Refactor for more consistent style and readability
This commit is contained in:
parent
1076b37321
commit
9d5884e120
669
fips202.c
669
fips202.c
@ -14,22 +14,22 @@
|
||||
|
||||
static uint64_t load64(const unsigned char *x)
|
||||
{
|
||||
unsigned long long r = 0, i;
|
||||
unsigned long long r = 0, i;
|
||||
|
||||
for (i = 0; i < 8; ++i) {
|
||||
r |= (unsigned long long)x[i] << 8 * i;
|
||||
}
|
||||
return r;
|
||||
for (i = 0; i < 8; ++i) {
|
||||
r |= (unsigned long long)x[i] << 8 * i;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
static void store64(uint8_t *x, uint64_t u)
|
||||
{
|
||||
unsigned int i;
|
||||
unsigned int i;
|
||||
|
||||
for(i=0; i<8; ++i) {
|
||||
x[i] = u;
|
||||
u >>= 8;
|
||||
}
|
||||
for (i = 0; i < 8; ++i) {
|
||||
x[i] = u;
|
||||
u >>= 8;
|
||||
}
|
||||
}
|
||||
|
||||
static const uint64_t KeccakF_RoundConstants[NROUNDS] =
|
||||
@ -62,357 +62,356 @@ static const uint64_t KeccakF_RoundConstants[NROUNDS] =
|
||||
|
||||
void KeccakF1600_StatePermute(uint64_t * state)
|
||||
{
|
||||
int round;
|
||||
int round;
|
||||
|
||||
uint64_t Aba, Abe, Abi, Abo, Abu;
|
||||
uint64_t Aga, Age, Agi, Ago, Agu;
|
||||
uint64_t Aka, Ake, Aki, Ako, Aku;
|
||||
uint64_t Ama, Ame, Ami, Amo, Amu;
|
||||
uint64_t Asa, Ase, Asi, Aso, Asu;
|
||||
uint64_t BCa, BCe, BCi, BCo, BCu;
|
||||
uint64_t Da, De, Di, Do, Du;
|
||||
uint64_t Eba, Ebe, Ebi, Ebo, Ebu;
|
||||
uint64_t Ega, Ege, Egi, Ego, Egu;
|
||||
uint64_t Eka, Eke, Eki, Eko, Eku;
|
||||
uint64_t Ema, Eme, Emi, Emo, Emu;
|
||||
uint64_t Esa, Ese, Esi, Eso, Esu;
|
||||
uint64_t Aba, Abe, Abi, Abo, Abu;
|
||||
uint64_t Aga, Age, Agi, Ago, Agu;
|
||||
uint64_t Aka, Ake, Aki, Ako, Aku;
|
||||
uint64_t Ama, Ame, Ami, Amo, Amu;
|
||||
uint64_t Asa, Ase, Asi, Aso, Asu;
|
||||
uint64_t BCa, BCe, BCi, BCo, BCu;
|
||||
uint64_t Da, De, Di, Do, Du;
|
||||
uint64_t Eba, Ebe, Ebi, Ebo, Ebu;
|
||||
uint64_t Ega, Ege, Egi, Ego, Egu;
|
||||
uint64_t Eka, Eke, Eki, Eko, Eku;
|
||||
uint64_t Ema, Eme, Emi, Emo, Emu;
|
||||
uint64_t Esa, Ese, Esi, Eso, Esu;
|
||||
|
||||
//copyFromState(A, state)
|
||||
Aba = state[ 0];
|
||||
Abe = state[ 1];
|
||||
Abi = state[ 2];
|
||||
Abo = state[ 3];
|
||||
Abu = state[ 4];
|
||||
Aga = state[ 5];
|
||||
Age = state[ 6];
|
||||
Agi = state[ 7];
|
||||
Ago = state[ 8];
|
||||
Agu = state[ 9];
|
||||
Aka = state[10];
|
||||
Ake = state[11];
|
||||
Aki = state[12];
|
||||
Ako = state[13];
|
||||
Aku = state[14];
|
||||
Ama = state[15];
|
||||
Ame = state[16];
|
||||
Ami = state[17];
|
||||
Amo = state[18];
|
||||
Amu = state[19];
|
||||
Asa = state[20];
|
||||
Ase = state[21];
|
||||
Asi = state[22];
|
||||
Aso = state[23];
|
||||
Asu = state[24];
|
||||
//copyFromState(A, state)
|
||||
Aba = state[ 0];
|
||||
Abe = state[ 1];
|
||||
Abi = state[ 2];
|
||||
Abo = state[ 3];
|
||||
Abu = state[ 4];
|
||||
Aga = state[ 5];
|
||||
Age = state[ 6];
|
||||
Agi = state[ 7];
|
||||
Ago = state[ 8];
|
||||
Agu = state[ 9];
|
||||
Aka = state[10];
|
||||
Ake = state[11];
|
||||
Aki = state[12];
|
||||
Ako = state[13];
|
||||
Aku = state[14];
|
||||
Ama = state[15];
|
||||
Ame = state[16];
|
||||
Ami = state[17];
|
||||
Amo = state[18];
|
||||
Amu = state[19];
|
||||
Asa = state[20];
|
||||
Ase = state[21];
|
||||
Asi = state[22];
|
||||
Aso = state[23];
|
||||
Asu = state[24];
|
||||
|
||||
for( round = 0; round < NROUNDS; round += 2 )
|
||||
{
|
||||
// prepareTheta
|
||||
BCa = Aba^Aga^Aka^Ama^Asa;
|
||||
BCe = Abe^Age^Ake^Ame^Ase;
|
||||
BCi = Abi^Agi^Aki^Ami^Asi;
|
||||
BCo = Abo^Ago^Ako^Amo^Aso;
|
||||
BCu = Abu^Agu^Aku^Amu^Asu;
|
||||
for (round = 0; round < NROUNDS; round += 2) {
|
||||
// prepareTheta
|
||||
BCa = Aba^Aga^Aka^Ama^Asa;
|
||||
BCe = Abe^Age^Ake^Ame^Ase;
|
||||
BCi = Abi^Agi^Aki^Ami^Asi;
|
||||
BCo = Abo^Ago^Ako^Amo^Aso;
|
||||
BCu = Abu^Agu^Aku^Amu^Asu;
|
||||
|
||||
//thetaRhoPiChiIotaPrepareTheta(round , A, E)
|
||||
Da = BCu^ROL(BCe, 1);
|
||||
De = BCa^ROL(BCi, 1);
|
||||
Di = BCe^ROL(BCo, 1);
|
||||
Do = BCi^ROL(BCu, 1);
|
||||
Du = BCo^ROL(BCa, 1);
|
||||
//thetaRhoPiChiIotaPrepareTheta(round , A, E)
|
||||
Da = BCu^ROL(BCe, 1);
|
||||
De = BCa^ROL(BCi, 1);
|
||||
Di = BCe^ROL(BCo, 1);
|
||||
Do = BCi^ROL(BCu, 1);
|
||||
Du = BCo^ROL(BCa, 1);
|
||||
|
||||
Aba ^= Da;
|
||||
BCa = Aba;
|
||||
Age ^= De;
|
||||
BCe = ROL(Age, 44);
|
||||
Aki ^= Di;
|
||||
BCi = ROL(Aki, 43);
|
||||
Amo ^= Do;
|
||||
BCo = ROL(Amo, 21);
|
||||
Asu ^= Du;
|
||||
BCu = ROL(Asu, 14);
|
||||
Eba = BCa ^((~BCe)& BCi );
|
||||
Eba ^= (uint64_t)KeccakF_RoundConstants[round];
|
||||
Ebe = BCe ^((~BCi)& BCo );
|
||||
Ebi = BCi ^((~BCo)& BCu );
|
||||
Ebo = BCo ^((~BCu)& BCa );
|
||||
Ebu = BCu ^((~BCa)& BCe );
|
||||
Aba ^= Da;
|
||||
BCa = Aba;
|
||||
Age ^= De;
|
||||
BCe = ROL(Age, 44);
|
||||
Aki ^= Di;
|
||||
BCi = ROL(Aki, 43);
|
||||
Amo ^= Do;
|
||||
BCo = ROL(Amo, 21);
|
||||
Asu ^= Du;
|
||||
BCu = ROL(Asu, 14);
|
||||
Eba = BCa ^((~BCe)& BCi );
|
||||
Eba ^= (uint64_t)KeccakF_RoundConstants[round];
|
||||
Ebe = BCe ^((~BCi)& BCo );
|
||||
Ebi = BCi ^((~BCo)& BCu );
|
||||
Ebo = BCo ^((~BCu)& BCa );
|
||||
Ebu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abo ^= Do;
|
||||
BCa = ROL(Abo, 28);
|
||||
Agu ^= Du;
|
||||
BCe = ROL(Agu, 20);
|
||||
Aka ^= Da;
|
||||
BCi = ROL(Aka, 3);
|
||||
Ame ^= De;
|
||||
BCo = ROL(Ame, 45);
|
||||
Asi ^= Di;
|
||||
BCu = ROL(Asi, 61);
|
||||
Ega = BCa ^((~BCe)& BCi );
|
||||
Ege = BCe ^((~BCi)& BCo );
|
||||
Egi = BCi ^((~BCo)& BCu );
|
||||
Ego = BCo ^((~BCu)& BCa );
|
||||
Egu = BCu ^((~BCa)& BCe );
|
||||
Abo ^= Do;
|
||||
BCa = ROL(Abo, 28);
|
||||
Agu ^= Du;
|
||||
BCe = ROL(Agu, 20);
|
||||
Aka ^= Da;
|
||||
BCi = ROL(Aka, 3);
|
||||
Ame ^= De;
|
||||
BCo = ROL(Ame, 45);
|
||||
Asi ^= Di;
|
||||
BCu = ROL(Asi, 61);
|
||||
Ega = BCa ^((~BCe)& BCi );
|
||||
Ege = BCe ^((~BCi)& BCo );
|
||||
Egi = BCi ^((~BCo)& BCu );
|
||||
Ego = BCo ^((~BCu)& BCa );
|
||||
Egu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abe ^= De;
|
||||
BCa = ROL(Abe, 1);
|
||||
Agi ^= Di;
|
||||
BCe = ROL(Agi, 6);
|
||||
Ako ^= Do;
|
||||
BCi = ROL(Ako, 25);
|
||||
Amu ^= Du;
|
||||
BCo = ROL(Amu, 8);
|
||||
Asa ^= Da;
|
||||
BCu = ROL(Asa, 18);
|
||||
Eka = BCa ^((~BCe)& BCi );
|
||||
Eke = BCe ^((~BCi)& BCo );
|
||||
Eki = BCi ^((~BCo)& BCu );
|
||||
Eko = BCo ^((~BCu)& BCa );
|
||||
Eku = BCu ^((~BCa)& BCe );
|
||||
Abe ^= De;
|
||||
BCa = ROL(Abe, 1);
|
||||
Agi ^= Di;
|
||||
BCe = ROL(Agi, 6);
|
||||
Ako ^= Do;
|
||||
BCi = ROL(Ako, 25);
|
||||
Amu ^= Du;
|
||||
BCo = ROL(Amu, 8);
|
||||
Asa ^= Da;
|
||||
BCu = ROL(Asa, 18);
|
||||
Eka = BCa ^((~BCe)& BCi );
|
||||
Eke = BCe ^((~BCi)& BCo );
|
||||
Eki = BCi ^((~BCo)& BCu );
|
||||
Eko = BCo ^((~BCu)& BCa );
|
||||
Eku = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abu ^= Du;
|
||||
BCa = ROL(Abu, 27);
|
||||
Aga ^= Da;
