A large number of functions was repeated in xmss_fast; these are now shared between the two implementations via the xmss_commons file. Notably, we ensure compatability by sharing the verification functions.master
@@ -22,78 +22,6 @@ Public domain. | |||||
// For testing | // For testing | ||||
#include "stdio.h" | #include "stdio.h" | ||||
/** | |||||
* Used for pseudorandom keygeneration, | |||||
* generates the seed for the WOTS keypair at address addr | |||||
* | |||||
* takes XMSS_N byte sk_seed and returns XMSS_N byte seed using 32 byte address addr. | |||||
*/ | |||||
static void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]) | |||||
{ | |||||
unsigned char bytes[32]; | |||||
// Make sure that chain addr, hash addr, and key bit are 0! | |||||
setChainADRS(addr, 0); | |||||
setHashADRS(addr, 0); | |||||
setKeyAndMask(addr, 0); | |||||
// Generate pseudorandom value | |||||
addr_to_byte(bytes, addr); | |||||
prf(seed, bytes, sk_seed, XMSS_N); | |||||
} | |||||
/** | |||||
* Computes a leaf from a WOTS public key using an L-tree. | |||||
*/ | |||||
static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]) | |||||
{ | |||||
unsigned int l = XMSS_WOTS_LEN; | |||||
uint32_t i = 0; | |||||
uint32_t height = 0; | |||||
uint32_t bound; | |||||
//ADRS.setTreeHeight(0); | |||||
setTreeHeight(addr, height); | |||||
while (l > 1) { | |||||
bound = l >> 1; //floor(l / 2); | |||||
for (i = 0; i < bound; i++) { | |||||
//ADRS.setTreeIndex(i); | |||||
setTreeIndex(addr, i); | |||||
//wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); | |||||
hash_h(wots_pk+i*XMSS_N, wots_pk+i*2*XMSS_N, pub_seed, addr, XMSS_N); | |||||
} | |||||
//if ( l % 2 == 1 ) { | |||||
if (l & 1) { | |||||
//pk[floor(l / 2) + 1] = pk[l]; | |||||
memcpy(wots_pk+(l>>1)*XMSS_N, wots_pk+(l-1)*XMSS_N, XMSS_N); | |||||
//l = ceil(l / 2); | |||||
l=(l>>1)+1; | |||||
} | |||||
else { | |||||
//l = ceil(l / 2); | |||||
l=(l>>1); | |||||
} | |||||
//ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); | |||||
height++; | |||||
setTreeHeight(addr, height); | |||||
} | |||||
//return pk[0]; | |||||
memcpy(leaf, wots_pk, XMSS_N); | |||||
} | |||||
/** | |||||
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. | |||||
*/ | |||||
static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) | |||||
{ | |||||
unsigned char seed[XMSS_N]; | |||||
unsigned char pk[XMSS_WOTS_KEYSIZE]; | |||||
get_seed(seed, sk_seed, ots_addr); | |||||
wots_pkgen(pk, seed, pub_seed, ots_addr); | |||||
l_tree(leaf, pk, pub_seed, ltree_addr); | |||||
} | |||||
/** | /** | ||||
* Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. | * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. | ||||
* Currently only used for key generation. | * Currently only used for key generation. | ||||
@@ -141,52 +69,6 @@ static void treehash(unsigned char *node, uint16_t height, uint32_t index, const | |||||
node[i] = stack[i]; | node[i] = stack[i]; | ||||
} | } | ||||
/** | |||||
* Computes a root node given a leaf and an authapth | |||||
*/ | |||||
static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const unsigned char *pub_seed, uint32_t addr[8]) | |||||
{ | |||||
uint32_t i, j; | |||||
unsigned char buffer[2*XMSS_N]; | |||||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. | |||||
// Otherwise, it is the other way around | |||||
if (leafidx & 1) { | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[XMSS_N+j] = leaf[j]; | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j] = authpath[j]; | |||||
} | |||||
else { | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j] = leaf[j]; | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[XMSS_N+j] = authpath[j]; | |||||
} | |||||
authpath += XMSS_N; | |||||
for (i=0; i < XMSS_TREEHEIGHT-1; i++) { | |||||
setTreeHeight(addr, i); | |||||
leafidx >>= 1; | |||||
setTreeIndex(addr, leafidx); | |||||
if (leafidx&1) { | |||||
hash_h(buffer+XMSS_N, buffer, pub_seed, addr, XMSS_N); | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j] = authpath[j]; | |||||
} | |||||
else { | |||||
hash_h(buffer, buffer, pub_seed, addr, XMSS_N); | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j+XMSS_N] = authpath[j]; | |||||
} | |||||
authpath += XMSS_N; | |||||
} | |||||
setTreeHeight(addr, (XMSS_TREEHEIGHT-1)); | |||||
leafidx >>= 1; | |||||
setTreeIndex(addr, leafidx); | |||||
hash_h(root, buffer, pub_seed, addr, XMSS_N); | |||||
} | |||||
/** | /** | ||||
