Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
 
 
 
 
 
 

1188 rindas
41 KiB

  1. // Copyright 2009 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package tls
  5. import (
  6. "container/list"
  7. "crypto"
  8. "crypto/internal/cipherhw"
  9. "crypto/rand"
  10. "crypto/sha512"
  11. "crypto/x509"
  12. "errors"
  13. "fmt"
  14. "io"
  15. "math/big"
  16. "net"
  17. "strings"
  18. "sync"
  19. "time"
  20. )
  21. const (
  22. VersionSSL30 = 0x0300
  23. VersionTLS10 = 0x0301
  24. VersionTLS11 = 0x0302
  25. VersionTLS12 = 0x0303
  26. VersionTLS13 = 0x0304
  27. VersionTLS13Draft18 = 0x7f00 | 18
  28. VersionTLS13Draft21 = 0x7f00 | 21
  29. VersionTLS13Draft22 = 0x7f00 | 22
  30. )
  31. const (
  32. maxPlaintext = 16384 // maximum plaintext payload length
  33. maxCiphertext = 16384 + 2048 // maximum ciphertext payload length
  34. recordHeaderLen = 5 // record header length
  35. maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB)
  36. maxWarnAlertCount = 5 // maximum number of consecutive warning alerts
  37. minVersion = VersionTLS10
  38. maxVersion = VersionTLS12
  39. )
  40. // TLS record types.
  41. type recordType uint8
  42. const (
  43. recordTypeChangeCipherSpec recordType = 20
  44. recordTypeAlert recordType = 21
  45. recordTypeHandshake recordType = 22
  46. recordTypeApplicationData recordType = 23
  47. )
  48. // TLS handshake message types.
  49. const (
  50. typeHelloRequest uint8 = 0
  51. typeClientHello uint8 = 1
  52. typeServerHello uint8 = 2
  53. typeNewSessionTicket uint8 = 4
  54. typeEndOfEarlyData uint8 = 5
  55. typeEncryptedExtensions uint8 = 8
  56. typeCertificate uint8 = 11
  57. typeServerKeyExchange uint8 = 12
  58. typeCertificateRequest uint8 = 13
  59. typeServerHelloDone uint8 = 14
  60. typeCertificateVerify uint8 = 15
  61. typeClientKeyExchange uint8 = 16
  62. typeFinished uint8 = 20
  63. typeCertificateStatus uint8 = 22
  64. typeNextProtocol uint8 = 67 // Not IANA assigned
  65. )
  66. // TLS compression types.
  67. const (
  68. compressionNone uint8 = 0
  69. )
  70. // TLS extension numbers
  71. const (
  72. extensionServerName uint16 = 0
  73. extensionStatusRequest uint16 = 5
  74. extensionSupportedCurves uint16 = 10 // Supported Groups in 1.3 nomenclature
  75. extensionSupportedPoints uint16 = 11
  76. extensionSignatureAlgorithms uint16 = 13
  77. extensionALPN uint16 = 16
  78. extensionSCT uint16 = 18 // https://tools.ietf.org/html/rfc6962#section-6
  79. extensionSessionTicket uint16 = 35
  80. extensionKeyShare uint16 = 40
  81. extensionPreSharedKey uint16 = 41
  82. extensionEarlyData uint16 = 42
  83. extensionSupportedVersions uint16 = 43
  84. extensionPSKKeyExchangeModes uint16 = 45
  85. extensionCAs uint16 = 47
  86. extensionNextProtoNeg uint16 = 13172 // not IANA assigned
  87. extensionRenegotiationInfo uint16 = 0xff01
  88. )
  89. // TLS signaling cipher suite values
  90. const (
  91. scsvRenegotiation uint16 = 0x00ff
  92. )
  93. // PSK Key Exchange Modes
  94. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.7
  95. const (
  96. pskDHEKeyExchange uint8 = 1
  97. )
  98. // CurveID is the type of a TLS identifier for an elliptic curve. See
  99. // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8
  100. //
  101. // TLS 1.3 refers to these as Groups, but this library implements only
  102. // curve-based ones anyway. See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.4.
  103. type CurveID uint16
  104. const (
  105. CurveP256 CurveID = 23
  106. CurveP384 CurveID = 24
  107. CurveP521 CurveID = 25
  108. X25519 CurveID = 29
  109. )
  110. // TLS 1.3 Key Share
  111. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.5
  112. type keyShare struct {
  113. group CurveID
  114. data []byte
  115. }
  116. // TLS 1.3 PSK Identity and Binder, as sent by the client
  117. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.6
  118. type psk struct {
  119. identity []byte
  120. obfTicketAge uint32
  121. binder []byte
  122. }
  123. // TLS Elliptic Curve Point Formats
  124. // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
  125. const (
  126. pointFormatUncompressed uint8 = 0
  127. )
  128. // TLS CertificateStatusType (RFC 3546)
  129. const (
  130. statusTypeOCSP uint8 = 1
  131. )
  132. // Certificate types (for certificateRequestMsg)
  133. const (
  134. certTypeRSASign = 1 // A certificate containing an RSA key
  135. certTypeDSSSign = 2 // A certificate containing a DSA key
  136. certTypeRSAFixedDH = 3 // A certificate containing a static DH key
  137. certTypeDSSFixedDH = 4 // A certificate containing a static DH key
  138. // See RFC 4492 sections 3 and 5.5.
  139. certTypeECDSASign = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA.
  140. certTypeRSAFixedECDH = 65 // A certificate containing an ECDH-capable public key, signed with RSA.
  141. certTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA.
  142. // Rest of these are reserved by the TLS spec
  143. )
  144. // Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1)
  145. const (
  146. signaturePKCS1v15 uint8 = iota + 1
  147. signatureECDSA
  148. signatureRSAPSS
  149. )
  150. // supportedSignatureAlgorithms contains the signature and hash algorithms that
  151. // the code advertises as supported in a TLS 1.2 ClientHello and in a TLS 1.2
  152. // CertificateRequest. The two fields are merged to match with TLS 1.3.