|
||||
BCe = ROL(Aga, 36);
|
||||
Ake ^= De;
|
||||
BCi = ROL(Ake, 10);
|
||||
Ami ^= Di;
|
||||
BCo = ROL(Ami, 15);
|
||||
Aso ^= Do;
|
||||
BCu = ROL(Aso, 56);
|
||||
Ema = BCa ^((~BCe)& BCi );
|
||||
Eme = BCe ^((~BCi)& BCo );
|
||||
Emi = BCi ^((~BCo)& BCu );
|
||||
Emo = BCo ^((~BCu)& BCa );
|
||||
Emu = BCu ^((~BCa)& BCe );
|
||||
Abu ^= Du;
|
||||
BCa = ROL(Abu, 27);
|
||||
Aga ^= Da;
|
||||
BCe = ROL(Aga, 36);
|
||||
Ake ^= De;
|
||||
BCi = ROL(Ake, 10);
|
||||
Ami ^= Di;
|
||||
BCo = ROL(Ami, 15);
|
||||
Aso ^= Do;
|
||||
BCu = ROL(Aso, 56);
|
||||
Ema = BCa ^((~BCe)& BCi );
|
||||
Eme = BCe ^((~BCi)& BCo );
|
||||
Emi = BCi ^((~BCo)& BCu );
|
||||
Emo = BCo ^((~BCu)& BCa );
|
||||
Emu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abi ^= Di;
|
||||
BCa = ROL(Abi, 62);
|
||||
Ago ^= Do;
|
||||
BCe = ROL(Ago, 55);
|
||||
Aku ^= Du;
|
||||
BCi = ROL(Aku, 39);
|
||||
Ama ^= Da;
|
||||
BCo = ROL(Ama, 41);
|
||||
Ase ^= De;
|
||||
BCu = ROL(Ase, 2);
|
||||
Esa = BCa ^((~BCe)& BCi );
|
||||
Ese = BCe ^((~BCi)& BCo );
|
||||
Esi = BCi ^((~BCo)& BCu );
|
||||
Eso = BCo ^((~BCu)& BCa );
|
||||
Esu = BCu ^((~BCa)& BCe );
|
||||
Abi ^= Di;
|
||||
BCa = ROL(Abi, 62);
|
||||
Ago ^= Do;
|
||||
BCe = ROL(Ago, 55);
|
||||
Aku ^= Du;
|
||||
BCi = ROL(Aku, 39);
|
||||
Ama ^= Da;
|
||||
BCo = ROL(Ama, 41);
|
||||
Ase ^= De;
|
||||
BCu = ROL(Ase, 2);
|
||||
Esa = BCa ^((~BCe)& BCi );
|
||||
Ese = BCe ^((~BCi)& BCo );
|
||||
Esi = BCi ^((~BCo)& BCu );
|
||||
Eso = BCo ^((~BCu)& BCa );
|
||||
Esu = BCu ^((~BCa)& BCe );
|
||||
|
||||
// prepareTheta
|
||||
BCa = Eba^Ega^Eka^Ema^Esa;
|
||||
BCe = Ebe^Ege^Eke^Eme^Ese;
|
||||
BCi = Ebi^Egi^Eki^Emi^Esi;
|
||||
BCo = Ebo^Ego^Eko^Emo^Eso;
|
||||
BCu = Ebu^Egu^Eku^Emu^Esu;
|
||||
// prepareTheta
|
||||
BCa = Eba^Ega^Eka^Ema^Esa;
|
||||
BCe = Ebe^Ege^Eke^Eme^Ese;
|
||||
BCi = Ebi^Egi^Eki^Emi^Esi;
|
||||
BCo = Ebo^Ego^Eko^Emo^Eso;
|
||||
BCu = Ebu^Egu^Eku^Emu^Esu;
|
||||
|
||||
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A)
|
||||
Da = BCu^ROL(BCe, 1);
|
||||
De = BCa^ROL(BCi, 1);
|
||||
Di = BCe^ROL(BCo, 1);
|
||||
Do = BCi^ROL(BCu, 1);
|
||||
Du = BCo^ROL(BCa, 1);
|
||||
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A)
|
||||
Da = BCu^ROL(BCe, 1);
|
||||
De = BCa^ROL(BCi, 1);
|
||||
Di = BCe^ROL(BCo, 1);
|
||||
Do = BCi^ROL(BCu, 1);
|
||||
Du = BCo^ROL(BCa, 1);
|
||||
|
||||
Eba ^= Da;
|
||||
BCa = Eba;
|
||||
Ege ^= De;
|
||||
BCe = ROL(Ege, 44);
|
||||
Eki ^= Di;
|
||||
BCi = ROL(Eki, 43);
|
||||
Emo ^= Do;
|
||||
BCo = ROL(Emo, 21);
|
||||
Esu ^= Du;
|
||||
BCu = ROL(Esu, 14);
|
||||
Aba = BCa ^((~BCe)& BCi );
|
||||
Aba ^= (uint64_t)KeccakF_RoundConstants[round+1];
|
||||
Abe = BCe ^((~BCi)& BCo );
|
||||
Abi = BCi ^((~BCo)& BCu );
|
||||
Abo = BCo ^((~BCu)& BCa );
|
||||
Abu = BCu ^((~BCa)& BCe );
|
||||
Eba ^= Da;
|
||||
BCa = Eba;
|
||||
Ege ^= De;
|
||||
BCe = ROL(Ege, 44);
|
||||
Eki ^= Di;
|
||||
BCi = ROL(Eki, 43);
|
||||
Emo ^= Do;
|
||||
BCo = ROL(Emo, 21);
|
||||
Esu ^= Du;
|
||||
BCu = ROL(Esu, 14);
|
||||
Aba = BCa ^((~BCe)& BCi );
|
||||
Aba ^= (uint64_t)KeccakF_RoundConstants[round+1];
|
||||
Abe = BCe ^((~BCi)& BCo );
|
||||
Abi = BCi ^((~BCo)& BCu );
|
||||
Abo = BCo ^((~BCu)& BCa );
|
||||
Abu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebo ^= Do;
|
||||
BCa = ROL(Ebo, 28);
|
||||
Egu ^= Du;
|
||||
BCe = ROL(Egu, 20);
|
||||
Eka ^= Da;
|
||||
BCi = ROL(Eka, 3);
|
||||
Eme ^= De;
|
||||
BCo = ROL(Eme, 45);
|
||||
Esi ^= Di;
|
||||
BCu = ROL(Esi, 61);
|
||||
Aga = BCa ^((~BCe)& BCi );
|
||||
Age = BCe ^((~BCi)& BCo );
|
||||
Agi = BCi ^((~BCo)& BCu );
|
||||
Ago = BCo ^((~BCu)& BCa );
|
||||
Agu = BCu ^((~BCa)& BCe );
|
||||
Ebo ^= Do;
|
||||
BCa = ROL(Ebo, 28);
|
||||
Egu ^= Du;
|
||||
BCe = ROL(Egu, 20);
|
||||
Eka ^= Da;
|
||||
BCi = ROL(Eka, 3);
|
||||
Eme ^= De;
|
||||
BCo = ROL(Eme, 45);
|
||||
Esi ^= Di;
|
||||
BCu = ROL(Esi, 61);
|
||||
Aga = BCa ^((~BCe)& BCi );
|
||||
Age = BCe ^((~BCi)& BCo );
|
||||
Agi = BCi ^((~BCo)& BCu );
|
||||
Ago = BCo ^((~BCu)& BCa );
|
||||
Agu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebe ^= De;
|
||||
BCa = ROL(Ebe, 1);
|
||||
Egi ^= Di;
|
||||
BCe = ROL(Egi, 6);
|
||||
Eko ^= Do;
|
||||
BCi = ROL(Eko, 25);
|
||||
Emu ^= Du;
|
||||
BCo = ROL(Emu, 8);
|
||||
Esa ^= Da;
|
||||
BCu = ROL(Esa, 18);
|
||||
Aka = BCa ^((~BCe)& BCi );
|
||||
Ake = BCe ^((~BCi)& BCo );
|
||||
Aki = BCi ^((~BCo)& BCu );
|
||||
Ako = BCo ^((~BCu)& BCa );
|
||||
Aku = BCu ^((~BCa)& BCe );
|
||||
Ebe ^= De;
|
||||
BCa = ROL(Ebe, 1);
|
||||
Egi ^= Di;
|
||||
BCe = ROL(Egi, 6);
|
||||
Eko ^= Do;
|
||||
BCi = ROL(Eko, 25);
|
||||
Emu ^= Du;
|
||||
BCo = ROL(Emu, 8);
|
||||
Esa ^= Da;
|
||||
BCu = ROL(Esa, 18);
|
||||
Aka = BCa ^((~BCe)& BCi );
|
||||
Ake = BCe ^((~BCi)& BCo );
|
||||
Aki = BCi ^((~BCo)& BCu );
|
||||
Ako = BCo ^((~BCu)& BCa );
|
||||
Aku = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebu ^= Du;
|
||||
BCa = ROL(Ebu, 27);
|
||||
Ega ^= Da;
|
||||
BCe = ROL(Ega, 36);
|
||||
Eke ^= De;
|
||||
BCi = ROL(Eke, 10);
|
||||
Emi ^= Di;
|
||||
BCo = ROL(Emi, 15);
|
||||
Eso ^= Do;
|
||||
BCu = ROL(Eso, 56);
|
||||
Ama = BCa ^((~BCe)& BCi );
|
||||
Ame = BCe ^((~BCi)& BCo );
|
||||
Ami = BCi ^((~BCo)& BCu );
|
||||
Amo = BCo ^((~BCu)& BCa );
|
||||
Amu = BCu ^((~BCa)& BCe );
|
||||
Ebu ^= Du;
|
||||
BCa = ROL(Ebu, 27);
|
||||
Ega ^= Da;
|
||||
BCe = ROL(Ega, 36);
|
||||
Eke ^= De;
|
||||
BCi = ROL(Eke, 10);
|
||||
Emi ^= Di;
|
||||
BCo = ROL(Emi, 15);
|
||||
Eso ^= Do;
|
||||
BCu = ROL(Eso, 56);
|
||||
Ama = BCa ^((~BCe)& BCi );
|
||||
Ame = BCe ^((~BCi)& BCo );
|
||||
Ami = BCi ^((~BCo)& BCu );
|
||||
Amo = BCo ^((~BCu)& BCa );
|
||||
Amu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebi ^= Di;
|
||||
BCa = ROL(Ebi, 62);
|
||||
Ego ^= Do;
|
||||
BCe = ROL(Ego, 55);
|
||||
Eku ^= Du;
|
||||
BCi = ROL(Eku, 39);
|
||||
Ema ^= Da;
|
||||
BCo = ROL(Ema, 41);
|
||||
Ese ^= De;
|
||||
BCu = ROL(Ese, 2);
|
||||
Asa = BCa ^((~BCe)& BCi );
|
||||
Ase = BCe ^((~BCi)& BCo );
|
||||
Asi = BCi ^((~BCo)& BCu );
|
||||
Aso = BCo ^((~BCu)& BCa );
|
||||
Asu = BCu ^((~BCa)& BCe );
|
||||
}
|
||||
Ebi ^= Di;
|
||||
BCa = ROL(Ebi, 62);
|
||||
Ego ^= Do;
|
||||
BCe = ROL(Ego, 55);
|
||||
Eku ^= Du;
|
||||
BCi = ROL(Eku, 39);
|
||||
Ema ^= Da;
|
||||
BCo = ROL(Ema, 41);
|
||||
Ese ^= De;
|
||||
BCu = ROL(Ese, 2);
|
||||
Asa = BCa ^((~BCe)& BCi );
|
||||
Ase = BCe ^((~BCi)& BCo );
|
||||
Asi = BCi ^((~BCo)& BCu );
|
||||
Aso = BCo ^((~BCu)& BCa );
|
||||
Asu = BCu ^((~BCa)& BCe );
|
||||
}
|
||||
|
||||
//copyToState(state, A)
|
||||
state[ 0] = Aba;
|
||||
state[ 1] = Abe;
|
||||
state[ 2] = Abi;
|
||||
state[ 3] = Abo;
|
||||
state[ 4] = Abu;
|
||||
state[ 5] = Aga;
|
||||
state[ 6] = Age;
|
||||
state[ 7] = Agi;
|
||||
state[ 8] = Ago;
|
||||
state[ 9] = Agu;
|
||||
state[10] = Aka;
|
||||
state[11] = Ake;
|