* Computes the authpath and the root. This method is using a lot of space as we build the whole tree and then select the authpath nodes. | * Computes the authpath and the root. This method is using a lot of space as we build the whole tree and then select the authpath nodes. | ||||
* For more efficient algorithms see e.g. the chapter on hash-based signatures in Bernstein, Buchmann, Dahmen. "Post-quantum Cryptography", Springer 2009. | * For more efficient algorithms see e.g. the chapter on hash-based signatures in Bernstein, Buchmann, Dahmen. "Post-quantum Cryptography", Springer 2009. | ||||
@@ -369,91 +251,6 @@ int xmss_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig | |||||
return 0; | return 0; | ||||
} | } | ||||
/** | |||||
* Verifies a given message signature pair under a given public key. | |||||
*/ | |||||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||||
{ | |||||
unsigned long long i, m_len; | |||||
unsigned long idx=0; | |||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||||
unsigned char pkhash[XMSS_N]; | |||||
unsigned char root[XMSS_N]; | |||||
unsigned char msg_h[XMSS_N]; | |||||
unsigned char hash_key[3*XMSS_N]; | |||||
unsigned char pub_seed[XMSS_N]; | |||||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||||
// Init addresses | |||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
setType(ots_addr, 0); | |||||
setType(ltree_addr, 1); | |||||
setType(node_addr, 2); | |||||
// Extract index | |||||
idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; | |||||
printf("verify:: idx = %lu\n", idx); | |||||
// Generate hash key (R || root || idx) | |||||
memcpy(hash_key, sig_msg+4,XMSS_N); | |||||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||||
sig_msg += (XMSS_N+4); | |||||
sig_msg_len -= (XMSS_N+4); | |||||
// hash message | |||||
unsigned long long tmp_sig_len = XMSS_WOTS_KEYSIZE+XMSS_TREEHEIGHT*XMSS_N; | |||||
m_len = sig_msg_len - tmp_sig_len; | |||||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||||
//----------------------- | |||||
// Verify signature | |||||
//----------------------- | |||||
// Prepare Address | |||||
setOTSADRS(ots_addr, idx); | |||||
// Check WOTS signature | |||||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||||
sig_msg += XMSS_WOTS_KEYSIZE; | |||||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||||
// Compute Ltree | |||||
setLtreeADRS(ltree_addr, idx); | |||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||||
// Compute root | |||||
validate_authpath(root, pkhash, idx, sig_msg, pub_seed, node_addr); | |||||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||||
for (i=0; i < XMSS_N; i++) | |||||
if (root[i] != pk[i]) | |||||
goto fail; | |||||
*msglen = sig_msg_len; | |||||
for (i=0; i < *msglen; i++) | |||||
msg[i] = sig_msg[i]; | |||||
return 0; | |||||
fail: | |||||
*msglen = sig_msg_len; | |||||
for (i=0; i < *msglen; i++) | |||||
msg[i] = 0; | |||||
*msglen = -1; | |||||
return -1; | |||||
} | |||||
/* | /* | ||||
* Generates a XMSSMT key pair for a given parameter set. | * Generates a XMSSMT key pair for a given parameter set. | ||||
* Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED] | * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED] | ||||
@@ -617,138 +414,3 @@ int xmssmt_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *s | |||||
return 0; | return 0; | ||||
} | } | ||||
/** | |||||
* Verifies a given message signature pair under a given public key. | |||||
*/ | |||||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||||
{ | |||||
uint64_t idx_tree; | |||||
uint32_t idx_leaf; | |||||
unsigned long long i, m_len; | |||||
unsigned long long idx=0; | |||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||||
unsigned char pkhash[XMSS_N]; | |||||
unsigned char root[XMSS_N]; | |||||
unsigned char msg_h[XMSS_N]; | |||||
unsigned char hash_key[3*XMSS_N]; | |||||
unsigned char pub_seed[XMSS_N]; | |||||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||||
// Init addresses | |||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
// Extract index | |||||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||||
idx |= ((unsigned long long)sig_msg[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); | |||||
} | |||||
printf("verify:: idx = %llu\n", idx); | |||||
sig_msg += XMSS_INDEX_LEN; | |||||
sig_msg_len -= XMSS_INDEX_LEN; | |||||
// Generate hash key (R || root || idx) | |||||
memcpy(hash_key, sig_msg,XMSS_N); | |||||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||||
sig_msg += XMSS_N; | |||||
sig_msg_len -= XMSS_N; | |||||
// hash message | |||||
unsigned long long tmp_sig_len = (XMSS_D * XMSS_WOTS_KEYSIZE) + (XMSS_FULLHEIGHT * XMSS_N); | |||||