  153. // Note that in TLS 1.2, the ECDSA algorithms are not constrained to P-256, etc.
  154. var supportedSignatureAlgorithms = []SignatureScheme{
  155. PKCS1WithSHA256,
  156. ECDSAWithP256AndSHA256,
  157. PKCS1WithSHA384,
  158. ECDSAWithP384AndSHA384,
  159. PKCS1WithSHA512,
  160. ECDSAWithP521AndSHA512,
  161. PKCS1WithSHA1,
  162. ECDSAWithSHA1,
  163. }
  164. // supportedSignatureAlgorithms13 lists the advertised signature algorithms
  165. // allowed for digital signatures. It includes TLS 1.2 + PSS.
  166. var supportedSignatureAlgorithms13 = []SignatureScheme{
  167. PSSWithSHA256,
  168. PKCS1WithSHA256,
  169. ECDSAWithP256AndSHA256,
  170. PSSWithSHA384,
  171. PKCS1WithSHA384,
  172. ECDSAWithP384AndSHA384,
  173. PSSWithSHA512,
  174. PKCS1WithSHA512,
  175. ECDSAWithP521AndSHA512,
  176. PKCS1WithSHA1,
  177. ECDSAWithSHA1,
  178. }
  179. // ConnectionState records basic TLS details about the connection.
  180. type ConnectionState struct {
  181. ConnectionID []byte // Random unique connection id
  182. Version uint16 // TLS version used by the connection (e.g. VersionTLS12)
  183. HandshakeComplete bool // TLS handshake is complete
  184. DidResume bool // connection resumes a previous TLS connection
  185. CipherSuite uint16 // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...)
  186. NegotiatedProtocol string // negotiated next protocol (not guaranteed to be from Config.NextProtos)
  187. NegotiatedProtocolIsMutual bool // negotiated protocol was advertised by server (client side only)
  188. ServerName string // server name requested by client, if any (server side only)
  189. PeerCertificates []*x509.Certificate // certificate chain presented by remote peer
  190. VerifiedChains [][]*x509.Certificate // verified chains built from PeerCertificates
  191. SignedCertificateTimestamps [][]byte // SCTs from the server, if any
  192. OCSPResponse []byte // stapled OCSP response from server, if any
  193. // TLSUnique contains the "tls-unique" channel binding value (see RFC
  194. // 5929, section 3). For resumed sessions this value will be nil
  195. // because resumption does not include enough context (see
  196. // https://mitls.org/pages/attacks/3SHAKE#channelbindings). This will
  197. // change in future versions of Go once the TLS master-secret fix has
  198. // been standardized and implemented.
  199. TLSUnique []byte
  200. // HandshakeConfirmed is true once all data returned by Read
  201. // (past and future) is guaranteed not to be replayed.
  202. HandshakeConfirmed bool
  203. // Unique0RTTToken is a value that never repeats, and can be used
  204. // to detect replay attacks against 0-RTT connections.
  205. // Unique0RTTToken is only present if HandshakeConfirmed is false.
  206. Unique0RTTToken []byte
  207. ClientHello []byte // ClientHello packet
  208. }
  209. // ClientAuthType declares the policy the server will follow for
  210. // TLS Client Authentication.
  211. type ClientAuthType int
  212. const (
  213. NoClientCert ClientAuthType = iota
  214. RequestClientCert
  215. RequireAnyClientCert
  216. VerifyClientCertIfGiven
  217. RequireAndVerifyClientCert
  218. )
  219. // ClientSessionState contains the state needed by clients to resume TLS
  220. // sessions.
  221. type ClientSessionState struct {
  222. sessionTicket []uint8 // Encrypted ticket used for session resumption with server
  223. vers uint16 // SSL/TLS version negotiated for the session
  224. cipherSuite uint16 // Ciphersuite negotiated for the session
  225. masterSecret []byte // MasterSecret generated by client on a full handshake
  226. serverCertificates []*x509.Certificate // Certificate chain presented by the server
  227. verifiedChains [][]*x509.Certificate // Certificate chains we built for verification
  228. }
  229. // ClientSessionCache is a cache of ClientSessionState objects that can be used
  230. // by a client to resume a TLS session with a given server. ClientSessionCache
  231. // implementations should expect to be called concurrently from different
  232. // goroutines. Only ticket-based resumption is supported, not SessionID-based
  233. // resumption.
  234. type ClientSessionCache interface {
  235. // Get searches for a ClientSessionState associated with the given key.
  236. // On return, ok is true if one was found.
  237. Get(sessionKey string) (session *ClientSessionState, ok bool)
  238. // Put adds the ClientSessionState to the cache with the given key.
  239. Put(sessionKey string, cs *ClientSessionState)
  240. }
  241. // SignatureScheme identifies a signature algorithm supported by TLS. See
  242. // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.3.
  243. type SignatureScheme uint16
  244. const (
  245. PKCS1WithSHA1 SignatureScheme = 0x0201
  246. PKCS1WithSHA256 SignatureScheme = 0x0401
  247. PKCS1WithSHA384 SignatureScheme = 0x0501
  248. PKCS1WithSHA512 SignatureScheme = 0x0601
  249. PSSWithSHA256 SignatureScheme = 0x0804
  250. PSSWithSHA384 SignatureScheme = 0x0805
  251. PSSWithSHA512 SignatureScheme = 0x0806
  252. ECDSAWithP256AndSHA256 SignatureScheme = 0x0403
  253. ECDSAWithP384AndSHA384 SignatureScheme = 0x0503
  254. ECDSAWithP521AndSHA512 SignatureScheme = 0x0603
  255. // Legacy signature and hash algorithms for TLS 1.2.