||||
state[12] = Aki;
|
||||
state[13] = Ako;
|
||||
state[14] = Aku;
|
||||
state[15] = Ama;
|
||||
state[16] = Ame;
|
||||
state[17] = Ami;
|
||||
state[18] = Amo;
|
||||
state[19] = Amu;
|
||||
state[20] = Asa;
|
||||
state[21] = Ase;
|
||||
state[22] = Asi;
|
||||
state[23] = Aso;
|
||||
state[24] = Asu;
|
||||
|
||||
#undef round
|
||||
//copyToState(state, A)
|
||||
state[ 0] = Aba;
|
||||
state[ 1] = Abe;
|
||||
state[ 2] = Abi;
|
||||
state[ 3] = Abo;
|
||||
state[ 4] = Abu;
|
||||
state[ 5] = Aga;
|
||||
state[ 6] = Age;
|
||||
state[ 7] = Agi;
|
||||
state[ 8] = Ago;
|
||||
state[ 9] = Agu;
|
||||
state[10] = Aka;
|
||||
state[11] = Ake;
|
||||
state[12] = Aki;
|
||||
state[13] = Ako;
|
||||
state[14] = Aku;
|
||||
state[15] = Ama;
|
||||
state[16] = Ame;
|
||||
state[17] = Ami;
|
||||
state[18] = Amo;
|
||||
state[19] = Amu;
|
||||
state[20] = Asa;
|
||||
state[21] = Ase;
|
||||
state[22] = Asi;
|
||||
state[23] = Aso;
|
||||
state[24] = Asu;
|
||||
}
|
||||
|
||||
#include <string.h>
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
|
||||
static void keccak_absorb(uint64_t *s,
|
||||
unsigned int r,
|
||||
const unsigned char *m, unsigned long long int mlen,
|
||||
static void keccak_absorb(uint64_t *s, unsigned int r,
|
||||
const unsigned char *m, unsigned long long mlen,
|
||||
unsigned char p)
|
||||
{
|
||||
unsigned long long i;
|
||||
unsigned char t[200];
|
||||
unsigned long long i;
|
||||
unsigned char t[200];
|
||||
|
||||
while (mlen >= r)
|
||||
{
|
||||
for (i = 0; i < r / 8; ++i)
|
||||
s[i] ^= load64(m + 8 * i);
|
||||
KeccakF1600_StatePermute(s);
|
||||
mlen -= r;
|
||||
m += r;
|
||||
}
|
||||
|
||||
for (i = 0; i < r; ++i)
|
||||
t[i] = 0;
|
||||
for (i = 0; i < mlen; ++i)
|
||||
t[i] = m[i];
|
||||
t[i] = p;
|
||||
t[r - 1] |= 128;
|
||||
for (i = 0; i < r / 8; ++i)
|
||||
s[i] ^= load64(t + 8 * i);
|
||||
}
|
||||
|
||||
static void keccak_squeezeblocks(unsigned char *h, unsigned long long int nblocks,
|
||||
uint64_t *s,
|
||||
unsigned int r)
|
||||
{
|
||||
unsigned int i;
|
||||
while(nblocks > 0)
|
||||
{
|
||||
KeccakF1600_StatePermute(s);
|
||||
for(i=0;i<(r>>3);i++)
|
||||
{
|
||||
store64(h+8*i, s[i]);
|
||||
while (mlen >= r) {
|
||||
for (i = 0; i < r / 8; ++i) {
|
||||
s[i] ^= load64(m + 8 * i);
|
||||
}
|
||||
KeccakF1600_StatePermute(s);
|
||||
mlen -= r;
|
||||
m += r;
|
||||
}
|
||||
h += r;
|
||||
nblocks--;
|
||||
}
|
||||
}
|
||||
|
||||
void shake128(unsigned char *output, unsigned int outputByteLen, const unsigned char *input, unsigned int inputByteLen)
|
||||
{
|
||||
unsigned int i;
|
||||
uint64_t s[25];
|
||||
unsigned char d[SHAKE128_RATE];
|
||||
|
||||
for(i = 0; i < 25; i++)
|
||||
s[i] = 0;
|
||||
keccak_absorb(s, SHAKE128_RATE, input, inputByteLen, 0x1F);
|
||||
|
||||
keccak_squeezeblocks(output, outputByteLen/SHAKE128_RATE, s, SHAKE128_RATE);
|
||||
output += (outputByteLen/SHAKE128_RATE)*SHAKE128_RATE;
|
||||
|
||||
if (outputByteLen % SHAKE128_RATE) {
|
||||
keccak_squeezeblocks(d, 1, s, SHAKE128_RATE);
|
||||
for(i = 0; i < outputByteLen % SHAKE128_RATE; i++) {
|
||||
output[i] = d[i];
|
||||
for (i = 0; i < r; ++i) {
|
||||
t[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void shake256(unsigned char *output, unsigned int outputByteLen, const unsigned char *input, unsigned int inputByteLen)
|
||||
{
|
||||
unsigned int i;
|
||||
uint64_t s[25];
|
||||
unsigned char d[SHAKE256_RATE];
|
||||
|
||||
for(i = 0; i < 25; i++)
|
||||
s[i] = 0;
|
||||
keccak_absorb(s, SHAKE256_RATE, input, inputByteLen, 0x1F);
|
||||
|
||||
keccak_squeezeblocks(output, outputByteLen/SHAKE256_RATE, s, SHAKE256_RATE);
|
||||
output += (outputByteLen/SHAKE256_RATE)*SHAKE256_RATE;
|
||||
|
||||
if (outputByteLen % SHAKE256_RATE) {
|
||||
keccak_squeezeblocks(d, 1, s, SHAKE256_RATE);
|
||||
for(i = 0; i < outputByteLen % SHAKE256_RATE; i++) {
|
||||
output[i] = d[i];
|
||||
for (i = 0; i < mlen; ++i) {
|
||||
t[i] = m[i];
|
||||
}
|
||||
t[i] = p;
|
||||
t[r - 1] |= 128;
|
||||
for (i = 0; i < r / 8; ++i) {
|
||||
s[i] ^= load64(t + 8 * i);
|
||||
}
|
||||
}
|
||||
|
||||
static void keccak_squeezeblocks(unsigned char *h, unsigned long long nblocks,
|
||||
uint64_t *s, unsigned int r)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
while (nblocks > 0) {
|
||||
KeccakF1600_StatePermute(s);
|
||||
for (i = 0; i < (r >> 3); i++) {
|
||||
store64(h + 8*i, s[i]);
|
||||
}
|
||||
h += r;
|
||||
nblocks--;
|
||||
}
|
||||
}
|
||||
|
||||
void shake128(unsigned char *out, unsigned long long outlen,
|
||||
const unsigned char *in, unsigned long long inlen)
|
||||
{
|
||||
unsigned long long i;
|
||||
uint64_t s[25];
|
||||
unsigned char d[SHAKE128_RATE];
|
||||
|
||||
for (i = 0; i < 25; i++) {
|
||||
s[i] = 0;
|
||||
}
|
||||
keccak_absorb(s, SHAKE128_RATE, in, inlen, 0x1F);
|
||||
|
||||
keccak_squeezeblocks(out, outlen / SHAKE128_RATE, s, SHAKE128_RATE);
|
||||
out += (outlen / SHAKE128_RATE) * SHAKE128_RATE;
|
||||
|
||||
if (outlen % SHAKE128_RATE) {
|
||||
keccak_squeezeblocks(d, 1, s, SHAKE128_RATE);
|
||||
for (i = 0; i < outlen % SHAKE128_RATE; i++) {
|
||||
out[i] = d[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void shake256(unsigned char *output, unsigned long long outlen,
|
||||
const unsigned char *in, unsigned long long inlen)
|
||||
{
|
||||
unsigned long long i;
|
||||
uint64_t s[25];
|
||||
unsigned char d[SHAKE256_RATE];
|
||||
|
||||
for (i = 0; i < 25; i++) {
|
||||
s[i] = 0;
|
||||
}
|
||||
keccak_absorb(s, SHAKE256_RATE, in, inlen, 0x1F);
|
||||
|
||||
keccak_squeezeblocks(output, outlen / SHAKE256_RATE, s, SHAKE256_RATE);
|
||||
output += (outlen / SHAKE256_RATE) * SHAKE256_RATE;
|
||||
|
||||
if (outlen % SHAKE256_RATE) {
|
||||
keccak_squeezeblocks(d, 1, s, SHAKE256_RATE);
|
||||
for (i = 0; i < outlen % SHAKE256_RATE; i++) {
|
||||
output[i] = d[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,12 +1,13 @@
|
||||
#ifndef FIPS202_H
|
||||
#define FIPS202_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define SHAKE128_RATE 168
|
||||
#define SHAKE256_RATE 136
|
||||
|
||||
void shake128(unsigned char *output, unsigned int outputByteLen, const unsigned char *input, unsigned int inputByteLen);
|
||||
void shake256(unsigned char *output, unsigned int outputByteLen, const unsigned char *input, unsigned int inputByteLen);
|
||||
void shake128(unsigned char *out, unsigned long long outlen,
|
||||
const unsigned char *in, unsigned long long inlen);
|
||||
|
||||
void shake256(unsigned char *out, unsigned long long outlen,
|
||||
const unsigned char *in, unsigned long long inlen);
|
||||
|
||||
#endif
|
||||
|
166
hash.c
166
hash.c
@ -11,8 +11,6 @@ Public domain.
|
||||
#include "hash.h"
|
||||
#include "fips202.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <openssl/sha.h>
|
||||
@ -20,117 +18,113 @@ Public domain.
