1
0

Initial commit

Esse commit está contido em:
Andreas 2015-08-11 12:08:27 +02:00
commit 1826fb26ff
29 arquivos alterados com 1815 adições e 9 exclusões

5
.kdev4/xmss_ref.kdev4 Arquivo normal
Ver arquivo

@ -0,0 +1,5 @@
[Buildset]
BuildItems=@Variant(\x00\x00\x00\t\x00\x00\x00\x00\x01\x00\x00\x00\x0b\x00\x00\x00\x00\x01\x00\x00\x00\x10\x00x\x00m\x00s\x00s\x00_\x00r\x00e\x00f)
[Project]
VersionControlSupport=kdevgit

Ver arquivo

@ -1,5 +1,18 @@
CC=gcc
CFLAGS="-Wall"
CC = /usr/bin/gcc
CFLAGS = -Wall -g -O3
all: test/test_chacha \
test/test_wots \
test/test_xmss
test/test_chacha: chacha.c prg.c randombytes.c test/test_chacha.c chacha.h prg.h randombytes.h
$(CC) $(CFLAGS) chacha.c prg.c randombytes.c test/test_chacha.c -o $@ #-lcrypto -lm
test/test_wots: chacha.c hash.c prg.c randombytes.c wots.c xmss_commons.c test/test_wots.c chacha.h hash.h prg.h randombytes.h wots.h xmss_commons.h
$(CC) $(CFLAGS) chacha.c hash.c prg.c randombytes.c wots.c xmss_commons.c test/test_wots.c -o $@ -lcrypto -lm
test/test_xmss: chacha.c hash.c prg.c randombytes.c wots.c xmss.c xmss_commons.c test/test_xmss.c chacha.h hash.h prg.h randombytes.h wots.h xmss.h xmss_commons.h
$(CC) $(CFLAGS) chacha.c hash.c prg.c randombytes.c wots.c xmss.c xmss_commons.c test/test_xmss.c -o $@ -lcrypto -lm
debug:clean
$(CC) $(CFLAGS) -g -o xmss_ref main.c

208
chacha.c Arquivo normal
Ver arquivo

@ -0,0 +1,208 @@
/*
* This code is based on an OpenSSL implementation of chacha20.
* Hence, the copyright below applies.
*
*/
/* ====================================================================
* Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
/* Adapted from the public domain code by D. Bernstein from SUPERCOP. */
#include <stdint.h>
#include <string.h>
#include "chacha.h"
/* sigma contains the ChaCha constants, which happen to be an ASCII string. */
static const char sigma[16] = "expand 32-byte k";
#define ROTATE(v, n) (((v) << (n)) | ((v) >> (32 - (n))))
#define XOR(v, w) ((v) ^ (w))
#define PLUS(x, y) ((x) + (y))
#define PLUSONE(v) (PLUS((v), 1))
#define U32TO8_LITTLE(p, v) \
{ (p)[0] = (v >> 0) & 0xff; (p)[1] = (v >> 8) & 0xff; \
(p)[2] = (v >> 16) & 0xff; (p)[3] = (v >> 24) & 0xff; }
#define U8TO32_LITTLE(p) \
(((uint32_t)((p)[0]) ) | ((uint32_t)((p)[1]) << 8) | \
((uint32_t)((p)[2]) << 16) | ((uint32_t)((p)[3]) << 24) )
/* QUARTERROUND updates a, b, c, d with a ChaCha "quarter" round. */
#define QUARTERROUND(a,b,c,d) \
x[a] = PLUS(x[a],x[b]); x[d] = ROTATE(XOR(x[d],x[a]),16); \
x[c] = PLUS(x[c],x[d]); x[b] = ROTATE(XOR(x[b],x[c]),12); \
x[a] = PLUS(x[a],x[b]); x[d] = ROTATE(XOR(x[d],x[a]), 8); \
x[c] = PLUS(x[c],x[d]); x[b] = ROTATE(XOR(x[b],x[c]), 7);
/* chacha_core performs |num_rounds| rounds of ChaCha20 on the input words in
* |input| and writes the 64 output bytes to |output|. */
static void chacha_core(unsigned char output[64], const uint32_t input[16],
int num_rounds)
{
uint32_t x[16];
int i;
memcpy(x, input, sizeof(uint32_t) * 16);
for (i = 20; i > 0; i -= 2)
{
QUARTERROUND( 0, 4, 8,12)
QUARTERROUND( 1, 5, 9,13)
QUARTERROUND( 2, 6,10,14)
QUARTERROUND( 3, 7,11,15)
QUARTERROUND( 0, 5,10,15)
QUARTERROUND( 1, 6,11,12)
QUARTERROUND( 2, 7, 8,13)
QUARTERROUND( 3, 4, 9,14)
}
for (i = 0; i < 16; ++i)
x[i] = PLUS(x[i], input[i]);
for (i = 0; i < 16; ++i)
U32TO8_LITTLE(output + 4 * i, x[i]);
}
void CRYPTO_chacha_20(unsigned char *out,
const unsigned char *in, size_t in_len,
const unsigned char key[32],
const unsigned char nonce[12],
uint32_t counter)
{
uint32_t input[16];
unsigned char buf[64];
size_t todo, i;
input[0] = U8TO32_LITTLE(sigma + 0);
input[1] = U8TO32_LITTLE(sigma + 4);
input[2] = U8TO32_LITTLE(sigma + 8);
input[3] = U8TO32_LITTLE(sigma + 12);
input[4] = U8TO32_LITTLE(key + 0);
input[5] = U8TO32_LITTLE(key + 4);
input[6] = U8TO32_LITTLE(key + 8);
input[7] = U8TO32_LITTLE(key + 12);
input[8] = U8TO32_LITTLE(key + 16);
input[9] = U8TO32_LITTLE(key + 20);
input[10] = U8TO32_LITTLE(key + 24);
input[11] = U8TO32_LITTLE(key + 28);
input[12] = counter;
input[13] = U8TO32_LITTLE(nonce + 0);
input[14] = U8TO32_LITTLE(nonce + 4);
input[15] = U8TO32_LITTLE(nonce + 8);
while (in_len > 0)
{
todo = sizeof(buf);
if (in_len < todo)
todo = in_len;
chacha_core(buf, input, 20);
for (i = 0; i < todo; i++)
out[i] = in[i] ^ buf[i];
out += todo;
in += todo;
in_len -= todo;
input[12]++;
if (input[12] == 0)
input[13]++;
}
}
void CRYPTO_chacha_20_keystream(unsigned char *out,
size_t out_len,
const unsigned char key[32],
const unsigned char nonce[12],
uint32_t counter)
{
uint32_t input[16];
unsigned char buf[64];
size_t todo, i;
input[0] = U8TO32_LITTLE(sigma + 0);
input[1] = U8TO32_LITTLE(sigma + 4);
input[2] = U8TO32_LITTLE(sigma + 8);
input[3] = U8TO32_LITTLE(sigma + 12);
input[4] = U8TO32_LITTLE(key + 0);
input[5] = U8TO32_LITTLE(key + 4);
input[6] = U8TO32_LITTLE(key + 8);
input[7] = U8TO32_LITTLE(key + 12);
input[8] = U8TO32_LITTLE(key + 16);
input[9] = U8TO32_LITTLE(key + 20);
input[10] = U8TO32_LITTLE(key + 24);
input[11] = U8TO32_LITTLE(key + 28);
input[12] = counter;
input[13] = U8TO32_LITTLE(nonce + 0);
input[14] = U8TO32_LITTLE(nonce + 4);
input[15] = U8TO32_LITTLE(nonce + 8);
while (out_len > 0)
{
todo = sizeof(buf);
if (out_len < todo)
todo = out_len;
chacha_core(buf, input, 20);
for (i = 0; i < todo; i++)
out[i] = buf[i];
out += todo;
out_len -= todo;
input[12]++;
if (input[12] == 0)
input[13]++;
}
}