  256. ECDSAWithSHA1 SignatureScheme = 0x0203
  257. )
  258. // ClientHelloInfo contains information from a ClientHello message in order to
  259. // guide certificate selection in the GetCertificate callback.
  260. type ClientHelloInfo struct {
  261. // CipherSuites lists the CipherSuites supported by the client (e.g.
  262. // TLS_RSA_WITH_RC4_128_SHA).
  263. CipherSuites []uint16
  264. // ServerName indicates the name of the server requested by the client
  265. // in order to support virtual hosting. ServerName is only set if the
  266. // client is using SNI (see
  267. // http://tools.ietf.org/html/rfc4366#section-3.1).
  268. ServerName string
  269. // SupportedCurves lists the elliptic curves supported by the client.
  270. // SupportedCurves is set only if the Supported Elliptic Curves
  271. // Extension is being used (see
  272. // http://tools.ietf.org/html/rfc4492#section-5.1.1).
  273. SupportedCurves []CurveID
  274. // SupportedPoints lists the point formats supported by the client.
  275. // SupportedPoints is set only if the Supported Point Formats Extension
  276. // is being used (see
  277. // http://tools.ietf.org/html/rfc4492#section-5.1.2).
  278. SupportedPoints []uint8
  279. // SignatureSchemes lists the signature and hash schemes that the client
  280. // is willing to verify. SignatureSchemes is set only if the Signature
  281. // Algorithms Extension is being used (see
  282. // https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1).
  283. SignatureSchemes []SignatureScheme
  284. // SupportedProtos lists the application protocols supported by the client.
  285. // SupportedProtos is set only if the Application-Layer Protocol
  286. // Negotiation Extension is being used (see
  287. // https://tools.ietf.org/html/rfc7301#section-3.1).
  288. //
  289. // Servers can select a protocol by setting Config.NextProtos in a
  290. // GetConfigForClient return value.
  291. SupportedProtos []string
  292. // SupportedVersions lists the TLS versions supported by the client.
  293. // For TLS versions less than 1.3, this is extrapolated from the max
  294. // version advertised by the client, so values other than the greatest
  295. // might be rejected if used.
  296. SupportedVersions []uint16
  297. // Conn is the underlying net.Conn for the connection. Do not read
  298. // from, or write to, this connection; that will cause the TLS
  299. // connection to fail.
  300. Conn net.Conn
  301. // Offered0RTTData is true if the client announced that it will send
  302. // 0-RTT data. If the server Config.Accept0RTTData is true, and the
  303. // client offered a session ticket valid for that purpose, it will
  304. // be notified that the 0-RTT data is accepted and it will be made
  305. // immediately available for Read.
  306. Offered0RTTData bool
  307. // The Fingerprint is an sequence of bytes unique to this Client Hello.
  308. // It can be used to prevent or mitigate 0-RTT data replays as it's
  309. // guaranteed that a replayed connection will have the same Fingerprint.
  310. Fingerprint []byte
  311. }
  312. // CertificateRequestInfo contains information from a server's
  313. // CertificateRequest message, which is used to demand a certificate and proof
  314. // of control from a client.
  315. type CertificateRequestInfo struct {
  316. // AcceptableCAs contains zero or more, DER-encoded, X.501
  317. // Distinguished Names. These are the names of root or intermediate CAs
  318. // that the server wishes the returned certificate to be signed by. An
  319. // empty slice indicates that the server has no preference.
  320. AcceptableCAs [][]byte
  321. // SignatureSchemes lists the signature schemes that the server is
  322. // willing to verify.
  323. SignatureSchemes []SignatureScheme
  324. }
  325. // RenegotiationSupport enumerates the different levels of support for TLS
  326. // renegotiation. TLS renegotiation is the act of performing subsequent
  327. // handshakes on a connection after the first. This significantly complicates
  328. // the state machine and has been the source of numerous, subtle security
  329. // issues. Initiating a renegotiation is not supported, but support for
  330. // accepting renegotiation requests may be enabled.
  331. //
  332. // Even when enabled, the server may not change its identity between handshakes
  333. // (i.e. the leaf certificate must be the same). Additionally, concurrent
  334. // handshake and application data flow is not permitted so renegotiation can
  335. // only be used with protocols that synchronise with the renegotiation, such as
  336. // HTTPS.
  337. type RenegotiationSupport int
  338. const (
  339. // RenegotiateNever disables renegotiation.
  340. RenegotiateNever RenegotiationSupport = iota
  341. // RenegotiateOnceAsClient allows a remote server to request
  342. // renegotiation once per connection.
  343. RenegotiateOnceAsClient
  344. // RenegotiateFreelyAsClient allows a remote server to repeatedly
  345. // request renegotiation.
  346. RenegotiateFreelyAsClient
  347. )
  348. // A Config structure is used to configure a TLS client or server.
  349. // After one has been passed to a TLS function it must not be
  350. // modified. A Config may be reused; the tls package will also not
  351. // modify it.
  352. type Config struct {
  353. // Rand provides the source of entropy for nonces and RSA blinding.
  354. // If Rand is nil, TLS uses the cryptographic random reader in package
  355. // crypto/rand.
  356. // The Reader must be safe for use by multiple goroutines.
  357. Rand io.Reader
  358. // Time returns the current time as the number of seconds since the epoch.
  359. // If Time is nil, TLS uses time.Now.
  360. Time func() time.Time
  361. // Certificates contains one or more certificate chains to present to
  362. // the other side of the connection. Server configurations must include
  363. // at least one certificate or else set GetCertificate. Clients doing
  364. // client-authentication may set either Certificates or
  365. // GetClientCertificate.
  366. Certificates []Certificate
  367. // NameToCertificate maps from a certificate name to an element of
  368. // Certificates. Note that a certificate name can be of the form
  369. // '*.example.com' and so doesn't have to be a domain name as such.