|
||||
unsigned char* addr_to_byte(unsigned char *bytes, const uint32_t addr[8])
|
||||
{
|
||||
#if IS_LITTLE_ENDIAN==1
|
||||
int i = 0;
|
||||
for(i=0;i<8;i++)
|
||||
to_byte(bytes+i*4, addr[i],4);
|
||||
return bytes;
|
||||
int i;
|
||||
for (i = 0; i < 8; i++) {
|
||||
to_byte(bytes + i*4, addr[i], 4);
|
||||
}
|
||||
#else
|
||||
memcpy(bytes, addr, 32);
|
||||
return bytes;
|
||||
memcpy(bytes, addr, 32);
|
||||
#endif
|
||||
return bytes;
|
||||
}
|
||||
|
||||
static int core_hash(unsigned char *out, const unsigned int type, const unsigned char *key, unsigned int keylen, const unsigned char *in, unsigned long long inlen, int n)
|
||||
static int core_hash(unsigned char *out, const unsigned int type,
|
||||
const unsigned char *key, unsigned int keylen,
|
||||
const unsigned char *in, unsigned long long inlen, int n)
|
||||
{
|
||||
unsigned long long i = 0;
|
||||
unsigned char buf[inlen + n + keylen];
|
||||
unsigned long long i = 0;
|
||||
unsigned char buf[inlen + n + keylen];
|
||||
|
||||
// Input is (toByte(X, 32) || KEY || M)
|
||||
/* Input is of the form (toByte(X, 32) || KEY || M). */
|
||||
|
||||
// set toByte
|
||||
to_byte(buf, type, n);
|
||||
to_byte(buf, type, n);
|
||||
|
||||
for (i=0; i < keylen; i++) {
|
||||
buf[i+n] = key[i];
|
||||
}
|
||||
for (i=0; i < keylen; i++) {
|
||||
buf[i+n] = key[i];
|
||||
}
|
||||
|
||||
for (i=0; i < inlen; i++) {
|
||||
buf[keylen + n + i] = in[i];
|
||||
}
|
||||
for (i=0; i < inlen; i++) {
|
||||
buf[keylen + n + i] = in[i];
|
||||
}
|
||||
|
||||
if (n == 32 && XMSS_FUNC == XMSS_SHA2) {
|
||||
SHA256(buf, inlen + keylen + n, out);
|
||||
}
|
||||
else if (n == 32 && XMSS_FUNC == XMSS_SHAKE) {
|
||||
shake128(out, 32, buf, inlen + keylen + n);
|
||||
}
|
||||
else if (n == 64 && XMSS_FUNC == XMSS_SHA2) {
|
||||
SHA512(buf, inlen + keylen + n, out);
|
||||
}
|
||||
else if (n == 64 && XMSS_FUNC == XMSS_SHAKE) {
|
||||
shake256(out, 64, buf, inlen + keylen + n);
|
||||
}
|
||||
else {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
if (n == 32 && XMSS_FUNC == XMSS_SHA2) {
|
||||
SHA256(buf, inlen + keylen + n, out);
|
||||
}
|
||||
else if (n == 32 && XMSS_FUNC == XMSS_SHAKE) {
|
||||
shake128(out, 32, buf, inlen + keylen + n);
|
||||
}
|
||||
else if (n == 64 && XMSS_FUNC == XMSS_SHA2) {
|
||||
SHA512(buf, inlen + keylen + n, out);
|
||||
}
|
||||
else if (n == 64 && XMSS_FUNC == XMSS_SHAKE) {
|
||||
shake256(out, 64, buf, inlen + keylen + n);
|
||||
}
|
||||
else {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Implements PRF
|
||||
*/
|
||||
int prf(unsigned char *out, const unsigned char *in, const unsigned char *key, unsigned int keylen)
|
||||
int prf(unsigned char *out, const unsigned char *in,
|
||||
const unsigned char *key, unsigned int keylen)
|
||||
{
|
||||
return core_hash(out, 3, key, keylen, in, 32, keylen);
|
||||
return core_hash(out, 3, key, keylen, in, 32, keylen);
|
||||
}
|
||||
|
||||
/*
|
||||
* Implemts H_msg
|
||||
*/
|
||||
int h_msg(unsigned char *out, const unsigned char *in, unsigned long long inlen, const unsigned char *key, const unsigned int keylen)
|
||||
int h_msg(unsigned char *out,
|
||||
const unsigned char *in, unsigned long long inlen,
|
||||
const unsigned char *key, const unsigned int keylen)
|
||||
{
|
||||
if (keylen != 3*XMSS_N){
|
||||
fprintf(stderr, "H_msg takes 3n-bit keys, we got n=%d but a keylength of %d.\n", XMSS_N, keylen);
|
||||
return 1;
|
||||
}
|
||||
return core_hash(out, 2, key, keylen, in, inlen, XMSS_N);
|
||||
return core_hash(out, 2, key, keylen, in, inlen, XMSS_N);
|
||||
}
|
||||
|
||||
/**
|
||||
* We assume the left half is in in[0]...in[n-1]
|
||||
*/
|
||||
int hash_h(unsigned char *out, const unsigned char *in, const unsigned char *pub_seed, uint32_t addr[8])
|
||||
int hash_h(unsigned char *out, const unsigned char *in,
|
||||
const unsigned char *pub_seed, uint32_t addr[8])
|
||||
{
|
||||
unsigned char buf[2*XMSS_N];
|
||||
unsigned char key[XMSS_N];
|
||||
unsigned char bitmask[2*XMSS_N];
|
||||
unsigned char byte_addr[32];
|
||||
unsigned int i;
|
||||
unsigned char buf[2*XMSS_N];
|
||||
unsigned char key[XMSS_N];
|
||||
unsigned char bitmask[2*XMSS_N];
|
||||
unsigned char byte_addr[32];
|
||||
unsigned int i;
|
||||
|
||||
setKeyAndMask(addr, 0);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(key, byte_addr, pub_seed, XMSS_N);
|
||||
// Use MSB order
|
||||
setKeyAndMask(addr, 1);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(bitmask, byte_addr, pub_seed, XMSS_N);
|
||||
setKeyAndMask(addr, 2);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(bitmask+XMSS_N, byte_addr, pub_seed, XMSS_N);
|
||||
for (i = 0; i < 2*XMSS_N; i++) {
|
||||
buf[i] = in[i] ^ bitmask[i];
|
||||
}
|
||||
return core_hash(out, 1, key, XMSS_N, buf, 2*XMSS_N, XMSS_N);
|
||||
set_key_and_mask(addr, 0);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(key, byte_addr, pub_seed, XMSS_N);
|
||||
// Use MSB order
|
||||
set_key_and_mask(addr, 1);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(bitmask, byte_addr, pub_seed, XMSS_N);
|
||||
set_key_and_mask(addr, 2);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(bitmask+XMSS_N, byte_addr, pub_seed, XMSS_N);
|
||||
for (i = 0; i < 2*XMSS_N; i++) {
|
||||
buf[i] = in[i] ^ bitmask[i];
|
||||
}
|
||||
return core_hash(out, 1, key, XMSS_N, buf, 2*XMSS_N, XMSS_N);
|
||||
}
|
||||
|
||||
int hash_f(unsigned char *out, const unsigned char *in, const unsigned char *pub_seed, uint32_t addr[8])
|
||||
int hash_f(unsigned char *out, const unsigned char *in,
|
||||
const unsigned char *pub_seed, uint32_t addr[8])
|
||||
{
|
||||
unsigned char buf[XMSS_N];
|
||||
unsigned char key[XMSS_N];
|
||||
unsigned char bitmask[XMSS_N];
|
||||
unsigned char byte_addr[32];
|
||||
unsigned int i;
|
||||
unsigned char buf[XMSS_N];
|
||||
unsigned char key[XMSS_N];
|
||||
unsigned char bitmask[XMSS_N];
|
||||
unsigned char byte_addr[32];
|
||||
unsigned int i;
|
||||
|
||||
setKeyAndMask(addr, 0);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(key, byte_addr, pub_seed, XMSS_N);
|
||||
set_key_and_mask(addr, 0);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(key, byte_addr, pub_seed, XMSS_N);
|
||||
|
||||
setKeyAndMask(addr, 1);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(bitmask, byte_addr, pub_seed, XMSS_N);
|
||||
set_key_and_mask(addr, 1);
|
||||
addr_to_byte(byte_addr, addr);
|
||||
prf(bitmask, byte_addr, pub_seed, XMSS_N);
|
||||
|
||||
for (i = 0; i < XMSS_N; i++) {
|
||||
buf[i] = in[i] ^ bitmask[i];
|
||||
}
|
||||
return core_hash(out, 0, key, XMSS_N, buf, XMSS_N, XMSS_N);
|
||||
for (i = 0; i < XMSS_N; i++) {
|
||||
buf[i] = in[i] ^ bitmask[i];
|
||||
}
|
||||
return core_hash(out, 0, key, XMSS_N, buf, XMSS_N, XMSS_N);
|
||||
}
|
||||
|
17
hash.h
17
hash.h
@ -11,9 +11,18 @@ Public domain.
|
||||
#define IS_LITTLE_ENDIAN 1
|
||||
|
||||
unsigned char* addr_to_byte(unsigned char *bytes, const uint32_t addr[8]);
|
||||
int prf(unsigned char *out, const unsigned char *in, const unsigned char *key, unsigned int keylen);
|
||||
int h_msg(unsigned char *out,const unsigned char *in,unsigned long long inlen, const unsigned char *key, const unsigned int keylen);
|
||||
int hash_h(unsigned char *out, const unsigned char *in, const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
int hash_f(unsigned char *out, const unsigned char *in, const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
|
||||
int prf(unsigned char *out, const unsigned char *in,
|
||||
const unsigned char *key, unsigned int keylen);
|
||||
|
||||
int h_msg(unsigned char *out,
|
||||
const unsigned char *in, unsigned long long inlen,
|
||||
const unsigned char *key, const unsigned int keylen);
|
||||
|
||||
int hash_h(unsigned char *out, const unsigned char *in,
|
||||
const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
|
||||
int hash_f(unsigned char *out, const unsigned char *in,
|
||||
const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
|
||||
#endif
|
||||
|
@ -6,53 +6,54 @@ Public domain.