78
chacha.h Arquivo normal
Ver arquivo

@ -0,0 +1,78 @@
/*
* This code is based on an OpenSSL implementation of chacha20.
* Hence, the copyright below applies.
*
*/
/* ====================================================================
* Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
#ifndef CHACHA_H
#define CHACHA_H
#include <stddef.h>
typedef unsigned int uint32_t;
/* CRYPTO_chacha_20 encrypts |in_len| bytes from |in| with the given key and
* nonce and writes the result to |out|, which may be equal to |in|. The
* initial block counter is specified by |counter|. */
void CRYPTO_chacha_20(unsigned char *out,
const unsigned char *in, size_t in_len,
const unsigned char key[32],
const unsigned char nonce[12],
uint32_t counter);
/* CRYPTO_chacha_20_keystream generates |out_len| bytes from the generated keystream with the given key and
* nonce and writes the result to |out|. The
* initial block counter is specified by |counter|. */
void CRYPTO_chacha_20_keystream(unsigned char *out,
size_t out_len,
const unsigned char key[32],
const unsigned char nonce[12],
uint32_t counter);
#endif

143
hash.c Arquivo normal
Ver arquivo

@ -0,0 +1,143 @@
#include "params.h"
#include "prg.h"
#include <stddef.h>
#include "stdio.h"
#include <openssl/sha.h>
#include <openssl/hmac.h>
#include <openssl/evp.h>
#define SET_KEY_BIT(a,b) (a[15] = (a[15] & 253) | (b << 1))
#define SET_BLOCK_BIT(a,b) (a[15] = (a[15] & 254) | b)
#define WOTS_SELECT_KEY(a) (a[15] = (a[15] & 253) | 1)
#define WOTS_SELECT_BLOCK(a) (a[15] = (a[15] & 254) | 0)
/**
* Implements PRF_m
*/
int prf_m(unsigned char *out, const unsigned char *in, size_t inlen, const unsigned char *key, int keylen)
{
unsigned int length;
if (keylen == 32){
HMAC(EVP_sha256(), key, keylen, in, inlen, out, &length);
if(length != 32)
{
fprintf(stderr, "HMAC outputs %d bytes... That should not happen...",length);
}
return 0;
}
else
{
if(keylen == 64)
{
HMAC(EVP_sha512(), key, keylen, in, inlen, out, &length);
if(length != 64)
{
fprintf(stderr, "HMAC outputs %d bytes... That should not happen...",length);
}
return 0;
}
}
return 1;
}
/*
* Implemts H_m
*/
int hash_m(unsigned char *out,const unsigned char *in,unsigned long long inlen,const unsigned char *key, const int keylen, const int m)
{
if(keylen != m){
fprintf(stderr, "H_m takes m-bit keys, we got m=%d but a keylength of %d.\n",m,keylen);
return 1;
}
unsigned long long i;
unsigned char buf[inlen +keylen+m];
for(i=0;i<m;i++)
{
buf[i] = 0x00;
}
for(i=0;i <keylen;i++)
{
buf[m+i] = key[i];
}
for(i=0;i <inlen;i++)
{
buf[m+keylen+i] = in[i];
}
if(m == 32)
{
SHA256(buf,inlen +keylen+m,out);
return 0;
}
else
{
if(m == 64)
{
SHA512(buf,inlen +keylen+m,out);
return 0;
}
}
return 1;
}
/**
* We assume the left half is in in[0]...in[n-1]
*/
int hash_2n_n(unsigned char *out,const unsigned char *in, const unsigned char *pub_seed, unsigned char addr[16], const int n)
{
if(n != 32){
fprintf(stderr, "Hash.c:hash_2n_n: Current implementation does not support n != 32, yet.\n");
return -1;
}
unsigned char buf[4*n];
unsigned char key[n];
unsigned char bitmask[2*n];
int i;
SET_KEY_BIT(addr,1);
SET_BLOCK_BIT(addr,0);
prg_with_counter(key, n, pub_seed, 32, addr);
SET_KEY_BIT(addr,0);
// Use MSB order
prg_with_counter(bitmask, n, pub_seed, 32, addr);
SET_BLOCK_BIT(addr,1);
prg_with_counter(bitmask+n, n, pub_seed, 32, addr);
for(i=0;i<n;i++)
{
buf[i] = 0x00;
buf[n+i] = key[i];
buf[2*n+i] = in[i] ^ bitmask[i];
buf[3*n+i] = in[n+i] ^ bitmask[n+i];
}
SHA256(buf,4*n,out);
return 0;
}
int hash_n_n(unsigned char *out,const unsigned char *in, const unsigned char *pub_seed, unsigned char addr[16], const int n)
{
if(n != 32){
fprintf(stderr, "Hash.c:hash_n_n: Current implementation does not support n != 32, yet.\n");
return -1;
}
unsigned char buf[3*n];
unsigned char key[n];
unsigned char bitmask[n];
int i;
WOTS_SELECT_KEY(addr);
prg_with_counter(key, n, pub_seed, 32, addr);
WOTS_SELECT_BLOCK(addr);
prg_with_counter(bitmask, n, pub_seed, 32, addr);
for(i=0;i<n;i++)
{
buf[i] = 0x00;
buf[n+i] = key[i];
buf[2*n+i] = in[i] ^ bitmask[i];
}
SHA256(buf,3*n,out);
return 0;
}

11
hash.h Arquivo normal
Ver arquivo

@ -0,0 +1,11 @@
#ifndef HASH_H
#define HASH_H
#include "params.h"
int prf_m(unsigned char *out, const unsigned char *in, size_t inlen, const unsigned char *key, int keylen);
int hash_m(unsigned char *out,const unsigned char *in,unsigned long long inlen, const unsigned char *key, const int keylen, const int m);
int hash_2n_n(unsigned char *out,const unsigned char *in, const unsigned char *pub_seed, unsigned char addr[16], const int n);
int hash_n_n(unsigned char *out,const unsigned char *in, const unsigned char *pub_seed, unsigned char addr[16], const int n);
#endif

7
main.c
Ver arquivo

@ -1,7 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) {
printf("Hello World!");
return 0;
}