  370. // See Config.BuildNameToCertificate
  371. // The nil value causes the first element of Certificates to be used
  372. // for all connections.
  373. NameToCertificate map[string]*Certificate
  374. // GetCertificate returns a Certificate based on the given
  375. // ClientHelloInfo. It will only be called if the client supplies SNI
  376. // information or if Certificates is empty.
  377. //
  378. // If GetCertificate is nil or returns nil, then the certificate is
  379. // retrieved from NameToCertificate. If NameToCertificate is nil, the
  380. // first element of Certificates will be used.
  381. GetCertificate func(*ClientHelloInfo) (*Certificate, error)
  382. // GetClientCertificate, if not nil, is called when a server requests a
  383. // certificate from a client. If set, the contents of Certificates will
  384. // be ignored.
  385. //
  386. // If GetClientCertificate returns an error, the handshake will be
  387. // aborted and that error will be returned. Otherwise
  388. // GetClientCertificate must return a non-nil Certificate. If
  389. // Certificate.Certificate is empty then no certificate will be sent to
  390. // the server. If this is unacceptable to the server then it may abort
  391. // the handshake.
  392. //
  393. // GetClientCertificate may be called multiple times for the same
  394. // connection if renegotiation occurs or if TLS 1.3 is in use.
  395. GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error)
  396. // GetConfigForClient, if not nil, is called after a ClientHello is
  397. // received from a client. It may return a non-nil Config in order to
  398. // change the Config that will be used to handle this connection. If
  399. // the returned Config is nil, the original Config will be used. The
  400. // Config returned by this callback may not be subsequently modified.
  401. //
  402. // If GetConfigForClient is nil, the Config passed to Server() will be
  403. // used for all connections.
  404. //
  405. // Uniquely for the fields in the returned Config, session ticket keys
  406. // will be duplicated from the original Config if not set.
  407. // Specifically, if SetSessionTicketKeys was called on the original
  408. // config but not on the returned config then the ticket keys from the
  409. // original config will be copied into the new config before use.
  410. // Otherwise, if SessionTicketKey was set in the original config but
  411. // not in the returned config then it will be copied into the returned
  412. // config before use. If neither of those cases applies then the key
  413. // material from the returned config will be used for session tickets.
  414. GetConfigForClient func(*ClientHelloInfo) (*Config, error)
  415. // VerifyPeerCertificate, if not nil, is called after normal
  416. // certificate verification by either a TLS client or server. It
  417. // receives the raw ASN.1 certificates provided by the peer and also
  418. // any verified chains that normal processing found. If it returns a
  419. // non-nil error, the handshake is aborted and that error results.
  420. //
  421. // If normal verification fails then the handshake will abort before
  422. // considering this callback. If normal verification is disabled by
  423. // setting InsecureSkipVerify, or (for a server) when ClientAuth is
  424. // RequestClientCert or RequireAnyClientCert, then this callback will
  425. // be considered but the verifiedChains argument will always be nil.
  426. VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error
  427. // RootCAs defines the set of root certificate authorities
  428. // that clients use when verifying server certificates.
  429. // If RootCAs is nil, TLS uses the host's root CA set.
  430. RootCAs *x509.CertPool
  431. // NextProtos is a list of supported, application level protocols.
  432. NextProtos []string
  433. // ServerName is used to verify the hostname on the returned
  434. // certificates unless InsecureSkipVerify is given. It is also included
  435. // in the client's handshake to support virtual hosting unless it is
  436. // an IP address.
  437. ServerName string
  438. // ClientAuth determines the server's policy for
  439. // TLS Client Authentication. The default is NoClientCert.
  440. ClientAuth ClientAuthType
  441. // ClientCAs defines the set of root certificate authorities
  442. // that servers use if required to verify a client certificate
  443. // by the policy in ClientAuth.
  444. ClientCAs *x509.CertPool
  445. // InsecureSkipVerify controls whether a client verifies the
  446. // server's certificate chain and host name.
  447. // If InsecureSkipVerify is true, TLS accepts any certificate
  448. // presented by the server and any host name in that certificate.
  449. // In this mode, TLS is susceptible to man-in-the-middle attacks.
  450. // This should be used only for testing.
  451. InsecureSkipVerify bool
  452. // CipherSuites is a list of supported cipher suites to be used in
  453. // TLS 1.0-1.2. If CipherSuites is nil, TLS uses a list of suites
  454. // supported by the implementation.
  455. CipherSuites []uint16
  456. // PreferServerCipherSuites controls whether the server selects the
  457. // client's most preferred ciphersuite, or the server's most preferred
  458. // ciphersuite. If true then the server's preference, as expressed in
  459. // the order of elements in CipherSuites, is used.
  460. PreferServerCipherSuites bool
  461. // SessionTicketsDisabled may be set to true to disable session ticket
  462. // (resumption) support.
  463. SessionTicketsDisabled bool
  464. // SessionTicketKey is used by TLS servers to provide session
  465. // resumption. See RFC 5077. If zero, it will be filled with
  466. // random data before the first server handshake.
  467. //
  468. // If multiple servers are terminating connections for the same host
  469. // they should all have the same SessionTicketKey. If the
  470. // SessionTicketKey leaks, previously recorded and future TLS
  471. // connections using that key are compromised.
  472. SessionTicketKey [32]byte
  473. // ClientSessionCache is a cache of ClientSessionState entries for TLS
  474. // session resumption.
  475. ClientSessionCache ClientSessionCache
  476. // MinVersion contains the minimum SSL/TLS version that is acceptable.
  477. // If zero, then TLS 1.0 is taken as the minimum.
  478. MinVersion uint16
  479. // MaxVersion contains the maximum SSL/TLS version that is acceptable.
  480. // If zero, then the maximum version supported by this package is used,
  481. // which is currently TLS 1.2.