|
||||
*/
|
||||
#include <stdint.h>
|
||||
|
||||
void setLayerADRS(uint32_t adrs[8], uint32_t layer){
|
||||
adrs[0] = layer;
|
||||
void set_layer_addr(uint32_t addr[8], uint32_t layer) {
|
||||
addr[0] = layer;
|
||||
}
|
||||
|
||||
void setTreeADRS(uint32_t adrs[8], uint64_t tree){
|
||||
adrs[1] = (uint32_t) (tree >> 32);
|
||||
adrs[2] = (uint32_t) tree;
|
||||
void set_tree_addr(uint32_t addr[8], uint64_t tree) {
|
||||
addr[1] = (uint32_t) (tree >> 32);
|
||||
addr[2] = (uint32_t) tree;
|
||||
}
|
||||
|
||||
void setType(uint32_t adrs[8], uint32_t type){
|
||||
adrs[3] = type;
|
||||
int i;
|
||||
for(i = 4; i < 8; i++){
|
||||
adrs[i] = 0;
|
||||
}
|
||||
void set_type(uint32_t addr[8], uint32_t type) {
|
||||
int i;
|
||||
|
||||
addr[3] = type;
|
||||
for (i = 4; i < 8; i++) {
|
||||
addr[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void setKeyAndMask(uint32_t adrs[8], uint32_t keyAndMask){
|
||||
adrs[7] = keyAndMask;
|
||||
void set_key_and_mask(uint32_t addr[8], uint32_t key_and_mask) {
|
||||
addr[7] = key_and_mask;
|
||||
}
|
||||
|
||||
// OTS
|
||||
/* These functions are used for OTS addresses. */
|
||||
|
||||
void setOTSADRS(uint32_t adrs[8], uint32_t ots){
|
||||
adrs[4] = ots;
|
||||
void set_ots_addr(uint32_t addr[8], uint32_t ots) {
|
||||
addr[4] = ots;
|
||||
}
|
||||
|
||||
void setChainADRS(uint32_t adrs[8], uint32_t chain){
|
||||
adrs[5] = chain;
|
||||
void set_chain_addr(uint32_t addr[8], uint32_t chain) {
|
||||
addr[5] = chain;
|
||||
}
|
||||
|
||||
void setHashADRS(uint32_t adrs[8], uint32_t hash){
|
||||
adrs[6] = hash;
|
||||
void set_hash_addr(uint32_t addr[8], uint32_t hash) {
|
||||
addr[6] = hash;
|
||||
}
|
||||
|
||||
// L-tree
|
||||
/* This function is used for L-trees. */
|
||||
|
||||
void setLtreeADRS(uint32_t adrs[8], uint32_t ltree){
|
||||
adrs[4] = ltree;
|
||||
void set_ltree_addr(uint32_t addr[8], uint32_t ltree) {
|
||||
addr[4] = ltree;
|
||||
}
|
||||
|
||||
// Hash Tree & L-tree
|
||||
/* These functions are used for hash tree addresses. */
|
||||
|
||||
void setTreeHeight(uint32_t adrs[8], uint32_t treeHeight){
|
||||
adrs[5] = treeHeight;
|
||||
void set_tree_height(uint32_t addr[8], uint32_t treeHeight) {
|
||||
addr[5] = treeHeight;
|
||||
}
|
||||
|
||||
void setTreeIndex(uint32_t adrs[8], uint32_t treeIndex){
|
||||
adrs[6] = treeIndex;
|
||||
}
|
||||
void set_tree_index(uint32_t addr[8], uint32_t treeIndex) {
|
||||
addr[6] = treeIndex;
|
||||
}
|
||||
|
@ -7,31 +7,28 @@ Public domain.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
void setLayerADRS(uint32_t adrs[8], uint32_t layer);
|
||||
void set_layer_addr(uint32_t addr[8], uint32_t layer);
|
||||
|
||||
void setTreeADRS(uint32_t adrs[8], uint64_t tree);
|
||||
void set_tree_addr(uint32_t addr[8], uint64_t tree);
|
||||
|
||||
void setType(uint32_t adrs[8], uint32_t type);
|
||||
void set_type(uint32_t addr[8], uint32_t type);
|
||||
|
||||
void setKeyAndMask(uint32_t adrs[8], uint32_t keyAndMask);
|
||||
void set_key_and_mask(uint32_t addr[8], uint32_t key_and_mask);
|
||||
|
||||
// OTS
|
||||
/* These functions are used for OTS addresses. */
|
||||
|
||||
void setOTSADRS(uint32_t adrs[8], uint32_t ots);
|
||||
void set_ots_addr(uint32_t addr[8], uint32_t ots);
|
||||
|
||||
void setChainADRS(uint32_t adrs[8], uint32_t chain);
|
||||
void set_chain_addr(uint32_t addr[8], uint32_t chain);
|
||||
|
||||
void setHashADRS(uint32_t adrs[8], uint32_t hash);
|
||||
void set_hash_addr(uint32_t addr[8], uint32_t hash);
|
||||
|
||||
// L-tree
|
||||
/* This function is used for L-trees. */
|
||||
|
||||
void setLtreeADRS(uint32_t adrs[8], uint32_t ltree);
|
||||
|
||||
// Hash Tree & L-tree
|
||||
|
||||
void setTreeHeight(uint32_t adrs[8], uint32_t treeHeight);
|
||||
|
||||
void setTreeIndex(uint32_t adrs[8], uint32_t treeIndex);
|
||||
void set_ltree_addr(uint32_t addr[8], uint32_t ltree);
|
||||
|
||||
/* These functions are used for hash tree addresses. */
|
||||
|
||||
void set_tree_height(uint32_t addr[8], uint32_t treeHeight);
|
||||
|
||||
void set_tree_index(uint32_t addr[8], uint32_t treeIndex);
|
||||
|
@ -2,37 +2,40 @@
|
||||
This code was taken from the SPHINCS reference implementation and is public domain.
|
||||
*/
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
|
||||
/* it's really stupid that there isn't a syscall for this */
|
||||
|
||||
static int fd = -1;
|
||||
|
||||
void randombytes(unsigned char *x, unsigned long long xlen)
|
||||
{
|
||||
int i;
|
||||
int i;
|
||||
|
||||
if (fd == -1) {
|
||||
for (;;) {
|
||||
fd = open("/dev/urandom", O_RDONLY);
|
||||
if (fd != -1) break;
|
||||
sleep(1);
|
||||
}
|
||||
}
|
||||
|
||||
while (xlen > 0) {
|
||||
if (xlen < 1048576) i = xlen; else i = 1048576;
|
||||
|
||||
i = read(fd, x, i);
|
||||
if (i < 1) {
|
||||
sleep(1);
|
||||
continue;
|
||||
if (fd == -1) {
|
||||
for (;;) {
|
||||
fd = open("/dev/urandom", O_RDONLY);
|
||||
if (fd != -1) {
|
||||
break;
|
||||
}
|
||||
sleep(1);
|
||||
}
|
||||
}
|
||||
|
||||
x += i;
|
||||
xlen -= i;
|
||||
}
|
||||
while (xlen > 0) {
|
||||
if (xlen < 1048576) {
|
||||
i = xlen;
|
||||
}
|
||||
else {
|
||||
i = 1048576;
|
||||
}
|
||||
|
||||
i = read(fd, x, i);
|
||||
if (i < 1) {
|
||||
sleep(1);
|
||||
continue;
|
||||
}
|
||||
|
||||
x += i;
|
||||
xlen -= i;
|
||||
}
|
||||
}
|
||||
|
@ -34,7 +34,7 @@ int main()
|
||||
|
||||
wots_pkgen(pk1, seed, pub_seed, addr);
|
||||
wots_sign(sig, msg, seed, pub_seed, addr);
|
||||
wots_pkFromSig(pk2, sig, msg, pub_seed, addr);
|
||||
wots_pk_from_sig(pk2, sig, msg, pub_seed, addr);
|
||||
|
||||
for (i = 0; i < sig_len; i++)
|
||||
if (pk1[i] != pk2[i]) {
|
||||
|
178
wots.c
178
wots.c
@ -5,9 +5,7 @@ Joost Rijneveld
|
||||
Public domain.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "stdio.h"
|
||||
#include "stdint.h"
|
||||
#include <stdint.h>
|
||||
#include "xmss_commons.h"
|
||||
#include "hash.h"
|
||||
#include "wots.h"
|
||||
@ -21,12 +19,13 @@ Public domain.
|
||||
*/
|
||||
static void expand_seed(unsigned char *outseeds, const unsigned char *inseed)
|
||||
{
|
||||
uint32_t i = 0;
|
||||
unsigned char ctr[32];
|
||||
for(i = 0; i < XMSS_WOTS_LEN; i++){
|
||||
to_byte(ctr, i, 32);
|
||||
prf(outseeds + i*XMSS_N, ctr, inseed, XMSS_N);
|
||||
}
|
||||
uint32_t i;
|
||||
unsigned char ctr[32];
|
||||
|
||||
for (i = 0; i < XMSS_WOTS_LEN; i++) {
|
||||
to_byte(ctr, i, 32);
|
||||
prf(outseeds + i*XMSS_N, ctr, inseed, XMSS_N);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -36,115 +35,120 @@ static void expand_seed(unsigned char *outseeds, const unsigned char *inseed)
|
||||
* interpretes in as start-th value of the chain
|
||||
* addr has to contain the address of the chain
|
||||
*/
|
||||
static void gen_chain(unsigned char *out, const unsigned char *in, unsigned int start, unsigned int steps, const unsigned char *pub_seed, uint32_t addr[8])
|
||||
static void gen_chain(unsigned char *out, const unsigned char *in,
|
||||
unsigned int start, unsigned int steps,
|
||||
const unsigned char *pub_seed, uint32_t addr[8])
|
||||
{
|
||||
uint32_t i, j;
|
||||
for (j = 0; j < XMSS_N; j++)
|
||||
out[j] = in[j];
|
||||
uint32_t i;
|
||||
|
||||
for (i = start; i < (start+steps) && i < XMSS_WOTS_W; i++) {
|
||||
setHashADRS(addr, i);
|
||||
hash_f(out, out, pub_seed, addr);
|
||||
}
|
||||
for (i = 0; i < XMSS_N; i++) {
|
||||
out[i] = in[i];
|
||||
}
|
||||
|
||||
for (i = start; i < (start+steps) && i < XMSS_WOTS_W; i++) {
|
||||
set_hash_addr(addr, i);
|
||||
hash_f(out, out, pub_seed, addr);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* base_w algorithm as described in draft.
|
||||
*
|
||||
*
|
||||
*/
|
||||
static void base_w(int *output, const int out_len, const unsigned char *input)
|
||||
{
|
||||
int in = 0;
|
||||
int out = 0;
|
||||
uint8_t total = 0;
|
||||
int bits = 0;
|
||||
int consumed = 0;
|
||||
int in = 0;
|
||||
int out = 0;
|
||||
uint8_t total = 0;
|
||||
int bits = 0;
|
||||
int i;
|
||||
|
||||
for (consumed = 0; consumed < out_len; consumed++) {
|
||||
if (bits == 0) {
|
||||
total = input[in];
|
||||
in++;
|
||||
bits += 8;
|
||||
for (i = 0; i < out_len; i++) {
|
||||
if (bits == 0) {
|
||||
total = input[in];
|
||||
in++;
|
||||
bits += 8;
|
||||
}
|
||||
bits -= XMSS_WOTS_LOG_W;
|
||||
output[out] = (total >> bits) & (XMSS_WOTS_W - 1);
|
||||
out++;
|
||||
}
|
||||
bits -= XMSS_WOTS_LOG_W;
|
||||
output[out] = (total >> bits) & (XMSS_WOTS_W - 1);
|
||||
out++;
|
||||
}
|
||||
}
|
||||
|
||||
void wots_pkgen(unsigned char *pk, const unsigned char *sk, const unsigned char *pub_seed, uint32_t addr[8])
|
||||
void wots_pkgen(unsigned char *pk, const unsigned char *sk,
|
||||
const unsigned char *pub_seed, uint32_t addr[8])
|
||||
{
|
||||
uint32_t i;
|
||||
expand_seed(pk, sk);
|
||||
for (i=0; i < XMSS_WOTS_LEN; i++) {
|
||||
setChainADRS(addr, i);
|
||||
gen_chain(pk+i*XMSS_N, pk+i*XMSS_N, 0, XMSS_WOTS_W-1, pub_seed, addr);
|
||||
}
|
||||
uint32_t i;
|
||||
|
||||
expand_seed(pk, sk);
|
||||
for (i = 0; i < XMSS_WOTS_LEN; i++) {
|
||||
set_chain_addr(addr, i);
|
||||
gen_chain(pk + i*XMSS_N, pk + i*XMSS_N,
|
||||
0, XMSS_WOTS_W-1, pub_seed, addr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void wots_sign(unsigned char *sig, const unsigned char *msg, const unsigned char *sk, const unsigned char *pub_seed, uint32_t addr[8])
|
||||
void wots_sign(unsigned char *sig, const unsigned char *msg,
|
||||
const unsigned char *sk, const unsigned char *pub_seed,
|
||||
uint32_t addr[8])
|
||||
{
|
||||
int basew[XMSS_WOTS_LEN];
|
||||
int csum = 0;
|
||||
uint32_t i = 0;
|
||||
int basew[XMSS_WOTS_LEN];
|
||||
int csum = 0;
|
||||
unsigned char csum_bytes[((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8];
|
||||
int csum_basew[XMSS_WOTS_LEN2];
|
||||
uint32_t i;
|
||||
|
||||
base_w(basew, XMSS_WOTS_LEN1, msg);
|
||||
base_w(basew, XMSS_WOTS_LEN1, msg);
|
||||
|
||||
for (i=0; i < XMSS_WOTS_LEN1; i++) {
|
||||
csum += XMSS_WOTS_W - 1 - basew[i];