13
params.h Arquivo normal
Ver arquivo

@ -0,0 +1,13 @@
#define TREE_HEIGHT 10
#define WOTS_LOGW 4 // -> w = 16
#define SK_RAND_SEED_BYTES 32
#define MESSAGE_HASH_SEED_BYTES 32
#define WOTS_W (1 << WOTS_LOGW)
#define WOTS_L1 ((256+WOTS_LOGW-1)/WOTS_LOGW)
#define WOTS_L 67 // for WOTS_W == 16
#define WOTS_LOG_L 7 // for WOTS_W == 16
#define WOTS_SIGBYTES (WOTS_L*HASH_BYTES)
#define HASH_BYTES 32

31
prg.c Arquivo normal
Ver arquivo

@ -0,0 +1,31 @@
#include "chacha.h"
//#include "params.h"
#include "prg.h"
const unsigned char zero_nonce[12] = {0};
/**
* Generates rlen output bytes using ChaCha20 with a zero nonce and counter = 0
*/
void prg(unsigned char *r, unsigned long long rlen, const unsigned char *key, uint key_len)
{
CRYPTO_chacha_20_keystream(r, rlen, key, zero_nonce, 0);
}
/**
* Generates rlen output bytes using ChaCha20.
* Nonce and counter are set depending on the address addr.
*/
void prg_with_counter(unsigned char *r, unsigned long long rlen, const unsigned char *key, uint key_len, const unsigned char addr[16])
{
int i;
unsigned char nonce[12];
for(i = 0; i < 12; i++)
{
nonce[i] = addr[i];
}
uint32_t counter;
counter = (addr[12] << 24)|(addr[13] << 16)|(addr[14] << 8)|addr[15];
// TODO: Check address handling. Endianess?
CRYPTO_chacha_20_keystream(r, rlen, key, nonce, counter);
}

16
prg.h Arquivo normal
Ver arquivo

@ -0,0 +1,16 @@
#ifndef PRG_H
#define PRG_H
#include <stdlib.h>
/**
* Generates rlen output bytes using key_len-byte key and places them in r.
*
*/
void prg(unsigned char *r, unsigned long long rlen, const unsigned char *key, uint key_len);
/**
* Generates rlen output bytes using key_len-byte key and hash address addr and places them in r.
*
*/
void prg_with_counter(unsigned char *r, unsigned long long rlen, const unsigned char *key, uint key_len, const unsigned char addr[16]);
#endif

34
randombytes.c Arquivo normal
Ver arquivo

@ -0,0 +1,34 @@
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
/* it's really stupid that there isn't a syscall for this */
static int fd = -1;
void randombytes(unsigned char *x,unsigned long long xlen)
{
int i;
if (fd == -1) {
for (;;) {
fd = open("/dev/urandom",O_RDONLY);
if (fd != -1) break;
sleep(1);
}
}
while (xlen > 0) {
if (xlen < 1048576) i = xlen; else i = 1048576;
i = read(fd,x,i);
if (i < 1) {
sleep(1);
continue;
}
x += i;
xlen -= i;
}
}

6
randombytes.h Arquivo normal
Ver arquivo

@ -0,0 +1,6 @@
#ifndef RANDOMBYTES_H
#define RANDOMBYTES_H
extern void randombytes(unsigned char * x,unsigned long long xlen);
#endif

92
test/gen_testvectors.c Arquivo normal
Ver arquivo

@ -0,0 +1,92 @@
#include <stdint.h>
#include <stdio.h>
#include "../crypto_sign.h"
#define MAXMBYTES 2048
typedef uint32_t uint32;
static uint32 seed[32] = { 3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5 } ;
static uint32 in[12];
static uint32 out[8];
static int outleft = 0;
#define ROTATE(x,b) (((x) << (b)) | ((x) >> (32 - (b))))
#define MUSH(i,b) x = t[i] += (((x ^ seed[i]) + sum) ^ ROTATE(x,b));
static void surf(void)
{
uint32 t[12]; uint32 x; uint32 sum = 0;
int r; int i; int loop;
for (i = 0;i < 12;++i) t[i] = in[i] ^ seed[12 + i];
for (i = 0;i < 8;++i) out[i] = seed[24 + i];
x = t[11];
for (loop = 0;loop < 2;++loop) {
for (r = 0;r < 16;++r) {
sum += 0x9e3779b9;
MUSH(0,5) MUSH(1,7) MUSH(2,9) MUSH(3,13)
MUSH(4,5) MUSH(5,7) MUSH(6,9) MUSH(7,13)
MUSH(8,5) MUSH(9,7) MUSH(10,9) MUSH(11,13)
}
for (i = 0;i < 8;++i) out[i] ^= t[i + 4];
}
}
void randombytes(unsigned char *x,unsigned long long xlen)
{
while (xlen > 0) {
if (!outleft) {
if (!++in[0]) if (!++in[1]) if (!++in[2]) ++in[3];
surf();
outleft = 8;
}
*x = out[--outleft];
++x;
--xlen;
}
}
unsigned char pk[CRYPTO_PUBLICKEYBYTES];
unsigned char sk[CRYPTO_SECRETKEYBYTES];
unsigned char m[MAXMBYTES];
unsigned char sm[MAXMBYTES+CRYPTO_BYTES];
//unsigned char mo[MAXMBYTES+CRYPTO_BYTES];
unsigned long long smlen;
unsigned long long mlen;
int main(void)
{
int n,i,r;
for(n=0;n<MAXMBYTES;n++)
{
crypto_sign_keypair(pk,sk);
randombytes(m,n);
crypto_sign(sm, &smlen, m, n, sk);
for(i=0;i<smlen;i++)
printf("%02x",sm[i]);
printf("\n");
r = crypto_sign_open(sm, &mlen, sm, smlen, pk);
if(r)
{
printf("signature verification fails\n");
return -1;
}
if(mlen != n)
{
printf("signature verification produces wrong message length\n");
return -1;
}
for(i=0;i<n;i++)
{
if(sm[i] != m[i])
{
printf("signature verification does not recover message\n");
return -1;
}
}
}
return 0;
}