m_len = sig_msg_len - tmp_sig_len; | |||||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||||
//----------------------- | |||||
// Verify signature | |||||
//----------------------- | |||||
// Prepare Address | |||||
idx_tree = idx >> XMSS_TREEHEIGHT; | |||||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||||
setLayerADRS(ots_addr, 0); | |||||
setTreeADRS(ots_addr, idx_tree); | |||||
setType(ots_addr, 0); | |||||
memcpy(ltree_addr, ots_addr, 12); | |||||
setType(ltree_addr, 1); | |||||
memcpy(node_addr, ltree_addr, 12); | |||||
setType(node_addr, 2); | |||||
setOTSADRS(ots_addr, idx_leaf); | |||||
// Check WOTS signature | |||||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||||
sig_msg += XMSS_WOTS_KEYSIZE; | |||||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||||
// Compute Ltree | |||||
setLtreeADRS(ltree_addr, idx_leaf); | |||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||||
// Compute root | |||||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||||
for (i = 1; i < XMSS_D; i++) { | |||||
// Prepare Address | |||||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); | |||||
idx_tree = idx_tree >> XMSS_TREEHEIGHT; | |||||
setLayerADRS(ots_addr, i); | |||||
setTreeADRS(ots_addr, idx_tree); | |||||
setType(ots_addr, 0); | |||||
memcpy(ltree_addr, ots_addr, 12); | |||||
setType(ltree_addr, 1); | |||||
memcpy(node_addr, ltree_addr, 12); | |||||
setType(node_addr, 2); | |||||
setOTSADRS(ots_addr, idx_leaf); | |||||
// Check WOTS signature | |||||
wots_pkFromSig(wots_pk, sig_msg, root, pub_seed, ots_addr); | |||||
sig_msg += XMSS_WOTS_KEYSIZE; | |||||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||||
// Compute Ltree | |||||
setLtreeADRS(ltree_addr, idx_leaf); | |||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||||
// Compute root | |||||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||||
} | |||||
for (i=0; i < XMSS_N; i++) | |||||
if (root[i] != pk[i]) | |||||
goto fail; | |||||
*msglen = sig_msg_len; | |||||
for (i=0; i < *msglen; i++) | |||||
msg[i] = sig_msg[i]; | |||||
return 0; | |||||
fail: | |||||
*msglen = sig_msg_len; | |||||
for (i=0; i < *msglen; i++) | |||||
msg[i] = 0; | |||||
*msglen = -1; | |||||
return -1; | |||||
} |
@@ -6,10 +6,17 @@ Public domain. | |||||
*/ | */ | ||||
#include "xmss_commons.h" | #include "xmss_commons.h" | ||||
#include <stdlib.h> | #include <stdlib.h> | ||||
#include <string.h> | |||||
#include <stdio.h> | #include <stdio.h> | ||||
#include <stdint.h> | #include <stdint.h> | ||||
#include "wots.h" | |||||
#include "hash.h" | |||||
#include "hash_address.h" | |||||
#include "params.h" | |||||
void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes) | void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes) | ||||
{ | { | ||||
int32_t i; | int32_t i; | ||||
@@ -19,9 +26,340 @@ void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes) | |||||
} | } | ||||
} | } | ||||
void hexdump(const unsigned char *a, size_t len) | |||||
/** | |||||
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. | |||||
*/ | |||||
void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) | |||||
{ | |||||
unsigned char seed[XMSS_N]; | |||||
unsigned char pk[XMSS_WOTS_KEYSIZE]; | |||||
get_seed(seed, sk_seed, ots_addr); | |||||
wots_pkgen(pk, seed, pub_seed, ots_addr); | |||||
l_tree(leaf, pk, pub_seed, ltree_addr); | |||||
} | |||||
/** | |||||
* Used for pseudorandom keygeneration, | |||||
* generates the seed for the WOTS keypair at address addr | |||||
* | |||||
* takes XMSS_N byte sk_seed and returns XMSS_N byte seed using 32 byte address addr. | |||||
*/ | |||||
void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]) | |||||
{ | |||||
unsigned char bytes[32]; | |||||
// Make sure that chain addr, hash addr, and key bit are 0! | |||||
setChainADRS(addr, 0); | |||||
setHashADRS(addr, 0); | |||||
setKeyAndMask(addr, 0); | |||||
// Generate pseudorandom value | |||||
addr_to_byte(bytes, addr); | |||||
prf(seed, bytes, sk_seed, XMSS_N); | |||||
} | |||||
/** | |||||
* Computes a leaf from a WOTS public key using an L-tree. | |||||
*/ | |||||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]) | |||||
{ | |||||
unsigned int l = XMSS_WOTS_LEN; | |||||
uint32_t i = 0; | |||||
uint32_t height = 0; | |||||
uint32_t bound; | |||||
//ADRS.setTreeHeight(0); | |||||
setTreeHeight(addr, height); | |||||
while (l > 1) { | |||||
bound = l >> 1; //floor(l / 2); | |||||
for (i = 0; i < bound; i++) { | |||||
//ADRS.setTreeIndex(i); | |||||