  482. MaxVersion uint16
  483. // CurvePreferences contains the elliptic curves that will be used in
  484. // an ECDHE handshake, in preference order. If empty, the default will
  485. // be used.
  486. CurvePreferences []CurveID
  487. // DynamicRecordSizingDisabled disables adaptive sizing of TLS records.
  488. // When true, the largest possible TLS record size is always used. When
  489. // false, the size of TLS records may be adjusted in an attempt to
  490. // improve latency.
  491. DynamicRecordSizingDisabled bool
  492. // Renegotiation controls what types of renegotiation are supported.
  493. // The default, none, is correct for the vast majority of applications.
  494. Renegotiation RenegotiationSupport
  495. // KeyLogWriter optionally specifies a destination for TLS master secrets
  496. // in NSS key log format that can be used to allow external programs
  497. // such as Wireshark to decrypt TLS connections.
  498. // See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format.
  499. // Use of KeyLogWriter compromises security and should only be
  500. // used for debugging.
  501. KeyLogWriter io.Writer
  502. // If Max0RTTDataSize is not zero, the client will be allowed to use
  503. // session tickets to send at most this number of bytes of 0-RTT data.
  504. // 0-RTT data is subject to replay and has memory DoS implications.
  505. // The server will later be able to refuse the 0-RTT data with
  506. // Accept0RTTData, or wait for the client to prove that it's not
  507. // replayed with Conn.ConfirmHandshake.
  508. //
  509. // It has no meaning on the client.
  510. //
  511. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
  512. Max0RTTDataSize uint32
  513. // Accept0RTTData makes the 0-RTT data received from the client
  514. // immediately available to Read. 0-RTT data is subject to replay.
  515. // Use Conn.ConfirmHandshake to wait until the data is known not
  516. // to be replayed after reading it.
  517. //
  518. // It has no meaning on the client.
  519. //
  520. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3.
  521. Accept0RTTData bool
  522. // SessionTicketSealer, if not nil, is used to wrap and unwrap
  523. // session tickets, instead of SessionTicketKey.
  524. SessionTicketSealer SessionTicketSealer
  525. serverInitOnce sync.Once // guards calling (*Config).serverInit
  526. // mutex protects sessionTicketKeys.
  527. mutex sync.RWMutex
  528. // sessionTicketKeys contains zero or more ticket keys. If the length
  529. // is zero, SessionTicketsDisabled must be true. The first key is used
  530. // for new tickets and any subsequent keys can be used to decrypt old
  531. // tickets.
  532. sessionTicketKeys []ticketKey
  533. }
  534. // ticketKeyNameLen is the number of bytes of identifier that is prepended to
  535. // an encrypted session ticket in order to identify the key used to encrypt it.
  536. const ticketKeyNameLen = 16
  537. // ticketKey is the internal representation of a session ticket key.
  538. type ticketKey struct {
  539. // keyName is an opaque byte string that serves to identify the session
  540. // ticket key. It's exposed as plaintext in every session ticket.
  541. keyName [ticketKeyNameLen]byte
  542. aesKey [16]byte
  543. hmacKey [16]byte
  544. }
  545. // ticketKeyFromBytes converts from the external representation of a session
  546. // ticket key to a ticketKey. Externally, session ticket keys are 32 random
  547. // bytes and this function expands that into sufficient name and key material.
  548. func ticketKeyFromBytes(b [32]byte) (key ticketKey) {
  549. hashed := sha512.Sum512(b[:])
  550. copy(key.keyName[:], hashed[:ticketKeyNameLen])
  551. copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16])
  552. copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32])
  553. return key
  554. }
  555. // Clone returns a shallow clone of c. It is safe to clone a Config that is
  556. // being used concurrently by a TLS client or server.
  557. func (c *Config) Clone() *Config {
  558. // Running serverInit ensures that it's safe to read
  559. // SessionTicketsDisabled.
  560. c.serverInitOnce.Do(func() { c.serverInit(nil) })
  561. var sessionTicketKeys []ticketKey
  562. c.mutex.RLock()
  563. sessionTicketKeys = c.sessionTicketKeys
  564. c.mutex.RUnlock()
  565. return &Config{
  566. Rand: c.Rand,
  567. Time: c.Time,
  568. Certificates: c.Certificates,
  569. NameToCertificate: c.NameToCertificate,
  570. GetCertificate: c.GetCertificate,
  571. GetClientCertificate: c.GetClientCertificate,
  572. GetConfigForClient: c.GetConfigForClient,
  573. VerifyPeerCertificate: c.VerifyPeerCertificate,
  574. RootCAs: c.RootCAs,
  575. NextProtos: c.NextProtos,
  576. ServerName: c.ServerName,
  577. ClientAuth: c.ClientAuth,
  578. ClientCAs: c.ClientCAs,
  579. InsecureSkipVerify: c.InsecureSkipVerify,
  580. CipherSuites: c.CipherSuites,
  581. PreferServerCipherSuites: c.PreferServerCipherSuites,
  582. SessionTicketsDisabled: c.SessionTicketsDisabled,
  583. SessionTicketKey: c.SessionTicketKey,
  584. ClientSessionCache: c.ClientSessionCache,
  585. MinVersion: c.MinVersion,
  586. MaxVersion: c.MaxVersion,
  587. CurvePreferences: c.CurvePreferences,
  588. DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
  589. Renegotiation: c.Renegotiation,
  590. KeyLogWriter: c.KeyLogWriter,
  591. Accept0RTTData: c.Accept0RTTData,
  592. Max0RTTDataSize: c.Max0RTTDataSize,
  593. SessionTicketSealer: c.SessionTicketSealer,
  594. sessionTicketKeys: sessionTicketKeys,
  595. }
  596. }
  597. // serverInit is run under c.serverInitOnce to do initialization of c. If c was
  598. // returned by a GetConfigForClient callback then the argument should be the
  599. // Config that was passed to Server, otherwise it should be nil.