124
test/speed.c Arquivo normal
Ver arquivo

@ -0,0 +1,124 @@
#include <stdio.h>
#include <stdlib.h>
#include "../crypto_sign.h"
#include "../cpucycles.h"
#include "../randombytes.h"
#include "../horst.h"
#include "../wots.h"
#include "../hash.h"
#define MLEN 59
#define REP 1
#define NRUNS 100
static int ull_cmp(const void *a, const void *b)
{
const unsigned long long *ia = (const unsigned long long *)a;
const unsigned long long *ib = (const unsigned long long *)b;
if (*ia > *ib) return 1;
if (*ia < *ib) return -1;
return 0;
}
static const unsigned char seed[32] = {
0x22, 0x26, 0xb5, 0x64, 0xbb, 0x78, 0xcc, 0xab, 0x4a, 0x4c, 0x0a, 0x64, 0xc2, 0x0b, 0x5d, 0x68,
0x38, 0x74, 0x1a, 0xc0, 0x03, 0x17, 0xff, 0xd8, 0xe3, 0x53, 0xc8, 0x59, 0xc6, 0x23, 0x5b, 0xaa};
int main()
{
unsigned long long t[NRUNS];
int i,j;
printf("\n=== Benchmarks of signatures ===\n\n");
unsigned char sk[CRYPTO_SECRETKEYBYTES];
unsigned char pk[CRYPTO_PUBLICKEYBYTES];
unsigned char m[MLEN+CRYPTO_BYTES];
unsigned char sm[MLEN+CRYPTO_BYTES];
unsigned long long mlen;
unsigned long long smlen;
unsigned char masks[2*HORST_LOGT*HASH_BYTES];
randombytes(masks,N_MASKS*HASH_BYTES);
unsigned char msg_seed[MSGHASH_BYTES];
randombytes(msg_seed, MSGHASH_BYTES);
//Benchmarking signature key generation
for(i=0;i<NRUNS;i++)
{
t[i] = cpucycles();
for(j=0;j<REP;j++)
crypto_sign_keypair(pk, sk);
}
for(i=0;i<NRUNS-1;i++)
t[i] = (t[i+1] - t[i]);
qsort(t, NRUNS-1, sizeof(unsigned long long), ull_cmp);
printf("keypair: %13.3lf\n", (double)t[NRUNS/2-1]/REP);
//Benchmarking signature generation
for(i=0;i<NRUNS;i++)
{
t[i] = cpucycles();
for(j=0;j<REP;j++)
crypto_sign(sm, &smlen, m, MLEN, sk);
}
for(i=0;i<NRUNS-1;i++)
t[i] = (t[i+1] - t[i]);
qsort(t, NRUNS-1, sizeof(unsigned long long), ull_cmp);
printf("sign: %13.3lf\n", (double)t[NRUNS/2-1]/REP);
//Benchmarking signature verification
for(i=0;i<NRUNS;i++)
{
t[i] = cpucycles();
for(j=0;j<REP;j++)
crypto_sign_open(m, &mlen, sm, smlen, pk);
}
for(i=0;i<NRUNS-1;i++)
t[i] = (t[i+1] - t[i]);
qsort(t, NRUNS-1, sizeof(unsigned long long), ull_cmp);
printf("sign_open: %13.3lf\n", (double)t[NRUNS/2-1]/REP);
//Benchmarking WOTS pkgen
for(i=0;i<NRUNS;i++)
{
t[i] = cpucycles();
for(j=0;j<REP;j++)
wots_pkgen(sm, seed, masks);
}
for(i=0;i<NRUNS-1;i++)
t[i] = (t[i+1] - t[i]);
qsort(t, NRUNS-1, sizeof(unsigned long long), ull_cmp);
printf("wots_pkgen: %13.3lf\n", (double)t[NRUNS/2-1]/REP);
printf("416*wots_pkgen: %13.3lf\n", 416*(double)t[NRUNS/2-1]/REP);
//Benchmarking HORSt signing
for(i=0;i<NRUNS;i++)
{
t[i] = cpucycles();
for(j=0;j<REP;j++)
horst_sign(sm, pk, &smlen, m, MLEN, seed, masks, msg_seed);
}
for(i=0;i<NRUNS-1;i++)
t[i] = (t[i+1] - t[i]);
qsort(t, NRUNS-1, sizeof(unsigned long long), ull_cmp);
printf("horst_sign: %13.3lf\n", (double)t[NRUNS/2-1]/REP);
//Benchmarking hash_2n_n
for(i=0;i<NRUNS;i++)
{
t[i] = cpucycles();
for(j=0;j<REP;j++)
hash_2n_n(sm, sm);
}
for(i=0;i<NRUNS-1;i++)
t[i] = (t[i+1] - t[i]);
qsort(t, NRUNS-1, sizeof(unsigned long long), ull_cmp);
printf("hash_2n_n: %13.3lf\n", (double)t[NRUNS/2-1]/REP);
return 0;
}

6
test/test.sh Arquivo executável
Ver arquivo

@ -0,0 +1,6 @@
#!/bin/bash
DIR=$(dirname $0)
#for i in `ls $DIR/test* | grep -v \.c$ | grep -v \.sh$`;do ($i || echo 666) | bc | grep -v ^0$;done
for i in `ls $DIR/test* | grep -v \.c$ | grep -v \.sh$`;do ($i || echo 666) ;done
exit 0

BIN
test/test_chacha Arquivo executável

Arquivo binário não exibido.

33
test/test_chacha.c Arquivo normal
Ver arquivo

@ -0,0 +1,33 @@
#include <stdio.h>
#include "../prg.h"
static void hexdump(unsigned char *a, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
printf("%02x", a[i]);
}
int main()
{
unsigned char seed[32] = {0};
unsigned char out[64];
unsigned char addr[16] = {2};
printf("Case 1: All 0\n");
prg(out, 64, seed, 32);
printf("\n");
hexdump(out, 64);
printf("\n");
printf("Case 2: key = 1\n");
seed[31] = 1;
prg_with_counter(out, 64, seed, 32, addr);
printf("\n");
hexdump(out, 64);
printf("\n");
return 0;
}

BIN
test/test_wots Arquivo executável

Arquivo binário não exibido.

54
test/test_wots.c Arquivo normal
Ver arquivo

@ -0,0 +1,54 @@
#include <stdio.h>
#include "../wots.h"
#include "../randombytes.h"
#include "../params.h"
static void hexdump(unsigned char *a, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
printf("%02x", a[i]);
}
int main()
{
unsigned char seed[32];
unsigned char pub_seed[32];
wots_params params;
wots_set_params(&params, 32, 32, 16);
int sig_len = params.len*params.n;
unsigned char pk1[sig_len];
unsigned char pk2[sig_len];
unsigned char sig[sig_len];
unsigned char addr[16] = {1,2,3,4};
unsigned char msg[32];
int i;
randombytes(seed, 32);
randombytes(pub_seed, 32);
randombytes(msg, 32);
//randombytes(addr, 16);
wots_pkgen(pk1, seed, &params, pub_seed, addr);
wots_sign(sig, msg, seed, &params, pub_seed, addr);
wots_pkFromSig(pk2, sig, msg, &params, pub_seed, addr);
for(i=0;i<sig_len;i++)
if(pk1[i] != pk2[i])
{
printf("fuck %d\n",i);
return -1;
}
printf("worked great!\npk1: ");
hexdump(pk1, sig_len);
printf("\npk2: ");
hexdump(pk2, sig_len);
printf("\nsig: ");
hexdump(sig, sig_len);
printf("\n");
return 0;
}

BIN
test/test_xmss Arquivo executável

Arquivo binário não exibido.