setTreeIndex(addr, i); | |||||
//wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); | |||||
hash_h(wots_pk+i*XMSS_N, wots_pk+i*2*XMSS_N, pub_seed, addr, XMSS_N); | |||||
} | |||||
//if ( l % 2 == 1 ) { | |||||
if (l & 1) { | |||||
//pk[floor(l / 2) + 1] = pk[l]; | |||||
memcpy(wots_pk+(l>>1)*XMSS_N, wots_pk+(l-1)*XMSS_N, XMSS_N); | |||||
//l = ceil(l / 2); | |||||
l=(l>>1)+1; | |||||
} | |||||
else { | |||||
//l = ceil(l / 2); | |||||
l=(l>>1); | |||||
} | |||||
//ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); | |||||
height++; | |||||
setTreeHeight(addr, height); | |||||
} | |||||
//return pk[0]; | |||||
memcpy(leaf, wots_pk, XMSS_N); | |||||
} | |||||
/** | |||||
* Computes a root node given a leaf and an authapth | |||||
*/ | |||||
static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const unsigned char *pub_seed, uint32_t addr[8]) | |||||
{ | |||||
uint32_t i, j; | |||||
unsigned char buffer[2*XMSS_N]; | |||||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. | |||||
// Otherwise, it is the other way around | |||||
if (leafidx & 1) { | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[XMSS_N+j] = leaf[j]; | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j] = authpath[j]; | |||||
} | |||||
else { | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j] = leaf[j]; | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[XMSS_N+j] = authpath[j]; | |||||
} | |||||
authpath += XMSS_N; | |||||
for (i=0; i < XMSS_TREEHEIGHT-1; i++) { | |||||
setTreeHeight(addr, i); | |||||
leafidx >>= 1; | |||||
setTreeIndex(addr, leafidx); | |||||
if (leafidx&1) { | |||||
hash_h(buffer+XMSS_N, buffer, pub_seed, addr, XMSS_N); | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j] = authpath[j]; | |||||
} | |||||
else { | |||||
hash_h(buffer, buffer, pub_seed, addr, XMSS_N); | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j+XMSS_N] = authpath[j]; | |||||
} | |||||
authpath += XMSS_N; | |||||
} | |||||
setTreeHeight(addr, (XMSS_TREEHEIGHT-1)); | |||||
leafidx >>= 1; | |||||
setTreeIndex(addr, leafidx); | |||||
hash_h(root, buffer, pub_seed, addr, XMSS_N); | |||||
} | |||||
/** | |||||
* Verifies a given message signature pair under a given public key. | |||||
*/ | |||||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||||
{ | { | ||||
size_t i; | |||||
for (i = 0; i < len; i++) | |||||
printf("%02x", a[i]); | |||||
} | |||||
unsigned long long i, m_len; | |||||
unsigned long idx=0; | |||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||||
unsigned char pkhash[XMSS_N]; | |||||
unsigned char root[XMSS_N]; | |||||
unsigned char msg_h[XMSS_N]; | |||||
unsigned char hash_key[3*XMSS_N]; | |||||
unsigned char pub_seed[XMSS_N]; | |||||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||||
// Init addresses | |||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
setType(ots_addr, 0); | |||||
setType(ltree_addr, 1); | |||||
setType(node_addr, 2); | |||||
// Extract index | |||||
idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; | |||||
printf("verify:: idx = %lu\n", idx); | |||||
// Generate hash key (R || root || idx) | |||||
memcpy(hash_key, sig_msg+4,XMSS_N); | |||||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||||
sig_msg += (XMSS_N+4); | |||||
sig_msg_len -= (XMSS_N+4); | |||||
// hash message | |||||
unsigned long long tmp_sig_len = XMSS_WOTS_KEYSIZE+XMSS_TREEHEIGHT*XMSS_N; | |||||
m_len = sig_msg_len - tmp_sig_len; | |||||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||||
//----------------------- | |||||
// Verify signature | |||||
//----------------------- | |||||
// Prepare Address | |||||
setOTSADRS(ots_addr, idx); | |||||
// Check WOTS signature | |||||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||||
sig_msg += XMSS_WOTS_KEYSIZE; | |||||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||||
// Compute Ltree | |||||
setLtreeADRS(ltree_addr, idx); | |||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||||
// Compute root | |||||
validate_authpath(root, pkhash, idx, sig_msg, pub_seed, node_addr); | |||||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||||
for (i=0; i < XMSS_N; i++) | |||||
if (root[i] != pk[i]) | |||||
goto fail; | |||||
*msglen = sig_msg_len; | |||||
for (i=0; i < *msglen; i++) | |||||
msg[i] = sig_msg[i]; | |||||
return 0; | |||||
fail: | |||||
*msglen = sig_msg_len; | |||||
for (i=0; i < *msglen; i++) | |||||
msg[i] = 0; | |||||
*msglen = -1; | |||||
return -1; | |||||
} | |||||
/** | |||||
* Verifies a given message signature pair under a given public key. | |||||