  600. func (c *Config) serverInit(originalConfig *Config) {
  601. if c.SessionTicketsDisabled || len(c.ticketKeys()) != 0 || c.SessionTicketSealer != nil {
  602. return
  603. }
  604. alreadySet := false
  605. for _, b := range c.SessionTicketKey {
  606. if b != 0 {
  607. alreadySet = true
  608. break
  609. }
  610. }
  611. if !alreadySet {
  612. if originalConfig != nil {
  613. copy(c.SessionTicketKey[:], originalConfig.SessionTicketKey[:])
  614. } else if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
  615. c.SessionTicketsDisabled = true
  616. return
  617. }
  618. }
  619. if originalConfig != nil {
  620. originalConfig.mutex.RLock()
  621. c.sessionTicketKeys = originalConfig.sessionTicketKeys
  622. originalConfig.mutex.RUnlock()
  623. } else {
  624. c.sessionTicketKeys = []ticketKey{ticketKeyFromBytes(c.SessionTicketKey)}
  625. }
  626. }
  627. func (c *Config) ticketKeys() []ticketKey {
  628. c.mutex.RLock()
  629. // c.sessionTicketKeys is constant once created. SetSessionTicketKeys
  630. // will only update it by replacing it with a new value.
  631. ret := c.sessionTicketKeys
  632. c.mutex.RUnlock()
  633. return ret
  634. }
  635. // SetSessionTicketKeys updates the session ticket keys for a server. The first
  636. // key will be used when creating new tickets, while all keys can be used for
  637. // decrypting tickets. It is safe to call this function while the server is
  638. // running in order to rotate the session ticket keys. The function will panic
  639. // if keys is empty.
  640. func (c *Config) SetSessionTicketKeys(keys [][32]byte) {
  641. if len(keys) == 0 {
  642. panic("tls: keys must have at least one key")
  643. }
  644. newKeys := make([]ticketKey, len(keys))
  645. for i, bytes := range keys {
  646. newKeys[i] = ticketKeyFromBytes(bytes)
  647. }
  648. c.mutex.Lock()
  649. c.sessionTicketKeys = newKeys
  650. c.mutex.Unlock()
  651. }
  652. func (c *Config) rand() io.Reader {
  653. r := c.Rand
  654. if r == nil {
  655. return rand.Reader
  656. }
  657. return r
  658. }
  659. func (c *Config) time() time.Time {
  660. t := c.Time
  661. if t == nil {
  662. t = time.Now
  663. }
  664. return t()
  665. }
  666. func hasOverlappingCipherSuites(cs1, cs2 []uint16) bool {
  667. for _, c1 := range cs1 {
  668. for _, c2 := range cs2 {
  669. if c1 == c2 {
  670. return true
  671. }
  672. }
  673. }
  674. return false
  675. }
  676. func (c *Config) cipherSuites() []uint16 {
  677. s := c.CipherSuites
  678. if s == nil {
  679. s = defaultCipherSuites()
  680. } else if c.maxVersion() >= VersionTLS13 {
  681. // Ensure that TLS 1.3 suites are always present, but respect
  682. // the application cipher suite preferences.
  683. s13 := defaultTLS13CipherSuites()
  684. if !hasOverlappingCipherSuites(s, s13) {
  685. allSuites := make([]uint16, len(s13)+len(s))
  686. allSuites = append(allSuites, s13...)
  687. s = append(allSuites, s...)
  688. }
  689. }
  690. return s
  691. }
  692. func (c *Config) minVersion() uint16 {
  693. if c == nil || c.MinVersion == 0 {
  694. return minVersion
  695. }
  696. return c.MinVersion
  697. }
  698. func (c *Config) maxVersion() uint16 {
  699. if c == nil || c.MaxVersion == 0 {
  700. return maxVersion
  701. }
  702. return c.MaxVersion
  703. }
  704. var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521}
  705. func (c *Config) curvePreferences() []CurveID {
  706. if c == nil || len(c.CurvePreferences) == 0 {
  707. return defaultCurvePreferences
  708. }
  709. return c.CurvePreferences
  710. }
  711. // mutualVersion returns the protocol version to use given the advertised
  712. // version of the peer using the legacy non-extension methods.
  713. func (c *Config) mutualVersion(vers uint16) (uint16, bool) {
  714. minVersion := c.minVersion()
  715. maxVersion := c.maxVersion()
  716. // Version 1.3 and higher are not negotiated via this mechanism.
  717. if maxVersion > VersionTLS12 {
  718. maxVersion = VersionTLS12
  719. }
  720. if vers < minVersion {
  721. return 0, false
  722. }
  723. if vers > maxVersion {
  724. vers = maxVersion
  725. }
  726. return vers, true
  727. }
  728. // pickVersion returns the protocol version to use given the advertised
  729. // versions of the peer using the Supported Versions extension.
  730. func (c *Config) pickVersion(peerSupportedVersions []uint16) (uint16, bool) {
  731. supportedVersions := c.getSupportedVersions()
  732. for _, supportedVersion := range supportedVersions {
  733. for _, version := range peerSupportedVersions {
  734. if version == supportedVersion {
  735. return version, true
  736. }
  737. }
  738. }
  739. return 0, false
  740. }
  741. // configSuppVersArray is the backing array of Config.getSupportedVersions
  742. var configSuppVersArray = [...]uint16{VersionTLS13, VersionTLS12, VersionTLS11, VersionTLS10, VersionSSL30}
  743. // tls13DraftSuppVersArray is the backing array of Config.getSupportedVersions
  744. // with TLS 1.3 draft versions included.
  745. //
  746. // TODO: remove once TLS 1.3 is finalised.