|
||||
}
|
||||
for (i = 0; i < XMSS_WOTS_LEN1; i++) {
|
||||
csum += XMSS_WOTS_W - 1 - basew[i];
|
||||
}
|
||||
|
||||
csum = csum << (8 - ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) % 8));
|
||||
csum = csum << (8 - ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) % 8));
|
||||
|
||||
int len_2_bytes = ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8;
|
||||
to_byte(csum_bytes, csum, ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8);
|
||||
base_w(csum_basew, XMSS_WOTS_LEN2, csum_bytes);
|
||||
|
||||
unsigned char csum_bytes[len_2_bytes];
|
||||
to_byte(csum_bytes, csum, len_2_bytes);
|
||||
for (i = 0; i < XMSS_WOTS_LEN2; i++) {
|
||||
basew[XMSS_WOTS_LEN1 + i] = csum_basew[i];
|
||||
}
|
||||
|
||||
int csum_basew[XMSS_WOTS_LEN2];
|
||||
base_w(csum_basew, XMSS_WOTS_LEN2, csum_bytes);
|
||||
expand_seed(sig, sk);
|
||||
|
||||
for (i = 0; i < XMSS_WOTS_LEN2; i++) {
|
||||
basew[XMSS_WOTS_LEN1 + i] = csum_basew[i];
|
||||
}
|
||||
|
||||
expand_seed(sig, sk);
|
||||
|
||||
for (i = 0; i < XMSS_WOTS_LEN; i++) {
|
||||
setChainADRS(addr, i);
|
||||
gen_chain(sig+i*XMSS_N, sig+i*XMSS_N, 0, basew[i], pub_seed, addr);
|
||||
}
|
||||
for (i = 0; i < XMSS_WOTS_LEN; i++) {
|
||||
set_chain_addr(addr, i);
|
||||
gen_chain(sig + i*XMSS_N, sig + i*XMSS_N,
|
||||
0, basew[i], pub_seed, addr);
|
||||
}
|
||||
}
|
||||
|
||||
void wots_pkFromSig(unsigned char *pk, const unsigned char *sig, const unsigned char *msg, const unsigned char *pub_seed, uint32_t addr[8])
|
||||
void wots_pk_from_sig(unsigned char *pk,
|
||||
const unsigned char *sig, const unsigned char *msg,
|
||||
const unsigned char *pub_seed, uint32_t addr[8])
|
||||
{
|
||||
int basew[XMSS_WOTS_LEN];
|
||||
int csum = 0;
|
||||
uint32_t i = 0;
|
||||
int basew[XMSS_WOTS_LEN];
|
||||
int csum = 0;
|
||||
unsigned char csum_bytes[((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8];
|
||||
int csum_basew[XMSS_WOTS_LEN2];
|
||||
uint32_t i = 0;
|
||||
|
||||
base_w(basew, XMSS_WOTS_LEN1, msg);
|
||||
base_w(basew, XMSS_WOTS_LEN1, msg);
|
||||
|
||||
for (i=0; i < XMSS_WOTS_LEN1; i++) {
|
||||
csum += XMSS_WOTS_W - 1 - basew[i];
|
||||
}
|
||||
for (i=0; i < XMSS_WOTS_LEN1; i++) {
|
||||
csum += XMSS_WOTS_W - 1 - basew[i];
|
||||
}
|
||||
|
||||
csum = csum << (8 - ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) % 8));
|
||||
csum = csum << (8 - ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) % 8));
|
||||
|
||||
int len_2_bytes = ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8;
|
||||
to_byte(csum_bytes, csum, ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8);
|
||||
base_w(csum_basew, XMSS_WOTS_LEN2, csum_bytes);
|
||||
|
||||
unsigned char csum_bytes[len_2_bytes];
|
||||
to_byte(csum_bytes, csum, len_2_bytes);
|
||||
|
||||
int csum_basew[XMSS_WOTS_LEN2];
|
||||
base_w(csum_basew, XMSS_WOTS_LEN2, csum_bytes);
|
||||
|
||||
for (i = 0; i < XMSS_WOTS_LEN2; i++) {
|
||||
basew[XMSS_WOTS_LEN1 + i] = csum_basew[i];
|
||||
}
|
||||
for (i=0; i < XMSS_WOTS_LEN; i++) {
|
||||
setChainADRS(addr, i);
|
||||
gen_chain(pk+i*XMSS_N, sig+i*XMSS_N, basew[i], XMSS_WOTS_W-1-basew[i], pub_seed, addr);
|
||||
}
|
||||
for (i = 0; i < XMSS_WOTS_LEN2; i++) {
|
||||
basew[XMSS_WOTS_LEN1 + i] = csum_basew[i];
|
||||
}
|
||||
for (i=0; i < XMSS_WOTS_LEN; i++) {
|
||||
set_chain_addr(addr, i);
|
||||
gen_chain(pk + i*XMSS_N, sig + i*XMSS_N,
|
||||
basew[i], XMSS_WOTS_W-1-basew[i], pub_seed, addr);
|
||||
}
|
||||
}
|
||||
|
13
wots.h
13
wots.h
@ -16,18 +16,21 @@ Public domain.
|
||||
*
|
||||
* Places the computed public key at address pk.
|
||||
*/
|
||||
void wots_pkgen(unsigned char *pk, const unsigned char *sk, const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
void wots_pkgen(unsigned char *pk, const unsigned char *sk,
|
||||
const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
|
||||
/**
|
||||
* Takes a m-byte message and the 32-byte seed for the secret key to compute a signature that is placed at "sig".
|
||||
*
|
||||
*/
|
||||
void wots_sign(unsigned char *sig, const unsigned char *msg, const unsigned char *sk, const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
void wots_sign(unsigned char *sig, const unsigned char *msg,
|
||||
const unsigned char *sk, const unsigned char *pub_seed,
|
||||
uint32_t addr[8]);
|
||||
|
||||
/**
|
||||
* Takes a WOTS signature, a m-byte message and computes a WOTS public key that it places at pk.
|
||||
*
|
||||
*/
|
||||
void wots_pkFromSig(unsigned char *pk, const unsigned char *sig, const unsigned char *msg, const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
void wots_pk_from_sig(unsigned char *pk,
|
||||
const unsigned char *sig, const unsigned char *msg,
|
||||
const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
|
||||
#endif
|
||||
|
17
xmss.c
17
xmss.c
@ -1,4 +1,5 @@
|
||||
#include <stdint.h>
|
||||
|
||||
#include "params_runtime.h"
|
||||
#include "xmss_core.h"
|
||||
|
||||
@ -23,8 +24,8 @@ int xmss_keypair(unsigned char *pk, unsigned char *sk, const uint32_t oid)
|
||||
}
|
||||
|
||||
int xmss_sign(unsigned char *sk,
|
||||
unsigned char *sm, unsigned long long *smlen,
|
||||
const unsigned char *m, unsigned long long mlen)
|
||||
unsigned char *sm, unsigned long long *smlen,
|
||||
const unsigned char *m, unsigned long long mlen)
|
||||
{
|
||||
uint32_t oid = 0;
|
||||
unsigned int i;
|
||||
@ -39,8 +40,8 @@ int xmss_sign(unsigned char *sk,
|
||||
}
|
||||
|
||||
int xmss_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk)
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk)
|
||||
{
|
||||
uint32_t oid = 0;
|
||||
unsigned int i;
|
||||
@ -69,8 +70,8 @@ int xmssmt_keypair(unsigned char *pk, unsigned char *sk, const uint32_t oid)
|
||||
}
|
||||
|
||||
int xmssmt_sign(unsigned char *sk,
|
||||
unsigned char *sm, unsigned long long *smlen,
|
||||
const unsigned char *m, unsigned long long mlen)
|
||||
unsigned char *sm, unsigned long long *smlen,
|
||||
const unsigned char *m, unsigned long long mlen)
|
||||
{
|
||||
uint32_t oid = 0;
|
||||
unsigned int i;
|
||||
@ -85,8 +86,8 @@ int xmssmt_sign(unsigned char *sk,
|
||||
}
|
||||
|
||||
int xmssmt_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk)
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk)
|
||||
{
|
||||
uint32_t oid = 0;
|
||||
unsigned int i;
|
||||
|
21
xmss.h
21
xmss.h
@ -9,19 +9,25 @@
|
||||
* Format pk: [oid || root || PUB_SEED]
|
||||
*/
|
||||
int xmss_keypair(unsigned char *pk, unsigned char *sk, const uint32_t oid);
|
||||
|
||||
/**
|
||||
* Signs a message.
|
||||
* Returns
|
||||
* 1. an array containing the signature followed by the message AND
|
||||
* 2. an updated secret key!
|
||||
*/
|
||||
int xmss_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen);
|
||||
int xmss_sign(unsigned char *sk,
|
||||
unsigned char *sm, unsigned long long *smlen,
|
||||
const unsigned char *m, unsigned long long mlen);
|
||||
|
||||
/**
|
||||
* Verifies a given message signature pair under a given public key.
|
||||
*
|
||||
* Note: msg and msglen are pure outputs which carry the message in case verification succeeds. The (input) message is assumed to be within sig_msg which has the form (sig||msg).
|
||||
*/
|
||||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk);
|
||||
int xmss_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk);
|
||||
|
||||
/*
|
||||
* Generates a XMSSMT key pair for a given parameter set.
|
||||
@ -29,16 +35,21 @@ int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigne
|
||||
* Format pk: [oid || root || PUB_SEED]
|
||||
*/
|
||||
int xmssmt_keypair(unsigned char *pk, unsigned char *sk, const uint32_t oid);
|
||||
|
||||
/**
|
||||
* Signs a message.
|
||||
* Returns
|
||||
* 1. an array containing the signature followed by the message AND
|
||||
* 2. an updated secret key!
|
||||
*/
|
||||
int xmssmt_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen);
|
||||
int xmssmt_sign(unsigned char *sk,
|
||||
unsigned char *sm, unsigned long long *smlen,
|
||||
const unsigned char *m, unsigned long long mlen);
|
||||
|
||||
/**
|
||||
* Verifies a given message signature pair under a given public key.
|
||||
*/
|
||||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk);
|
||||
int xmssmt_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk);
|
||||
#endif
|
||||
|
||||
|
506
xmss_commons.c
506
xmss_commons.c
@ -5,38 +5,40 @@ Joost Rijneveld
|
||||
Public domain.
|
||||
*/
|
||||
|
||||
#include "xmss_commons.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "wots.h"
|
||||
#include "hash.h"
|
||||
#include "hash_address.h"
|
||||
#include "params.h"
|
||||
#include "wots.h"
|
||||
#include "xmss_commons.h"
|
||||
|
||||
void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes)
|
||||
{
|
||||
int32_t i;
|
||||
for (i = bytes-1; i >= 0; i--) {
|
||||
out[i] = in & 0xff;
|
||||
in = in >> 8;
|
||||
}
|
||||
int i;
|
||||
|
||||
for (i = bytes-1; i >= 0; i--) {
|
||||
out[i] = in & 0xff;
|
||||
in = in >> 8;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address.
|
||||
*/
|
||||
void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8])
|
||||
void gen_leaf_wots(unsigned char *leaf,
|
||||
const unsigned char *sk_seed, const unsigned char *pub_seed,
|
||||
uint32_t ltree_addr[8], uint32_t ots_addr[8])
|
||||
{
|
||||
unsigned char seed[XMSS_N];
|
||||
unsigned char pk[XMSS_WOTS_KEYSIZE];
|
||||
unsigned char seed[XMSS_N];
|
||||
unsigned char pk[XMSS_WOTS_KEYSIZE];
|
||||
|
||||
get_seed(seed, sk_seed, ots_addr);
|
||||
wots_pkgen(pk, seed, pub_seed, ots_addr);
|
||||
get_seed(seed, sk_seed, ots_addr);
|
||||
wots_pkgen(pk, seed, pub_seed, ots_addr);
|
||||
|
||||
l_tree(leaf, pk, pub_seed, ltree_addr);
|
||||
l_tree(leaf, pk, pub_seed, ltree_addr);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -45,316 +47,260 @@ void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsi
|
||||
*
|
||||
* takes XMSS_N byte sk_seed and returns XMSS_N byte seed using 32 byte address addr.
