  904. }
  905. }
  906. varDefaultTLS13CipherSuites = make([]uint16, 0, len(cipherSuites))
  907. for _, topCipher := range topTLS13CipherSuites {
  908. varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, topCipher)
  909. }
  910. varDefaultCipherSuites = make([]uint16, 0, len(cipherSuites))
  911. varDefaultCipherSuites = append(varDefaultCipherSuites, topCipherSuites...)
  912. NextCipherSuite:
  913. for _, suite := range cipherSuites {
  914. if suite.flags&suiteDefaultOff != 0 {
  915. continue
  916. }
  917. if suite.flags&suiteTLS13 != 0 {
  918. for _, existing := range varDefaultTLS13CipherSuites {
  919. if existing == suite.id {
  920. continue NextCipherSuite
  921. }
  922. }
  923. varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, suite.id)
  924. } else {
  925. for _, existing := range varDefaultCipherSuites {
  926. if existing == suite.id {
  927. continue NextCipherSuite
  928. }
  929. }
  930. varDefaultCipherSuites = append(varDefaultCipherSuites, suite.id)
  931. }
  932. }
  933. }
  934. func unexpectedMessageError(wanted, got interface{}) error {
  935. return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
  936. }
  937. func isSupportedSignatureAndHash(sigHash signatureAndHash, sigHashes []signatureAndHash) bool {
  938. for _, s := range sigHashes {
  939. if s == sigHash {
  940. return true
  941. }
  942. }
  943. return false
  944. }