*/ | |||||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||||
{ | |||||
uint64_t idx_tree; | |||||
uint32_t idx_leaf; | |||||
unsigned long long i, m_len; | |||||
unsigned long long idx=0; | |||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||||
unsigned char pkhash[XMSS_N]; | |||||
unsigned char root[XMSS_N]; | |||||
unsigned char msg_h[XMSS_N]; | |||||
unsigned char hash_key[3*XMSS_N]; | |||||
unsigned char pub_seed[XMSS_N]; | |||||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||||
// Init addresses | |||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
// Extract index | |||||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||||
idx |= ((unsigned long long)sig_msg[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); | |||||
} | |||||
printf("verify:: idx = %llu\n", idx); | |||||
sig_msg += XMSS_INDEX_LEN; | |||||
sig_msg_len -= XMSS_INDEX_LEN; | |||||
// Generate hash key (R || root || idx) | |||||
memcpy(hash_key, sig_msg,XMSS_N); | |||||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||||
sig_msg += XMSS_N; | |||||
sig_msg_len -= XMSS_N; | |||||
// hash message | |||||
unsigned long long tmp_sig_len = (XMSS_D * XMSS_WOTS_KEYSIZE) + (XMSS_FULLHEIGHT * XMSS_N); | |||||
m_len = sig_msg_len - tmp_sig_len; | |||||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||||
//----------------------- | |||||
// Verify signature | |||||
//----------------------- | |||||
// Prepare Address | |||||
idx_tree = idx >> XMSS_TREEHEIGHT; | |||||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||||
setLayerADRS(ots_addr, 0); | |||||
setTreeADRS(ots_addr, idx_tree); | |||||
setType(ots_addr, 0); | |||||
memcpy(ltree_addr, ots_addr, 12); | |||||
setType(ltree_addr, 1); | |||||
memcpy(node_addr, ltree_addr, 12); | |||||
setType(node_addr, 2); | |||||
setOTSADRS(ots_addr, idx_leaf); | |||||
// Check WOTS signature | |||||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||||
sig_msg += XMSS_WOTS_KEYSIZE; | |||||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||||
// Compute Ltree | |||||
setLtreeADRS(ltree_addr, idx_leaf); | |||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||||
// Compute root | |||||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||||
for (i = 1; i < XMSS_D; i++) { | |||||
// Prepare Address | |||||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); | |||||
idx_tree = idx_tree >> XMSS_TREEHEIGHT; | |||||
setLayerADRS(ots_addr, i); | |||||
setTreeADRS(ots_addr, idx_tree); | |||||
setType(ots_addr, 0); | |||||
memcpy(ltree_addr, ots_addr, 12); | |||||
setType(ltree_addr, 1); | |||||
memcpy(node_addr, ltree_addr, 12); | |||||
setType(node_addr, 2); | |||||
setOTSADRS(ots_addr, idx_leaf); | |||||
// Check WOTS signature | |||||
wots_pkFromSig(wots_pk, sig_msg, root, pub_seed, ots_addr); | |||||
sig_msg += XMSS_WOTS_KEYSIZE; | |||||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||||
// Compute Ltree | |||||
setLtreeADRS(ltree_addr, idx_leaf); | |||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||||
// Compute root | |||||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||||
} | |||||
for (i=0; i < XMSS_N; i++) | |||||
if (root[i] != pk[i]) | |||||
goto fail; | |||||
*msglen = sig_msg_len; | |||||
for (i=0; i < *msglen; i++) | |||||
msg[i] = sig_msg[i]; | |||||
return 0; | |||||
fail: | |||||
*msglen = sig_msg_len; | |||||
for (i=0; i < *msglen; i++) | |||||
msg[i] = 0; | |||||
*msglen = -1; | |||||
return -1; | |||||
} |
@@ -12,4 +12,9 @@ Public domain. | |||||
void to_byte(unsigned char *output, unsigned long long in, uint32_t bytes); | void to_byte(unsigned char *output, unsigned long long in, uint32_t bytes); | ||||
void hexdump(const unsigned char *a, size_t len); | void hexdump(const unsigned char *a, size_t len); | ||||
#endif | |||||
void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]); | |||||
void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]); | |||||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]); | |||||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk); | |||||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk); | |||||
#endif |
@@ -19,24 +19,6 @@ Public domain. | |||||
#include "hash_address.h" | #include "hash_address.h" | ||||
#include "params.h" | #include "params.h" | ||||
/** | |||||
* Used for pseudorandom keygeneration, | |||||
* generates the seed for the WOTS keypair at address addr | |||||
* | |||||
* takes n byte sk_seed and returns n byte seed using 32 byte address addr. | |||||
*/ | |||||