|
||||
*/
|
||||
void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8])
|
||||
void get_seed(unsigned char *seed,
|
||||
const unsigned char *sk_seed, uint32_t addr[8])
|
||||
{
|
||||
unsigned char bytes[32];
|
||||
// Make sure that chain addr, hash addr, and key bit are 0!
|
||||
setChainADRS(addr, 0);
|
||||
setHashADRS(addr, 0);
|
||||
setKeyAndMask(addr, 0);
|
||||
// Generate pseudorandom value
|
||||
addr_to_byte(bytes, addr);
|
||||
prf(seed, bytes, sk_seed, XMSS_N);
|
||||
unsigned char bytes[32];
|
||||
|
||||
// Make sure that chain addr, hash addr, and key bit are 0!
|
||||
set_chain_addr(addr, 0);
|
||||
set_hash_addr(addr, 0);
|
||||
set_key_and_mask(addr, 0);
|
||||
// Generate pseudorandom value
|
||||
addr_to_byte(bytes, addr);
|
||||
prf(seed, bytes, sk_seed, XMSS_N);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes a leaf from a WOTS public key using an L-tree.
|
||||
*/
|
||||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8])
|
||||
void l_tree(unsigned char *leaf, unsigned char *wots_pk,
|
||||
const unsigned char *pub_seed, uint32_t addr[8])
|
||||
{
|
||||
unsigned int l = XMSS_WOTS_LEN;
|
||||
uint32_t i = 0;
|
||||
uint32_t height = 0;
|
||||
uint32_t bound;
|
||||
unsigned int l = XMSS_WOTS_LEN;
|
||||
uint32_t i = 0;
|
||||
uint32_t height = 0;
|
||||
uint32_t bound;
|
||||
|
||||
//ADRS.setTreeHeight(0);
|
||||
setTreeHeight(addr, height);
|
||||
set_tree_height(addr, height);
|
||||
|
||||
while (l > 1) {
|
||||
bound = l >> 1; //floor(l / 2);
|
||||
for (i = 0; i < bound; i++) {
|
||||
//ADRS.setTreeIndex(i);
|
||||
setTreeIndex(addr, i);
|
||||
//wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS);
|
||||
hash_h(wots_pk+i*XMSS_N, wots_pk+i*2*XMSS_N, pub_seed, addr);
|
||||
}
|
||||
//if ( l % 2 == 1 ) {
|
||||
if (l & 1) {
|
||||
//pk[floor(l / 2) + 1] = pk[l];
|
||||
memcpy(wots_pk+(l>>1)*XMSS_N, wots_pk+(l-1)*XMSS_N, XMSS_N);
|
||||
//l = ceil(l / 2);
|
||||
l=(l>>1)+1;
|
||||
}
|
||||
else {
|
||||
//l = ceil(l / 2);
|
||||
l=(l>>1);
|
||||
}
|
||||
//ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
|
||||
height++;
|
||||
setTreeHeight(addr, height);
|
||||
}
|
||||
//return pk[0];
|
||||
memcpy(leaf, wots_pk, XMSS_N);
|
||||
while (l > 1) {
|
||||
bound = l >> 1;
|
||||
for (i = 0; i < bound; i++) {
|
||||
set_tree_index(addr, i);
|
||||
hash_h(wots_pk + i*XMSS_N, wots_pk + i*2*XMSS_N, pub_seed, addr);
|
||||
}
|
||||
if (l & 1) {
|
||||
memcpy(wots_pk + (l >> 1)*XMSS_N, wots_pk + (l - 1)*XMSS_N, XMSS_N);
|
||||
l = (l >> 1) + 1;
|
||||
}
|
||||
else {
|
||||
l = l >> 1;
|
||||
}
|
||||
height++;
|
||||
set_tree_height(addr, height);
|
||||
}
|
||||
memcpy(leaf, wots_pk, XMSS_N);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes a root node given a leaf and an authapth
|
||||
*/
|
||||
static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const unsigned char *pub_seed, uint32_t addr[8])
|
||||
static void validate_authpath(unsigned char *root,
|
||||
const unsigned char *leaf, unsigned long leafidx,
|
||||
const unsigned char *authpath,
|
||||
const unsigned char *pub_seed, uint32_t addr[8])
|
||||
{
|
||||
uint32_t i, j;
|
||||
unsigned char buffer[2*XMSS_N];
|
||||
uint32_t i, j;
|
||||
unsigned char buffer[2*XMSS_N];
|
||||
|
||||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left.
|
||||
// Otherwise, it is the other way around
|
||||
if (leafidx & 1) {
|
||||
for (j = 0; j < XMSS_N; j++)
|
||||
buffer[XMSS_N+j] = leaf[j];
|
||||
for (j = 0; j < XMSS_N; j++)
|
||||
buffer[j] = authpath[j];
|
||||
}
|
||||
else {
|
||||
for (j = 0; j < XMSS_N; j++)
|
||||
buffer[j] = leaf[j];
|
||||
for (j = 0; j < XMSS_N; j++)
|
||||
buffer[XMSS_N+j] = authpath[j];
|
||||
}
|
||||
authpath += XMSS_N;
|
||||
|
||||
for (i = 0; i < XMSS_TREEHEIGHT-1; i++) {
|
||||
setTreeHeight(addr, i);
|
||||
leafidx >>= 1;
|
||||
setTreeIndex(addr, leafidx);
|
||||
if (leafidx&1) {
|
||||
hash_h(buffer+XMSS_N, buffer, pub_seed, addr);
|
||||
for (j = 0; j < XMSS_N; j++)
|
||||
buffer[j] = authpath[j];
|
||||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left.
|
||||
// Otherwise, it is the other way around
|
||||
if (leafidx & 1) {
|
||||
for (j = 0; j < XMSS_N; j++) {
|
||||
buffer[XMSS_N + j] = leaf[j];
|
||||
buffer[j] = authpath[j];
|
||||
}
|
||||
}
|
||||
else {
|
||||
hash_h(buffer, buffer, pub_seed, addr);
|
||||
for (j = 0; j < XMSS_N; j++)
|
||||
buffer[j+XMSS_N] = authpath[j];
|
||||
for (j = 0; j < XMSS_N; j++) {
|
||||
buffer[j] = leaf[j];
|
||||
buffer[XMSS_N + j] = authpath[j];
|
||||
}
|
||||
}
|
||||
authpath += XMSS_N;
|
||||
}
|
||||
setTreeHeight(addr, (XMSS_TREEHEIGHT-1));
|
||||
leafidx >>= 1;
|
||||
setTreeIndex(addr, leafidx);
|
||||
hash_h(root, buffer, pub_seed, addr);
|
||||
|
||||
for (i = 0; i < XMSS_TREEHEIGHT-1; i++) {
|
||||
set_tree_height(addr, i);
|
||||
leafidx >>= 1;
|
||||
set_tree_index(addr, leafidx);
|
||||
if (leafidx & 1) {
|
||||
hash_h(buffer + XMSS_N, buffer, pub_seed, addr);
|
||||
for (j = 0; j < XMSS_N; j++) {
|
||||
buffer[j] = authpath[j];
|
||||
}
|
||||
}
|
||||
else {
|
||||
hash_h(buffer, buffer, pub_seed, addr);
|
||||
for (j = 0; j < XMSS_N; j++) {
|
||||
buffer[j + XMSS_N] = authpath[j];
|
||||
}
|
||||
}
|
||||
authpath += XMSS_N;
|
||||
}
|
||||
set_tree_height(addr, XMSS_TREEHEIGHT - 1);
|
||||
leafidx >>= 1;
|
||||
set_tree_index(addr, leafidx);
|
||||
hash_h(root, buffer, pub_seed, addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* Verifies a given message signature pair under a given public key.
|
||||
*/
|
||||
int xmss_core_sign_open(unsigned char *m, unsigned long long *mlen, const unsigned char *sm, unsigned long long smlen, const unsigned char *pk)
|
||||
int xmss_core_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk)
|
||||
{
|
||||
unsigned long long i, m_len;
|
||||
unsigned long idx=0;
|
||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE];
|
||||
unsigned char pkhash[XMSS_N];
|
||||
unsigned char root[XMSS_N];
|
||||
unsigned char msg_h[XMSS_N];
|
||||
unsigned char hash_key[3*XMSS_N];
|
||||
unsigned long long i;
|
||||
unsigned long idx = 0;
|
||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE];
|
||||
unsigned char pkhash[XMSS_N];
|
||||
unsigned char root[XMSS_N];
|
||||
unsigned char msg_h[XMSS_N];
|
||||
unsigned char hash_key[3*XMSS_N];
|
||||
|
||||
unsigned char pub_seed[XMSS_N];
|
||||
memcpy(pub_seed, pk+XMSS_N, XMSS_N);
|
||||
unsigned char pub_seed[XMSS_N];
|
||||
memcpy(pub_seed, pk + XMSS_N, XMSS_N);
|
||||
|
||||
// Init addresses
|
||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
// Init addresses
|
||||
uint32_t ots_addr[8] = {0};
|
||||
uint32_t ltree_addr[8] = {0};
|
||||
uint32_t node_addr[8] = {0};
|
||||
|
||||
setType(ots_addr, 0);
|
||||
setType(ltree_addr, 1);
|
||||
setType(node_addr, 2);
|
||||
set_type(ots_addr, 0);
|
||||
set_type(ltree_addr, 1);
|
||||
set_type(node_addr, 2);
|
||||
|
||||
// Extract index
|
||||
idx = ((unsigned long)sm[0] << 24) | ((unsigned long)sm[1] << 16) | ((unsigned long)sm[2] << 8) | sm[3];
|
||||
*mlen = smlen - XMSS_BYTES;
|
||||
|
||||
// Generate hash key (R || root || idx)
|
||||
memcpy(hash_key, sm+4,XMSS_N);
|
||||
memcpy(hash_key+XMSS_N, pk, XMSS_N);
|
||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N);
|
||||
// Extract index
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
idx |= ((unsigned long long)sm[i]) << (8*(XMSS_INDEX_LEN - 1 - i));
|
||||
}
|
||||
|
||||
sm += (XMSS_N+4);
|
||||
smlen -= (XMSS_N+4);
|
||||
// Generate hash key (R || root || idx)
|
||||
memcpy(hash_key, sm + XMSS_INDEX_LEN, XMSS_N);
|
||||
memcpy(hash_key + XMSS_N, pk, XMSS_N);
|
||||
to_byte(hash_key + 2*XMSS_N, idx, XMSS_N);
|
||||
|
||||
// hash message
|
||||
h_msg(msg_h, sm + XMSS_BYTES, *mlen, hash_key, 3*XMSS_N);
|
||||
sm += XMSS_INDEX_LEN + XMSS_N;
|
||||
|
||||
// hash message
|
||||
unsigned long long tmp_sig_len = XMSS_WOTS_KEYSIZE+XMSS_TREEHEIGHT*XMSS_N;
|
||||
m_len = smlen - tmp_sig_len;
|
||||
h_msg(msg_h, sm + tmp_sig_len, m_len, hash_key, 3*XMSS_N);
|
||||
|
||||
//-----------------------
|
||||
// Verify signature
|
||||
//-----------------------
|
||||
|
||||
// Prepare Address
|
||||
setOTSADRS(ots_addr, idx);
|
||||
// Check WOTS signature
|
||||
wots_pkFromSig(wots_pk, sm, msg_h, pub_seed, ots_addr);
|
||||
|
||||
sm += XMSS_WOTS_KEYSIZE;
|
||||
smlen -= XMSS_WOTS_KEYSIZE;
|
||||
|
||||
// Compute Ltree
|
||||
setLtreeADRS(ltree_addr, idx);
|
||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr);
|
||||
|
||||
// Compute root
|
||||
validate_authpath(root, pkhash, idx, sm, pub_seed, node_addr);
|
||||
|
||||
sm += XMSS_TREEHEIGHT*XMSS_N;
|
||||
smlen -= XMSS_TREEHEIGHT*XMSS_N;
|
||||
|
||||
for (i = 0; i < XMSS_N; i++)
|
||||
if (root[i] != pk[i])
|
||||
goto fail;
|
||||
|
||||
*mlen = smlen;
|
||||
for (i = 0; i < *mlen; i++)
|
||||
m[i] = sm[i];
|
||||
|
||||
return 0;
|
||||
|
||||
|
||||
fail:
|
||||
*mlen = smlen;
|
||||
for (i = 0; i < *mlen; i++)
|
||||
m[i] = 0;
|
||||
*mlen = -1;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Verifies a given message signature pair under a given public key.