83
test/test_xmss.c Arquivo normal
Ver arquivo

@ -0,0 +1,83 @@
#include <stdio.h>
#include <string.h>
#include "../xmss.h"
#define MLEN 3491
unsigned char sk[100];
unsigned char pk[64];
unsigned char mi[MLEN];
unsigned long long smlen;
unsigned long long mlen;
int main()
{
int r;
unsigned long long i;
int m = 32;
int n = 32;
int h = 8;
int w = 16;
xmss_params p;
xmss_params *params = &p;
xmss_set_params(params, m, n, h, w);
unsigned long long signature_length = 4+m+params->wots_par->keysize+h*n;
unsigned char mo[MLEN+signature_length];
unsigned char sm[MLEN+signature_length];
FILE *urandom = fopen("/dev/urandom", "r");
for(i=0;i<MLEN;i++) mi[i] = fgetc(urandom);
printf("keypair\n");
xmss_keypair(pk, sk, params);
// check pub_seed in SK
for(i=0;i<n;i++)
{
if(pk[n+i] != sk[4+m+n+i]) printf("fuck %llu",i);
}
// check index
unsigned long idx = (sk[0] << 24) | (sk[1] << 16) | (sk[2] << 8) || sk[3];
if(idx) printf("\nfuck %lu\n",idx);
printf("sign\n");
xmss_sign(sk, sm, &smlen, mi, MLEN, params, pk);
r = memcmp(mi, sm+signature_length,MLEN);
printf("%d\n", r);
/* Test valid signature */
printf("verify\n");
r = xmss_sign_open(mo, &mlen, sm, smlen, pk, params);
printf("%d\n", r);
r = memcmp(mi,mo,MLEN);
printf("%d\n", r);
printf("%llu\n", MLEN-mlen);
/* Test with modified message */
sm[52] ^= 1;
r = xmss_sign_open(mo, &mlen, sm, smlen, pk, params);
printf("%d\n", r+1);
r = memcmp(mi,mo,MLEN);
printf("%d\n", (r!=0) - 1);
printf("%llu\n", mlen+1);
/* Test with modified signature */
sm[260] ^= 1;
sm[52] ^= 1;
sm[2] ^= 1;
r = xmss_sign_open(mo, &mlen, sm, smlen, pk, params);
printf("%d\n", r+1);
r = memcmp(mi,mo,MLEN);
printf("%d\n", (r!=0) - 1);
printf("%llu\n", mlen+1);
fclose(urandom);
return 0;
}

200
wots.c Arquivo normal
Ver arquivo

@ -0,0 +1,200 @@
/*
wots.c version 2015xxxx
Andreas Hülsing
Public domain.
*/
#include "math.h"
#include "stdio.h"
#include "xmss_commons.h"
//#include "params.h"
#include "prg.h"
#include "hash.h"
#include "wots.h"
/**
* Macros used to manipulate the respective fields
* in the 16byte hash address
*/
#define SET_HASH_ADDRESS(a, v) {\
a[15] = (a[15] & 1) | ((v << 1) & 255);\
a[14] = (a[14] & 254) | ((v >> 7) & 1);}
#define SET_CHAIN_ADDRESS(a, v) {\
a[14] = (a[14] & 1) | ((v << 1) & 255);\
a[13] = (v >> 7) & 255;\
a[12] = (a[12] & 254) | ((v >> 15) & 1);}
void wots_set_params(wots_params *params, int m, int n, int w)
{
params->m = m;
params->n = n;
params->w = w;
params->log_w = (int) log2(w);
params->len_1 = (int) ceil(((8*m) / params->log_w));
params->len_2 = (int) floor(log2(params->len_1*(w-1)) / params->log_w) + 1;
params->len = params->len_1 + params->len_2;
params->keysize = params->len*params->n;
}
/**
* Helper method for pseudorandom key generation
* Expands a 32 byte array into a len*n byte array
* this is done using chacha20 with nonce 0 and counter 0
*/
static void expand_seed(unsigned char *outseeds, const unsigned char *inseed, wots_params *params)
{
prg(outseeds, params->keysize, inseed, 32);
}
/**
* Computes the chaining function.
* out and in have to be n-byte arrays
*
* interpretes in as start-th value of the chain
* addr has to contain the address of the chain
*/
static void gen_chain(unsigned char *out, const unsigned char *in, int start, int steps, const wots_params *params, const unsigned char *pub_seed, unsigned char addr[16])
{
uint i,j;
for(j=0;j<params->n;j++)
out[j] = in[j];
for(i=start;i<(start+steps) && i<params->w;i++){
SET_HASH_ADDRESS(addr,i);
// printf("Hash %d:",i);
// hexdump(addr,16);
// printf("\n");
hash_n_n(out,out, pub_seed, addr,params->n);
}
}
/**
* base_w algorithm as described in draft.
*
*
*/
static void base_w(int *output, const unsigned char *input, int in_len, wots_params *params)
{
int in = 0;
int out = 0;
int total = 0;
int bits = 0;
int consumed = 0;
for(consumed = 0; consumed < 8 * in_len; consumed += params->log_w)
{
if(bits == 0){
total = input[in_len - 1 - in];
in++;
bits += 8;
}
bits -= params->log_w;
output[out] = (total >> bits) & (params->w - 1);
out++;
}
}
/**
* Alternative base w algorithm for w = 16 to check...
*/
static void base_w_alternative(int *output, unsigned char *input, int in_len, wots_params *params)
{
uint i = 0;
for(i = 0; i < in_len; i += 2)
{
output[i] = input[in_len - 1 - (i / 2)] >> 4;
output[i+1] = input[in_len - 1 - (i / 2)] & 0xf;
}
}
void wots_pkgen(unsigned char *pk, const unsigned char *sk, wots_params *params, const unsigned char *pub_seed, unsigned char addr[16])
{
uint i;
expand_seed(pk, sk, params);
for(i=0;i<params->len;i++){
SET_CHAIN_ADDRESS(addr,i);
// printf("Chain: %d\n",i);
// hexdump(addr,16);
// printf("\n");
gen_chain(pk+i*params->n, pk+i*params->n, 0, params->w-1, params, pub_seed, addr);
}
}
void wots_sign(unsigned char *sig, const unsigned char *msg, const unsigned char *sk, wots_params *params, const unsigned char *pub_seed, unsigned char addr[16])
{
int basew[params->len];
int csum = 0;
uint i=0;
base_w(basew, msg, params->m, params);
for(i=0;i<params->len_1;i++)
{
csum += params->w - 1 - basew[i];
}
csum = csum << ( 8 - ( ( params->len_2 * params->log_w ) % 8 ));
int len_2_bytes = ((params->len_2 * params->log_w) + 7) / 8;
unsigned char csum_bytes[len_2_bytes];
to_byte(csum_bytes, csum, len_2_bytes);
int csum_basew[len_2_bytes / params->log_w];
base_w(csum_basew, csum_bytes, len_2_bytes, params);
for(i = 0; i < params->len_2; i++)
{
basew[params->len_1 + i] = csum_basew[i];
}
expand_seed(sig, sk, params);
for(i=0;i<params->len;i++){
SET_CHAIN_ADDRESS(addr,i);
// printf("Chain: %d\n",i);
// hexdump(addr,16);
// printf("\n");
gen_chain(sig+i*params->n, sig+i*params->n, 0, basew[i], params, pub_seed, addr);
}
}
void wots_pkFromSig(unsigned char *pk, const unsigned char *sig, const unsigned char *msg, wots_params *params, const unsigned char *pub_seed, unsigned char addr[16])
{
int basew[params->len];
int csum = 0;
uint i=0;
base_w(basew, msg, params->m, params);
for(i=0;i<params->len_1;i++)
{
csum += params->w - 1 - basew[i];
}
csum = csum << ( 8 - ( ( params->len_2 * params->log_w ) % 8 ));
int len_2_bytes = ((params->len_2 * params->log_w) + 7) / 8;
unsigned char csum_bytes[len_2_bytes];
to_byte(csum_bytes, csum, len_2_bytes);
int csum_basew[len_2_bytes / params->log_w];
base_w(csum_basew, csum_bytes, len_2_bytes, params);
for(i = 0; i < params->len_2; i++)
{
basew[params->len_1 + i] = csum_basew[i];
}
for(i=0;i<params->len;i++){
SET_CHAIN_ADDRESS(addr,i);
// printf("Chain: %d\n",i);
// hexdump(addr,16);
// printf("\n");
gen_chain(pk+i*params->n, sig+i*params->n, basew[i], params->w-1-basew[i], params, pub_seed, addr);
}
}