static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, uint32_t addr[8]) | |||||
{ | |||||
unsigned char bytes[32]; | |||||
// Make sure that chain addr, hash addr, and key bit are 0! | |||||
setChainADRS(addr,0); | |||||
setHashADRS(addr,0); | |||||
setKeyAndMask(addr,0); | |||||
// Generate pseudorandom value | |||||
addr_to_byte(bytes, addr); | |||||
prf(seed, bytes, sk_seed, n); | |||||
} | |||||
/** | /** | ||||
* Initialize BDS state struct | * Initialize BDS state struct | ||||
* parameter names are the same as used in the description of the BDS traversal | * parameter names are the same as used in the description of the BDS traversal | ||||
@@ -53,61 +35,6 @@ void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, | |||||
state->next_leaf = next_leaf; | state->next_leaf = next_leaf; | ||||
} | } | ||||
/** | |||||
* Computes a leaf from a WOTS public key using an L-tree. | |||||
*/ | |||||
static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]) | |||||
{ | |||||
unsigned int l = XMSS_WOTS_LEN; | |||||
unsigned int n = XMSS_N; | |||||
uint32_t i = 0; | |||||
uint32_t height = 0; | |||||
uint32_t bound; | |||||
//ADRS.setTreeHeight(0); | |||||
setTreeHeight(addr, height); | |||||
while (l > 1) { | |||||
bound = l >> 1; //floor(l / 2); | |||||
for (i = 0; i < bound; i++) { | |||||
//ADRS.setTreeIndex(i); | |||||
setTreeIndex(addr, i); | |||||
//wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); | |||||
hash_h(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n); | |||||
} | |||||
//if ( l % 2 == 1 ) { | |||||
if (l & 1) { | |||||
//pk[floor(l / 2) + 1] = pk[l]; | |||||
memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n); | |||||
//l = ceil(l / 2); | |||||
l=(l>>1)+1; | |||||
} | |||||
else { | |||||
//l = ceil(l / 2); | |||||
l=(l>>1); | |||||
} | |||||
//ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); | |||||
height++; | |||||
setTreeHeight(addr, height); | |||||
} | |||||
//return pk[0]; | |||||
memcpy(leaf, wots_pk, n); | |||||
} | |||||
/** | |||||
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. | |||||
*/ | |||||
static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) | |||||
{ | |||||
unsigned char seed[XMSS_N]; | |||||
unsigned char pk[XMSS_WOTS_KEYSIZE]; | |||||
get_seed(seed, sk_seed, XMSS_N, ots_addr); | |||||
wots_pkgen(pk, seed, pub_seed, ots_addr); | |||||
l_tree(leaf, pk, pub_seed, ltree_addr); | |||||
} | |||||
static int treehash_minheight_on_stack(bds_state* state, const treehash_inst *treehash) { | static int treehash_minheight_on_stack(bds_state* state, const treehash_inst *treehash) { | ||||
unsigned int r = XMSS_TREEHEIGHT, i; | unsigned int r = XMSS_TREEHEIGHT, i; | ||||
for (i = 0; i < treehash->stackusage; i++) { | for (i = 0; i < treehash->stackusage; i++) { | ||||
@@ -233,52 +160,6 @@ static void treehash_update(treehash_inst *treehash, bds_state *state, const uns | |||||
} | } | ||||
} | } | ||||
/** | |||||
* Computes a root node given a leaf and an authapth | |||||
*/ | |||||
static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const unsigned char *pub_seed, uint32_t addr[8]) | |||||
{ | |||||
uint32_t i, j; | |||||
unsigned char buffer[2*XMSS_N]; | |||||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. | |||||
// Otherwise, it is the other way around | |||||
if (leafidx & 1) { | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[XMSS_N+j] = leaf[j]; | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j] = authpath[j]; | |||||
} | |||||
else { | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j] = leaf[j]; | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[XMSS_N+j] = authpath[j]; | |||||
} | |||||
authpath += XMSS_N; | |||||
for (i=0; i < XMSS_TREEHEIGHT-1; i++) { | |||||
setTreeHeight(addr, i); | |||||
leafidx >>= 1; | |||||
setTreeIndex(addr, leafidx); | |||||
if (leafidx&1) { | |||||
hash_h(buffer+XMSS_N, buffer, pub_seed, addr, XMSS_N); | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j] = authpath[j]; | |||||
} | |||||
else { | |||||
hash_h(buffer, buffer, pub_seed, addr, XMSS_N); | |||||
for (j = 0; j < XMSS_N; j++) | |||||
buffer[j+XMSS_N] = authpath[j]; | |||||
} | |||||
authpath += XMSS_N; | |||||
} | |||||
setTreeHeight(addr, (XMSS_TREEHEIGHT-1)); | |||||
leafidx >>= 1; | |||||
setTreeIndex(addr, leafidx); | |||||
hash_h(root, buffer, pub_seed, addr, XMSS_N); | |||||
} | |||||
/** | /** | ||||
* Performs one treehash update on the instance that needs it the most. | * Performs one treehash update on the instance that needs it the most. | ||||