  747. var tls13DraftSuppVersArray = [...]uint16{VersionTLS13Draft22, VersionTLS12, VersionTLS11, VersionTLS10, VersionSSL30}
  748. // getSupportedVersions returns the protocol versions that are supported by the
  749. // current configuration.
  750. func (c *Config) getSupportedVersions() []uint16 {
  751. minVersion := c.minVersion()
  752. maxVersion := c.maxVersion()
  753. // Sanity check to avoid advertising unsupported versions.
  754. if minVersion < VersionSSL30 {
  755. minVersion = VersionSSL30
  756. }
  757. if maxVersion > VersionTLS13 {
  758. maxVersion = VersionTLS13
  759. }
  760. if maxVersion < minVersion {
  761. return nil
  762. }
  763. // TODO: remove once TLS 1.3 is finalised.
  764. if maxVersion == VersionTLS13 {
  765. return tls13DraftSuppVersArray[:len(tls13DraftSuppVersArray)-int(minVersion-VersionSSL30)]
  766. }
  767. return configSuppVersArray[VersionTLS13-maxVersion : VersionTLS13-minVersion+1]
  768. }
  769. // getCertificate returns the best certificate for the given ClientHelloInfo,
  770. // defaulting to the first element of c.Certificates.
  771. func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) {
  772. if c.GetCertificate != nil &&
  773. (len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) {
  774. cert, err := c.GetCertificate(clientHello)
  775. if cert != nil || err != nil {
  776. return cert, err
  777. }
  778. }
  779. if len(c.Certificates) == 0 {
  780. return nil, errors.New("tls: no certificates configured")
  781. }
  782. if len(c.Certificates) == 1 || c.NameToCertificate == nil {
  783. // There's only one choice, so no point doing any work.
  784. return &c.Certificates[0], nil
  785. }
  786. name := strings.ToLower(clientHello.ServerName)
  787. for len(name) > 0 && name[len(name)-1] == '.' {
  788. name = name[:len(name)-1]
  789. }
  790. if cert, ok := c.NameToCertificate[name]; ok {
  791. return cert, nil
  792. }
  793. // try replacing labels in the name with wildcards until we get a
  794. // match.
  795. labels := strings.Split(name, ".")
  796. for i := range labels {
  797. labels[i] = "*"
  798. candidate := strings.Join(labels, ".")
  799. if cert, ok := c.NameToCertificate[candidate]; ok {
  800. return cert, nil
  801. }
  802. }
  803. // If nothing matches, return the first certificate.
  804. return &c.Certificates[0], nil
  805. }
  806. // BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
  807. // from the CommonName and SubjectAlternateName fields of each of the leaf
  808. // certificates.
  809. func (c *Config) BuildNameToCertificate() {
  810. c.NameToCertificate = make(map[string]*Certificate)
  811. for i := range c.Certificates {
  812. cert := &c.Certificates[i]
  813. x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
  814. if err != nil {
  815. continue
  816. }
  817. if len(x509Cert.Subject.CommonName) > 0 {
  818. c.NameToCertificate[x509Cert.Subject.CommonName] = cert
  819. }
  820. for _, san := range x509Cert.DNSNames {
  821. c.NameToCertificate[san] = cert
  822. }
  823. }
  824. }
  825. // writeKeyLog logs client random and master secret if logging was enabled by
  826. // setting c.KeyLogWriter.
  827. func (c *Config) writeKeyLog(what string, clientRandom, masterSecret []byte) error {
  828. if c.KeyLogWriter == nil {
  829. return nil
  830. }
  831. logLine := []byte(fmt.Sprintf("%s %x %x\n", what, clientRandom, masterSecret))
  832. writerMutex.Lock()
  833. _, err := c.KeyLogWriter.Write(logLine)
  834. writerMutex.Unlock()
  835. return err
  836. }
  837. // writerMutex protects all KeyLogWriters globally. It is rarely enabled,
  838. // and is only for debugging, so a global mutex saves space.
  839. var writerMutex sync.Mutex
  840. // A Certificate is a chain of one or more certificates, leaf first.
  841. type Certificate struct {
  842. Certificate [][]byte
  843. // PrivateKey contains the private key corresponding to the public key
  844. // in Leaf. For a server, this must implement crypto.Signer and/or
  845. // crypto.Decrypter, with an RSA or ECDSA PublicKey. For a client
  846. // (performing client authentication), this must be a crypto.Signer
  847. // with an RSA or ECDSA PublicKey.
  848. PrivateKey crypto.PrivateKey
  849. // OCSPStaple contains an optional OCSP response which will be served
  850. // to clients that request it.
  851. OCSPStaple []byte
  852. // SignedCertificateTimestamps contains an optional list of Signed
  853. // Certificate Timestamps which will be served to clients that request it.
  854. SignedCertificateTimestamps [][]byte
  855. // Leaf is the parsed form of the leaf certificate, which may be
  856. // initialized using x509.ParseCertificate to reduce per-handshake
  857. // processing for TLS clients doing client authentication. If nil, the
  858. // leaf certificate will be parsed as needed.
  859. Leaf *x509.Certificate
  860. }
  861. type handshakeMessage interface {
  862. marshal() []byte
  863. unmarshal([]byte) alert
  864. }
  865. // lruSessionCache is a ClientSessionCache implementation that uses an LRU
  866. // caching strategy.
  867. type lruSessionCache struct {
  868. sync.Mutex
  869. m map[string]*list.Element
  870. q *list.List
  871. capacity int
  872. }
  873. type lruSessionCacheEntry struct {
  874. sessionKey string
  875. state *ClientSessionState
  876. }
  877. // NewLRUClientSessionCache returns a ClientSessionCache with the given
  878. // capacity that uses an LRU strategy. If capacity is < 1, a default capacity
  879. // is used instead.