52
wots.h Arquivo normal
Ver arquivo

@ -0,0 +1,52 @@
#ifndef WOTS_H
#define WOTS_H
#include "params.h"
/**
* WOTS parameter set
*
* Meaning as defined in draft-irtf-cfrg-xmss-hash-based-signatures-02
*/
typedef struct{
int len_1;
int len_2;
int len;
int m;
int n;
int w;
int log_w;
int keysize;
} wots_params;
/**
* Set the WOTS parameters,
* only m, n, w are required as inputs,
* len, len_1, and len_2 are computed from those.
*
* Assumes w is a power of 2
*/
void wots_set_params(wots_params *params, int m, int n, int w);
/**
* WOTS key generation. Takes a 32byte seed for the secret key, expands it to a full WOTS secret key and computes the corresponding public key.
* For this it takes the seed pub_seed which is used to generate bitmasks and hash keys and the address of this WOTS key pair addr
*
* params, must have been initialized before using wots_set params for params ! This is not done in this function
*
* Places the computed public key at address pk.
*/
void wots_pkgen(unsigned char *pk, const unsigned char *sk, wots_params *params, const unsigned char *pub_seed, unsigned char addr[16]);
/**
* Takes a m-byte message and the 32-byte seed for the secret key to compute a signature that is placed at "sig".
*
*/
void wots_sign(unsigned char *sig, const unsigned char *msg, const unsigned char *sk, wots_params *params, const unsigned char *pub_seed, unsigned char addr[16]);
/**
* Takes a WOTS signature, a m-byte message and computes a WOTS public key that it places at pk.
*
*/
void wots_pkFromSig(unsigned char *pk, const unsigned char *sig, const unsigned char *msg, wots_params *params, const unsigned char *pub_seed, unsigned char addr[16]);
#endif