* Returns 1 if such an instance was not found | * Returns 1 if such an instance was not found | ||||
@@ -553,7 +434,7 @@ int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsig | |||||
setOTSADRS(ots_addr, idx); | setOTSADRS(ots_addr, idx); | ||||
// Compute seed for OTS key pair | // Compute seed for OTS key pair | ||||
get_seed(ots_seed, sk_seed, XMSS_N, ots_addr); | |||||
get_seed(ots_seed, sk_seed, ots_addr); | |||||
// Compute WOTS signature | // Compute WOTS signature | ||||
wots_sign(sig_msg, msg_h, ots_seed, pub_seed, ots_addr); | wots_sign(sig_msg, msg_h, ots_seed, pub_seed, ots_addr); | ||||
@@ -578,88 +459,6 @@ int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsig | |||||
return 0; | return 0; | ||||
} | } | ||||
/** | |||||
* Verifies a given message signature pair under a given public key. | |||||
*/ | |||||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||||
{ | |||||
unsigned long long i, m_len; | |||||
unsigned long idx=0; | |||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||||
unsigned char pkhash[XMSS_N]; | |||||
unsigned char root[XMSS_N]; | |||||
unsigned char msg_h[XMSS_N]; | |||||
unsigned char hash_key[3*XMSS_N]; | |||||
unsigned char pub_seed[XMSS_N]; | |||||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||||
// Init addresses | |||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
setType(ots_addr, 0); | |||||
setType(ltree_addr, 1); | |||||
setType(node_addr, 2); | |||||
// Extract index | |||||
idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; | |||||
// Generate hash key (R || root || idx) | |||||
memcpy(hash_key, sig_msg+4,XMSS_N); | |||||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||||
sig_msg += (XMSS_N+4); | |||||
sig_msg_len -= (XMSS_N+4); | |||||
// hash message | |||||
unsigned long long tmp_sig_len = XMSS_WOTS_KEYSIZE+XMSS_TREEHEIGHT*XMSS_N; | |||||
m_len = sig_msg_len - tmp_sig_len; | |||||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||||
//----------------------- | |||||
// Verify signature | |||||
//----------------------- | |||||
// Prepare Address | |||||
setOTSADRS(ots_addr, idx); | |||||
// Check WOTS signature | |||||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||||
sig_msg += XMSS_WOTS_KEYSIZE; | |||||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||||
// Compute Ltree | |||||
setLtreeADRS(ltree_addr, idx); | |||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||||
// Compute root | |||||
validate_authpath(root, pkhash, idx, sig_msg, pub_seed, node_addr); | |||||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||||
for (i = 0; i < XMSS_N; i++) | |||||
if (root[i] != pk[i]) | |||||
goto fail; | |||||
*msglen = sig_msg_len; | |||||
for (i = 0; i < *msglen; i++) | |||||
msg[i] = sig_msg[i]; | |||||
return 0; | |||||
fail: | |||||
*msglen = sig_msg_len; | |||||
for (i = 0; i < *msglen; i++) | |||||
msg[i] = 0; | |||||
*msglen = -1; | |||||
return -1; | |||||
} | |||||
/* | /* | ||||
* Generates a XMSSMT key pair for a given parameter set. | * Generates a XMSSMT key pair for a given parameter set. | ||||
* Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] | * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] | ||||
@@ -686,7 +485,7 @@ int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsi | |||||
// Compute seed for OTS key pair | // Compute seed for OTS key pair | ||||
treehash_setup(pk, XMSS_TREEHEIGHT, 0, states + i, sk+XMSS_INDEX_LEN, pk+XMSS_N, addr); | treehash_setup(pk, XMSS_TREEHEIGHT, 0, states + i, sk+XMSS_INDEX_LEN, pk+XMSS_N, addr); | ||||
setLayerADRS(addr, (i+1)); | setLayerADRS(addr, (i+1)); | ||||
get_seed(ots_seed, sk+XMSS_INDEX_LEN, XMSS_N, addr); | |||||
get_seed(ots_seed, sk+XMSS_INDEX_LEN, addr); | |||||
wots_sign(wots_sigs + i*XMSS_WOTS_KEYSIZE, pk, ots_seed, pk+XMSS_N, addr); | wots_sign(wots_sigs + i*XMSS_WOTS_KEYSIZE, pk, ots_seed, pk+XMSS_N, addr); | ||||
} | } | ||||
// Address now points to the single tree on layer d-1 | // Address now points to the single tree on layer d-1 | ||||
@@ -790,7 +589,7 @@ int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, | |||||
setOTSADRS(ots_addr, idx_leaf); | setOTSADRS(ots_addr, idx_leaf); | ||||
// Compute seed for OTS key pair | // Compute seed for OTS key pair | ||||
get_seed(ots_seed, sk_seed, XMSS_N, ots_addr); | |||||
get_seed(ots_seed, sk_seed, ots_addr); | |||||
// Compute WOTS signature | // Compute WOTS signature | ||||
wots_sign(sig_msg, msg_h, ots_seed, pub_seed, ots_addr); | wots_sign(sig_msg, msg_h, ots_seed, pub_seed, ots_addr); | ||||