  880. func NewLRUClientSessionCache(capacity int) ClientSessionCache {
  881. const defaultSessionCacheCapacity = 64
  882. if capacity < 1 {
  883. capacity = defaultSessionCacheCapacity
  884. }
  885. return &lruSessionCache{
  886. m: make(map[string]*list.Element),
  887. q: list.New(),
  888. capacity: capacity,
  889. }
  890. }
  891. // Put adds the provided (sessionKey, cs) pair to the cache.
  892. func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
  893. c.Lock()
  894. defer c.Unlock()
  895. if elem, ok := c.m[sessionKey]; ok {
  896. entry := elem.Value.(*lruSessionCacheEntry)
  897. entry.state = cs
  898. c.q.MoveToFront(elem)
  899. return
  900. }
  901. if c.q.Len() < c.capacity {
  902. entry := &lruSessionCacheEntry{sessionKey, cs}
  903. c.m[sessionKey] = c.q.PushFront(entry)
  904. return
  905. }
  906. elem := c.q.Back()
  907. entry := elem.Value.(*lruSessionCacheEntry)
  908. delete(c.m, entry.sessionKey)
  909. entry.sessionKey = sessionKey
  910. entry.state = cs
  911. c.q.MoveToFront(elem)
  912. c.m[sessionKey] = elem
  913. }
  914. // Get returns the ClientSessionState value associated with a given key. It
  915. // returns (nil, false) if no value is found.
  916. func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
  917. c.Lock()
  918. defer c.Unlock()
  919. if elem, ok := c.m[sessionKey]; ok {
  920. c.q.MoveToFront(elem)
  921. return elem.Value.(*lruSessionCacheEntry).state, true
  922. }
  923. return nil, false
  924. }
  925. // TODO(jsing): Make these available to both crypto/x509 and crypto/tls.
  926. type dsaSignature struct {
  927. R, S *big.Int
  928. }
  929. type ecdsaSignature dsaSignature
  930. var emptyConfig Config
  931. func defaultConfig() *Config {
  932. return &emptyConfig
  933. }
  934. var (
  935. once sync.Once
  936. varDefaultCipherSuites []uint16
  937. varDefaultTLS13CipherSuites []uint16
  938. )
  939. func defaultCipherSuites() []uint16 {
  940. once.Do(initDefaultCipherSuites)
  941. return varDefaultCipherSuites
  942. }
  943. func defaultTLS13CipherSuites() []uint16 {
  944. once.Do(initDefaultCipherSuites)
  945. return varDefaultTLS13CipherSuites
  946. }
  947. func initDefaultCipherSuites() {
  948. var topCipherSuites, topTLS13CipherSuites []uint16
  949. if cipherhw.AESGCMSupport() {
  950. // If AES-GCM hardware is provided then prioritise AES-GCM
  951. // cipher suites.
  952. topTLS13CipherSuites = []uint16{
  953. TLS_AES_128_GCM_SHA256,
  954. TLS_AES_256_GCM_SHA384,
  955. TLS_CHACHA20_POLY1305_SHA256,
  956. }
  957. topCipherSuites = []uint16{
  958. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  959. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  960. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  961. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  962. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  963. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  964. }
  965. } else {
  966. // Without AES-GCM hardware, we put the ChaCha20-Poly1305
  967. // cipher suites first.
  968. topTLS13CipherSuites = []uint16{
  969. TLS_CHACHA20_POLY1305_SHA256,
  970. TLS_AES_128_GCM_SHA256,
  971. TLS_AES_256_GCM_SHA384,
  972. }
  973. topCipherSuites = []uint16{
  974. TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  975. TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  976. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  977. TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  978. TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  979. TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  980. }
  981. }
  982. varDefaultTLS13CipherSuites = make([]uint16, 0, len(cipherSuites))
  983. varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, topTLS13CipherSuites...)
  984. varDefaultCipherSuites = make([]uint16, 0, len(cipherSuites))
  985. varDefaultCipherSuites = append(varDefaultCipherSuites, topCipherSuites...)
  986. NextCipherSuite:
  987. for _, suite := range cipherSuites {
  988. if suite.flags&suiteDefaultOff != 0 {
  989. continue
  990. }
  991. if suite.flags&suiteTLS13 != 0 {
  992. for _, existing := range varDefaultTLS13CipherSuites {
  993. if existing == suite.id {
  994. continue NextCipherSuite
  995. }
  996. }
  997. varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, suite.id)
  998. } else {
  999. for _, existing := range varDefaultCipherSuites {
  1000. if existing == suite.id {
  1001. continue NextCipherSuite
  1002. }
  1003. }
  1004. varDefaultCipherSuites = append(varDefaultCipherSuites, suite.id)
  1005. }
  1006. }
  1007. varDefaultCipherSuites = append(varDefaultTLS13CipherSuites, varDefaultCipherSuites...)
  1008. }
  1009. func unexpectedMessageError(wanted, got interface{}) error {
  1010. return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
  1011. }
  1012. func isSupportedSignatureAlgorithm(sigAlg SignatureScheme, supportedSignatureAlgorithms []SignatureScheme) bool {
  1013. for _, s := range supportedSignatureAlgorithms {
  1014. if s == sigAlg {
  1015. return true
  1016. }
  1017. }
  1018. return false
  1019. }
  1020. // signatureFromSignatureScheme maps a signature algorithm to the underlying
  1021. // signature method (without hash function).
  1022. func signatureFromSignatureScheme(signatureAlgorithm SignatureScheme) uint8 {
  1023. switch signatureAlgorithm {
  1024. case PKCS1WithSHA1, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512:
  1025. return signaturePKCS1v15
  1026. case PSSWithSHA256, PSSWithSHA384, PSSWithSHA512:
  1027. return signatureRSAPSS
  1028. case ECDSAWithSHA1, ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512:
  1029. return signatureECDSA
  1030. default:
  1031. return 0
  1032. }
  1033. }