524
xmss.c Arquivo normal
Ver arquivo

@ -0,0 +1,524 @@
#include "xmss.h"
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
#include "randombytes.h"
#include "wots.h"
#include "hash.h"
#include "prg.h"
#include "xmss_commons.h"
// For testing
#include "stdio.h"
/**
* Macros used to manipulate the respective fields
* in the 16byte hash address
*/
#define SET_OTS_BIT(a, b) {\
a[9] = (a[9] & 253) | (b << 1);}
#define SET_OTS_ADDRESS(a, v) {\
a[12] = (a[12] & 1) | ((v << 1) & 255);\
a[11] = (v >> 7) & 255;\
a[10] = (v >> 15) & 255;\
a[9] = (a[9] & 254) | ((v >> 23) & 1);}
#define ZEROISE_OTS_ADDR(a) {\
a[12] = (a[12] & 254);\
a[13] = 0;\
a[14] = 0;\
a[15] = 0;}
#define SET_LTREE_BIT(a, b) {\
a[9] = (a[9] & 254) | b;}
#define SET_LTREE_ADDRESS(a, v) {\
a[12] = v & 255;\
a[11] = (v >> 8) & 255;\
a[10] = (v >> 16) & 255;}
#define SET_LTREE_TREE_HEIGHT(a, v) {\
a[13] = (a[13] & 3) | ((v << 2) & 255);}
#define SET_LTREE_TREE_INDEX(a, v) {\
a[15] = (a[15] & 3) | ((v << 2) & 255);\
a[14] = (v >> 6) & 255;\
a[13] = (a[13] & 252) | ((v >> 14) & 3);}
#define SET_NODE_PADDING(a) {\
a[10] = 0;\
a[11] = a[11] & 3;}
#define SET_NODE_TREE_HEIGHT(a, v) {\
a[12] = (a[12] & 3) | ((v << 2) & 255);\
a[11] = (a[11] & 252) | ((v >> 6) & 3);}
#define SET_NODE_TREE_INDEX(a, v) {\
a[15] = (a[15] & 3) | ((v << 2) & 255);\
a[14] = (v >> 6) & 255;\
a[13] = (v >> 14) & 255;\
a[12] = (a[12] & 252) | ((v >> 22) & 3);}
/**
* Used for pseudorandom keygeneration,
* generates the seed for the WOTS keypair at address addr
*/
static void get_seed(unsigned char seed[32], const unsigned char *sk_seed, unsigned char addr[16])
{
// Make sure that chain addr, hash addr, and key bit are 0!
ZEROISE_OTS_ADDR(addr);
// Generate pseudorandom value
prg_with_counter(seed, 32, sk_seed, 32, addr);
}
/**
* Initialize xmss params struct
* parameter names are the same as in the draft
*/
void xmss_set_params(xmss_params *params, int m, int n, int h, int w)
{
params->h = h;
params->m = m;
params->n = n;
wots_params wots_par;
wots_set_params(&wots_par, m, n, w);
params->wots_par = &wots_par;
}
/**
* Computes a leaf from a WOTS public key using an L-tree.
*/
static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, unsigned char addr[16])
{
uint l = params->wots_par->len;
uint n = params->n;
unsigned long i = 0;
uint height = 0;
//ADRS.setTreeHeight(0);
SET_LTREE_TREE_HEIGHT(addr,height);
unsigned long bound;
while ( l > 1 )
{
bound = l >> 1; //floor(l / 2);
for ( i = 0; i < bound; i = i + 1 ) {
//ADRS.setTreeIndex(i);
SET_LTREE_TREE_INDEX(addr,i);
//wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS);
hash_2n_n(wots_pk+i*n,wots_pk+i*2*n, pub_seed, addr, n);
}
//if ( l % 2 == 1 ) {
if(l&1)
{
//pk[floor(l / 2) + 1] = pk[l];
memcpy(wots_pk+(l>>1)*n,wots_pk+(l-1)*n, n);
//l = ceil(l / 2);
l=(l>>1)+1;
}
else
{
//l = ceil(l / 2);
l=(l>>1);
}
//ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
height++;
SET_LTREE_TREE_HEIGHT(addr,height);
}
//return pk[0];
memcpy(leaf,wots_pk,n);
}
/**
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address.
*/
static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, unsigned char ltree_addr[16], unsigned char ots_addr[16])
{
unsigned char seed[32];
unsigned char pk[params->wots_par->keysize];
get_seed(seed, sk_seed, ots_addr);
wots_pkgen(pk, seed, params->wots_par, pub_seed, ots_addr);
l_tree(leaf, pk, params, pub_seed, ltree_addr);
}
/**
* Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash.
* Currently only used for key generation.
*
*/
static void treehash(unsigned char *node, int height, int index, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const unsigned char addr[16])
{
uint idx = index;
uint n = params->n;
// use three different addresses because at this point we use all three formats in parallel
unsigned char ots_addr[16];
unsigned char ltree_addr[16];
unsigned char node_addr[16];
memcpy(ots_addr, addr, 10);
SET_OTS_BIT(ots_addr, 1);
memcpy(ltree_addr, addr, 10);
SET_OTS_BIT(ltree_addr, 0);
SET_LTREE_BIT(ltree_addr, 1);
memcpy(node_addr, ltree_addr, 10);
SET_LTREE_BIT(node_addr, 0);
SET_NODE_PADDING(node_addr);
int lastnode,i;
unsigned char stack[(height+1)*n];
unsigned int stacklevels[height+1];
unsigned int stackoffset=0;
lastnode = idx+(1<<height);
for(;idx<lastnode;idx++)
{
SET_LTREE_ADDRESS(ltree_addr,idx);
SET_OTS_ADDRESS(ots_addr,idx);
gen_leaf_wots(stack+stackoffset*n,sk_seed,params, pub_seed, ltree_addr, ots_addr);
stacklevels[stackoffset] = 0;
stackoffset++;
while(stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2])
{
SET_NODE_TREE_HEIGHT(node_addr,stacklevels[stackoffset-1]);
SET_NODE_TREE_INDEX(node_addr, (idx >> (stacklevels[stackoffset-1]+1)));
hash_2n_n(stack+(stackoffset-2)*n,stack+(stackoffset-2)*n, pub_seed,
node_addr, n);
stacklevels[stackoffset-2]++;
stackoffset--;
}
}
for(i=0;i<n;i++)
node[i] = stack[i];
}
/**
* Computes a root node given a leaf and an authapth
*/
static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, unsigned char addr[16])
{
uint n = params->n;
int i,j;
unsigned char buffer[2*n];
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left.
// Otherwise, it is the other way around
if(leafidx&1)
{
for(j=0;j<n;j++)
buffer[n+j] = leaf[j];
for(j=0;j<n;j++)
buffer[j] = authpath[j];
}
else
{
for(j=0;j<n;j++)
buffer[j] = leaf[j];
for(j=0;j<n;j++)
buffer[n+j] = authpath[j];
}
authpath += n;
for(i=0;i<params->h-1;i++)
{
SET_NODE_TREE_HEIGHT(addr,i);
leafidx >>= 1;
SET_NODE_TREE_INDEX(addr, leafidx);
if(leafidx&1)
{
hash_2n_n(buffer+n,buffer,pub_seed, addr, n);
for(j=0;j<n;j++)
buffer[j] = authpath[j];
}
else
{
hash_2n_n(buffer,buffer,pub_seed, addr, n);
for(j=0;j<n;j++)
buffer[j+n] = authpath[j];
}
authpath += n;
}
SET_NODE_TREE_HEIGHT(addr, (params->h-1));
leafidx >>= 1;
SET_NODE_TREE_INDEX(addr, leafidx);
hash_2n_n(root,buffer,pub_seed,addr,n);
}
/**
* Computes the authpath and the root. This method is using a lot of space as we build the whole tree and then select the authpath nodes.
* For more efficient algorithms see e.g. the chapter on hash-based signatures in Bernstein, Buchmann, Dahmen. "Post-quantum Cryptography", Springer 2009.
* It returns the authpath in "authpath" with the node on level 0 at index 0.
*/
static void compute_authpath_wots(unsigned char *root, unsigned char *authpath, unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, unsigned char addr[16])
{
uint i, j, level;
int n = params->n;
int h = params->h;
unsigned char tree[2*(1<<h)*n];
unsigned char ots_addr[16];
unsigned char ltree_addr[16];
unsigned char node_addr[16];
memcpy(ots_addr, addr, 10);
SET_OTS_BIT(ots_addr, 1);
memcpy(ltree_addr, addr, 10);
SET_OTS_BIT(ltree_addr, 0);
SET_LTREE_BIT(ltree_addr, 1);
memcpy(node_addr, ltree_addr, 10);
SET_LTREE_BIT(node_addr, 0);
SET_NODE_PADDING(node_addr);
// Compute all leaves
for(i = 0; i < (1<<h); i++)
{
SET_LTREE_ADDRESS(ltree_addr,i);
SET_OTS_ADDRESS(ots_addr,i);
gen_leaf_wots(tree+((1<<h)*n + i*n), sk_seed, params, pub_seed, ltree_addr, ots_addr);
}
level = 0;
// Compute tree:
// Outer loop: For each inner layer
for (i = (1<<h); i > 0; i>>=1)
{
SET_NODE_TREE_HEIGHT(node_addr, level);
// Inner loop: for each pair of sibling nodes
for (j = 0; j < i; j+=2)
{
SET_NODE_TREE_INDEX(node_addr, j>>1);
hash_2n_n(tree + (i>>1)*n + (j>>1) * n, tree + i*n + j*n, pub_seed, node_addr, n);
}
level++;
}
// copy authpath
for(i=0;i<h;i++)
memcpy(authpath + i*n, tree + ((1<<h)>>i)*n + ((leaf_idx >> i) ^ 1) * n, n);
// copy root
memcpy(root, tree+n, n);
}
/*
* Generates a XMSS key pair for a given parameter set.
* Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED]
* Format pk: [root || PUB_SEED] omitting algo oid.
*/
int xmss_keypair(unsigned char *pk, unsigned char *sk, xmss_params *params)
{
uint n = params->n;
uint m = params->m;
// Set idx = 0
sk[0] = 0;
sk[1] = 0;
sk[2] = 0;
sk[3] = 0;
// Init SK_SEED (n byte), SK_PRF (m byte), and PUB_SEED (n byte)
randombytes(sk+4,2*n+m);
// Copy PUB_SEED to public key
memcpy(pk+n, sk+4+n+m,n);
unsigned char addr[16] = {0,0,0,0};
// Compute root
treehash(pk, params->h, 0, sk+4, params, sk+4+n+m, addr);
return 0;
}
/**
* Signs a message.
* Returns
* 1. an array containing the signature followed by the message AND
* 2. an updated secret key!
*
*/
int xmss_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params, unsigned char* pk)
{
uint n = params->n;
uint m = params->m;
// Extract SK
unsigned long idx = (sk[0] << 24) | (sk[1] << 16) | (sk[2] << 8) || sk[3];
unsigned char sk_seed[n];
memcpy(sk_seed,sk+4,n);
unsigned char sk_prf[m];
memcpy(sk_prf,sk+4+n,m);
unsigned char pub_seed[n];
memcpy(pub_seed,sk+4+n+m,n);
// Update SK
sk[0] = ((idx + 1) >> 24) & 255;
sk[1] = ((idx + 1) >> 16) & 255;
sk[2] = ((idx + 1) >> 8) & 255;
sk[3] = (idx + 1) & 255;
// -- Secret key for this non-forward-secure version is now updated.
// -- A productive implementation should use a file handle instead and write the updated secret key at this point!
// Init working params
unsigned long long i;
unsigned char R[m];
unsigned char msg_h[m];
unsigned char root[n];
unsigned char ots_seed[n];
unsigned char ots_addr[16] = {0,0,0,0};
// ---------------------------------
// Message Hashing
// ---------------------------------
// Message Hash:
// First compute pseudorandom key
prf_m(R, msg, msglen, sk_prf, m);
// Then use it for message digest
hash_m(msg_h, msg, msglen, R, m, m);
// Start collecting signature
*sig_msg_len = 0;
// Copy index to signature
sig_msg[0] = (idx >> 24) & 255;
sig_msg[1] = (idx >> 16) & 255;
sig_msg[2] = (idx >> 8) & 255;
sig_msg[3] = idx & 255;
sig_msg += 4;
*sig_msg_len += 4;
// Copy R to signature
for(i=0; i<m; i++)
sig_msg[i] = R[i];
sig_msg += m;
*sig_msg_len += m;
// ----------------------------------
// Now we start to "really sign"
// ----------------------------------
// Prepare Address
SET_OTS_BIT(ots_addr,1);
SET_OTS_ADDRESS(ots_addr,idx);
// Compute seed for OTS key pair
get_seed(ots_seed, sk_seed, ots_addr);
// Compute WOTS signature
wots_sign(sig_msg, msg_h, ots_seed, params->wots_par, pub_seed, ots_addr);
sig_msg += params->wots_par->keysize;
*sig_msg_len += params->wots_par->keysize;
compute_authpath_wots(root, sig_msg, idx, sk_seed, params, pub_seed, ots_addr);
sig_msg += params->h*n;
*sig_msg_len += params->h*n;
//DEBUG
for(i=0;i<n;i++)
if(root[i] != pk[i])
printf("Different PK's %llu",i);
//Whipe secret elements?
//zerobytes(tsk, CRYPTO_SECRETKEYBYTES);
memcpy(sig_msg,msg,msglen);
*sig_msg_len += msglen;
return 0;
}
/**
* Verifies a given message signature pair under a given public key.
*/
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params)
{
uint n = params->n;
uint m = params->m;
unsigned long long i, m_len;
unsigned long idx=0;
unsigned char wots_pk[params->wots_par->keysize];
unsigned char pkhash[n];
unsigned char root[n];
unsigned char msg_h[m];
unsigned char pub_seed[n];
memcpy(pub_seed,pk+n,n);
// Init addresses
unsigned char ots_addr[16] = {0,0,0,0};
unsigned char ltree_addr[16];
unsigned char node_addr[16];
SET_OTS_BIT(ots_addr, 1);
memcpy(ltree_addr, ots_addr, 10);
SET_OTS_BIT(ltree_addr, 0);
SET_LTREE_BIT(ltree_addr, 1);
memcpy(node_addr, ltree_addr, 10);
SET_LTREE_BIT(node_addr, 0);
SET_NODE_PADDING(node_addr);
// Extract index
idx = (sig_msg[0] << 24) | (sig_msg[1] << 16) | (sig_msg[2] << 8) || sig_msg[3];
sig_msg += 4;
sig_msg_len -= 4;
// hash message (recall, R is now on pole position at sig_msg
unsigned long long tmp_sig_len = m+params->wots_par->keysize+params->h*n;
m_len = sig_msg_len - tmp_sig_len;
hash_m(msg_h, sig_msg + tmp_sig_len, m_len, sig_msg, m, m);
sig_msg += m;
sig_msg_len -= m;
//-----------------------
// Verify signature
//-----------------------
// Prepare Address
SET_OTS_ADDRESS(ots_addr,idx);
// Check WOTS signature
wots_pkFromSig(wots_pk, sig_msg, msg_h, params->wots_par, pub_seed, ots_addr);
sig_msg += params->wots_par->keysize;
sig_msg_len -= params->wots_par->keysize;
// Compute Ltree
SET_LTREE_ADDRESS(ltree_addr, idx);
l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr);
// Compute root
validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr);
sig_msg += params->h*n;
sig_msg_len -= params->h*n;
for(i=0;i<n;i++)
if(root[i] != pk[i])
goto fail;
*msglen = sig_msg_len;
for(i=0;i<*msglen;i++)
msg[i] = sig_msg[i];
return 0;
fail:
*msglen = sig_msg_len;
for(i=0;i<*msglen;i++)
msg[i] = 0;
*msglen = -1;
return -1;
}