@@ -853,7 +652,7 @@ int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, | |||||
setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * XMSS_TREEHEIGHT))); | setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * XMSS_TREEHEIGHT))); | ||||
setOTSADRS(ots_addr, (((idx >> ((i+1) * XMSS_TREEHEIGHT)) + 1) & ((1 << XMSS_TREEHEIGHT)-1))); | setOTSADRS(ots_addr, (((idx >> ((i+1) * XMSS_TREEHEIGHT)) + 1) & ((1 << XMSS_TREEHEIGHT)-1))); | ||||
get_seed(ots_seed, sk+XMSS_INDEX_LEN, XMSS_N, ots_addr); | |||||
get_seed(ots_seed, sk+XMSS_INDEX_LEN, ots_addr); | |||||
wots_sign(wots_sigs + i*XMSS_WOTS_KEYSIZE, states[i].stack, ots_seed, pub_seed, ots_addr); | wots_sign(wots_sigs + i*XMSS_WOTS_KEYSIZE, states[i].stack, ots_seed, pub_seed, ots_addr); | ||||
states[XMSS_D + i].stackoffset = 0; | states[XMSS_D + i].stackoffset = 0; | ||||
@@ -872,138 +671,3 @@ int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, | |||||
return 0; | return 0; | ||||
} | } | ||||
/** | |||||
* Verifies a given message signature pair under a given public key. | |||||
*/ | |||||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||||
{ | |||||
uint64_t idx_tree; | |||||
uint32_t idx_leaf; | |||||
unsigned long long i, m_len; | |||||
unsigned long long idx=0; | |||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||||
unsigned char pkhash[XMSS_N]; | |||||
unsigned char root[XMSS_N]; | |||||
unsigned char msg_h[XMSS_N]; | |||||
unsigned char hash_key[3*XMSS_N]; | |||||
unsigned char pub_seed[XMSS_N]; | |||||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||||
// Init addresses | |||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||||
// Extract index | |||||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||||
idx |= ((unsigned long long)sig_msg[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); | |||||
} | |||||
sig_msg += XMSS_INDEX_LEN; | |||||
sig_msg_len -= XMSS_INDEX_LEN; | |||||
// Generate hash key (R || root || idx) | |||||
memcpy(hash_key, sig_msg,XMSS_N); | |||||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||||
sig_msg += XMSS_N; | |||||
sig_msg_len -= XMSS_N; | |||||
// hash message (recall, R is now on pole position at sig_msg | |||||
unsigned long long tmp_sig_len = (XMSS_D * XMSS_WOTS_KEYSIZE) + (XMSS_FULLHEIGHT * XMSS_N); | |||||
m_len = sig_msg_len - tmp_sig_len; | |||||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||||
//----------------------- | |||||
// Verify signature | |||||
//----------------------- | |||||
// Prepare Address | |||||
idx_tree = idx >> XMSS_TREEHEIGHT; | |||||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||||
setLayerADRS(ots_addr, 0); | |||||
setTreeADRS(ots_addr, idx_tree); | |||||
setType(ots_addr, 0); | |||||
memcpy(ltree_addr, ots_addr, 12); | |||||
setType(ltree_addr, 1); | |||||
memcpy(node_addr, ltree_addr, 12); | |||||
setType(node_addr, 2); | |||||
setOTSADRS(ots_addr, idx_leaf); | |||||
// Check WOTS signature | |||||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||||
sig_msg += XMSS_WOTS_KEYSIZE; | |||||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||||
// Compute Ltree | |||||
setLtreeADRS(ltree_addr, idx_leaf); | |||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||||
// Compute root | |||||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||||
for (i = 1; i < XMSS_D; i++) { | |||||
// Prepare Address | |||||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); | |||||
idx_tree = idx_tree >> XMSS_TREEHEIGHT; | |||||
setLayerADRS(ots_addr, i); | |||||
setTreeADRS(ots_addr, idx_tree); | |||||
setType(ots_addr, 0); | |||||
memcpy(ltree_addr, ots_addr, 12); | |||||
setType(ltree_addr, 1); | |||||
memcpy(node_addr, ltree_addr, 12); | |||||
setType(node_addr, 2); | |||||
setOTSADRS(ots_addr, idx_leaf); | |||||
// Check WOTS signature | |||||
wots_pkFromSig(wots_pk, sig_msg, root, pub_seed, ots_addr); | |||||
sig_msg += XMSS_WOTS_KEYSIZE; | |||||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||||
// Compute Ltree | |||||
setLtreeADRS(ltree_addr, idx_leaf); | |||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||||
// Compute root | |||||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||||
} | |||||
for (i = 0; i < XMSS_N; i++) | |||||
if (root[i] != pk[i]) | |||||
goto fail; | |||||
*msglen = sig_msg_len; | |||||
for (i = 0; i < *msglen; i++) | |||||
msg[i] = sig_msg[i]; | |||||
return 0; | |||||
fail: | |||||
*msglen = sig_msg_len; | |||||
for (i = 0; i < *msglen; i++) | |||||
msg[i] = 0; | |||||
*msglen = -1; | |||||
return -1; | |||||
} |