45
xmss.h Arquivo normal
Ver arquivo

@ -0,0 +1,45 @@
#include "wots.h"
#ifndef XMSS_H
#define XMSS_H
typedef struct{
int level;
unsigned long long subtree;
int subleaf;
} leafaddr;
typedef struct{
wots_params *wots_par;
int n;
int m;
int h;
} xmss_params;
/**
* Initializes parameter set.
* Needed, for any of the other methods.
*/
void xmss_set_params(xmss_params *params, int m, int n, int h, int w);
/**
* Generates a XMSS key pair for a given parameter set.
* Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED]
* Format pk: [root || PUB_SEED] omitting algo oid.
*/
int xmss_keypair(unsigned char *pk, unsigned char *sk, xmss_params *params);
/**
* Signs a message.
* Returns
* 1. an array containing the signature followed by the message AND
* 2. an updated secret key!
*
*/
int xmss_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg,unsigned long long msglen, const xmss_params *params, unsigned char* pk);
/**
* Verifies a given message signature pair under a given public key.
*
* Note: msg and msglen are pure outputs which carry the message in case verification succeeds. The (input) message is assumed to be within sig_msg which has the form (sig||msg).
*/
int xmss_sign_open(unsigned char *msg,unsigned long long *msglen, const unsigned char *sig_msg,unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params);
#endif

19
xmss_commons.c Arquivo normal
Ver arquivo

@ -0,0 +1,19 @@
#include "xmss_commons.h"
#include <stdlib.h>
#include <stdio.h>
void to_byte(unsigned char *out, uint in, int bytes)
{
int i;
for(i = 0; i < bytes; i++){
out[i] = in & 0xff;
in = in >> 8;
}
}
void hexdump(const unsigned char *a, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
printf("%02x", a[i]);
}

8
xmss_commons.h Arquivo normal
Ver arquivo

@ -0,0 +1,8 @@
#ifndef XMSS_COMMONS_H
#define XMSS_COMMONS_H
#include <stdlib.h>
void to_byte(unsigned char *output, uint in, int bytes);
void hexdump(const unsigned char *a, size_t len);
#endif

9
zerobytes.c Arquivo normal
Ver arquivo

@ -0,0 +1,9 @@
#include "zerobytes.h"
unsigned char *zerobytes(unsigned char *r,unsigned long long n)
{
volatile unsigned char *p=r;
while (n--)
*(p++) = 0;
return r;
}

6
zerobytes.h Arquivo normal
Ver arquivo

@ -0,0 +1,6 @@
#ifndef ZEROBYTES_H
#define ZEROBYTES_H
unsigned char *zerobytes(unsigned char *r,unsigned long long n);
#endif