|
||||
*/
|
||||
int xmssmt_core_sign_open(unsigned char *m, unsigned long long *mlen, const unsigned char *sm, unsigned long long smlen, const unsigned char *pk)
|
||||
{
|
||||
uint64_t idx_tree;
|
||||
uint32_t idx_leaf;
|
||||
|
||||
unsigned long long i, m_len;
|
||||
unsigned long long idx=0;
|
||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE];
|
||||
unsigned char pkhash[XMSS_N];
|
||||
unsigned char root[XMSS_N];
|
||||
unsigned char msg_h[XMSS_N];
|
||||
unsigned char hash_key[3*XMSS_N];
|
||||
|
||||
unsigned char pub_seed[XMSS_N];
|
||||
memcpy(pub_seed, pk+XMSS_N, XMSS_N);
|
||||
|
||||
// Init addresses
|
||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
|
||||
// Extract index
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
idx |= ((unsigned long long)sm[i]) << (8*(XMSS_INDEX_LEN - 1 - i));
|
||||
}
|
||||
sm += XMSS_INDEX_LEN;
|
||||
smlen -= XMSS_INDEX_LEN;
|
||||
|
||||
// Generate hash key (R || root || idx)
|
||||
memcpy(hash_key, sm,XMSS_N);
|
||||
memcpy(hash_key+XMSS_N, pk, XMSS_N);
|
||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N);
|
||||
|
||||
sm += XMSS_N;
|
||||
smlen -= XMSS_N;
|
||||
|
||||
// hash message
|
||||
unsigned long long tmp_sig_len = (XMSS_D * XMSS_WOTS_KEYSIZE) + (XMSS_FULLHEIGHT * XMSS_N);
|
||||
m_len = smlen - tmp_sig_len;
|
||||
h_msg(msg_h, sm + tmp_sig_len, m_len, hash_key, 3*XMSS_N);
|
||||
|
||||
//-----------------------
|
||||
// Verify signature
|
||||
//-----------------------
|
||||
|
||||
// Prepare Address
|
||||
idx_tree = idx >> XMSS_TREEHEIGHT;
|
||||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1));
|
||||
setLayerADRS(ots_addr, 0);
|
||||
setTreeADRS(ots_addr, idx_tree);
|
||||
setType(ots_addr, 0);
|
||||
|
||||
memcpy(ltree_addr, ots_addr, 12);
|
||||
setType(ltree_addr, 1);
|
||||
|
||||
memcpy(node_addr, ltree_addr, 12);
|
||||
setType(node_addr, 2);
|
||||
|
||||
setOTSADRS(ots_addr, idx_leaf);
|
||||
|
||||
// Check WOTS signature
|
||||
wots_pkFromSig(wots_pk, sm, msg_h, pub_seed, ots_addr);
|
||||
|
||||
sm += XMSS_WOTS_KEYSIZE;
|
||||
smlen -= XMSS_WOTS_KEYSIZE;
|
||||
|
||||
// Compute Ltree
|
||||
setLtreeADRS(ltree_addr, idx_leaf);
|
||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr);
|
||||
|
||||
// Compute root
|
||||
validate_authpath(root, pkhash, idx_leaf, sm, pub_seed, node_addr);
|
||||
|
||||
sm += XMSS_TREEHEIGHT*XMSS_N;
|
||||
smlen -= XMSS_TREEHEIGHT*XMSS_N;
|
||||
|
||||
for (i = 1; i < XMSS_D; i++) {
|
||||
// Prepare Address
|
||||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1));
|
||||
idx_tree = idx_tree >> XMSS_TREEHEIGHT;
|
||||
|
||||
setLayerADRS(ots_addr, i);
|
||||
setTreeADRS(ots_addr, idx_tree);
|
||||
setType(ots_addr, 0);
|
||||
|
||||
memcpy(ltree_addr, ots_addr, 12);
|
||||
setType(ltree_addr, 1);
|
||||
|
||||
memcpy(node_addr, ltree_addr, 12);
|
||||
setType(node_addr, 2);
|
||||
|
||||
setOTSADRS(ots_addr, idx_leaf);
|
||||
|
||||
set_ots_addr(ots_addr, idx);
|
||||
// Check WOTS signature
|
||||
wots_pkFromSig(wots_pk, sm, root, pub_seed, ots_addr);
|
||||
|
||||
wots_pk_from_sig(wots_pk, sm, msg_h, pub_seed, ots_addr);
|
||||
sm += XMSS_WOTS_KEYSIZE;
|
||||
smlen -= XMSS_WOTS_KEYSIZE;
|
||||
|
||||
// Compute Ltree
|
||||
setLtreeADRS(ltree_addr, idx_leaf);
|
||||
set_ltree_addr(ltree_addr, idx);
|
||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr);
|
||||
|
||||
// Compute root
|
||||
validate_authpath(root, pkhash, idx_leaf, sm, pub_seed, node_addr);
|
||||
|
||||
validate_authpath(root, pkhash, idx, sm, pub_seed, node_addr);
|
||||
sm += XMSS_TREEHEIGHT*XMSS_N;
|
||||
smlen -= XMSS_TREEHEIGHT*XMSS_N;
|
||||
|
||||
}
|
||||
for (i = 0; i < XMSS_N; i++) {
|
||||
if (root[i] != pk[i]) {
|
||||
for (i = 0; i < *mlen; i++) {
|
||||
m[i] = 0;
|
||||
}
|
||||
*mlen = -1;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < XMSS_N; i++)
|
||||
if (root[i] != pk[i])
|
||||
goto fail;
|
||||
for (i = 0; i < *mlen; i++) {
|
||||
m[i] = sm[i];
|
||||
}
|
||||
|
||||
*mlen = smlen;
|
||||
for (i = 0; i < *mlen; i++)
|
||||
m[i] = sm[i];
|
||||
|
||||
return 0;
|
||||
|
||||
|
||||
fail:
|
||||
*mlen = smlen;
|
||||
for (i = 0; i < *mlen; i++)
|
||||
m[i] = 0;
|
||||
*mlen = -1;
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Verifies a given message signature pair under a given public key.
|
||||
*/
|
||||
int xmssmt_core_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk)
|
||||
{
|
||||
uint32_t idx_leaf;
|
||||
unsigned long long i;
|
||||
unsigned long long idx = 0;
|
||||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE];
|
||||
unsigned char pkhash[XMSS_N];
|
||||
unsigned char root[XMSS_N];
|
||||
unsigned char *msg_h = root;
|
||||
unsigned char hash_key[3*XMSS_N];
|
||||
const unsigned char *pub_seed = pk + XMSS_N;
|
||||
|
||||
// Init addresses
|
||||
uint32_t ots_addr[8] = {0};
|
||||
uint32_t ltree_addr[8] = {0};
|
||||
uint32_t node_addr[8] = {0};
|
||||
|
||||
set_type(ots_addr, 0);
|
||||
set_type(ltree_addr, 1);
|
||||
set_type(node_addr, 2);
|
||||
|
||||
*mlen = smlen - XMSS_BYTES;
|
||||
|
||||
// Extract index
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
idx |= ((unsigned long long)sm[i]) << (8*(XMSS_INDEX_LEN - 1 - i));
|
||||
}
|
||||
|
||||
// Generate hash key (R || root || idx)
|
||||
memcpy(hash_key, sm + XMSS_INDEX_LEN, XMSS_N);
|
||||
memcpy(hash_key + XMSS_N, pk, XMSS_N);
|
||||
to_byte(hash_key + 2*XMSS_N, idx, XMSS_N);
|
||||
|
||||
// hash message
|
||||
h_msg(msg_h, sm + XMSS_BYTES, *mlen, hash_key, 3*XMSS_N);
|
||||
sm += XMSS_INDEX_LEN + XMSS_N;
|
||||
|
||||
for (i = 0; i < XMSS_D; i++) {
|
||||
// Prepare Address
|
||||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1));
|
||||
idx = idx >> XMSS_TREEHEIGHT;
|
||||
|
||||
set_layer_addr(ots_addr, i);
|
||||
set_layer_addr(ltree_addr, i);
|
||||
set_layer_addr(node_addr, i);
|
||||
|
||||
set_tree_addr(ltree_addr, idx);
|
||||
set_tree_addr(ots_addr, idx);
|
||||
set_tree_addr(node_addr, idx);
|
||||
|
||||
set_ots_addr(ots_addr, idx_leaf);
|
||||
|
||||
// Check WOTS signature
|
||||
wots_pk_from_sig(wots_pk, sm, root, pub_seed, ots_addr);
|
||||
sm += XMSS_WOTS_KEYSIZE;
|
||||
|
||||
// Compute Ltree
|
||||
set_ltree_addr(ltree_addr, idx_leaf);
|
||||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr);
|
||||
|
||||
// Compute root
|
||||
validate_authpath(root, pkhash, idx_leaf, sm, pub_seed, node_addr);
|
||||
sm += XMSS_TREEHEIGHT*XMSS_N;
|
||||
}
|
||||
|
||||
for (i = 0; i < XMSS_N; i++) {
|
||||
if (root[i] != pk[i]) {
|
||||
for (i = 0; i < *mlen; i++) {
|
||||
m[i] = 0;
|
||||
}
|
||||
*mlen = -1;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < *mlen; i++) {
|
||||
m[i] = sm[i];
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -11,10 +11,24 @@ Public domain.
|
||||
#include <stdint.h>
|
||||
|
||||
void to_byte(unsigned char *output, unsigned long long in, uint32_t bytes);
|
||||
|
||||
void hexdump(const unsigned char *a, size_t len);
|
||||
void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]);
|
||||
void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]);
|
||||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
int xmss_core_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk);
|
||||
int xmssmt_core_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk);
|
||||
|
||||
void gen_leaf_wots(unsigned char *leaf,
|
||||
const unsigned char *sk_seed, const unsigned char *pub_seed,
|
||||
uint32_t ltree_addr[8], uint32_t ots_addr[8]);
|
||||
|
||||
void get_seed(unsigned char *seed,
|
||||
const unsigned char *sk_seed, uint32_t addr[8]);
|
||||
|
||||
void l_tree(unsigned char *leaf, unsigned char *wots_pk,
|
||||
const unsigned char *pub_seed, uint32_t addr[8]);
|
||||
|
||||
int xmss_core_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk);
|
||||
|
||||
int xmssmt_core_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk);
|
||||
#endif
|
||||
|
531
xmss_core.c
531
xmss_core.c
@ -5,17 +5,17 @@ Joost Rijneveld
|
||||
Public domain.
|
||||
*/
|
||||
|
||||
#include "xmss_core.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "randombytes.h"
|
||||
#include "wots.h"
|
||||
#include "hash.h"
|
||||
#include "xmss_commons.h"
|
||||
#include "hash_address.h"
|
||||
#include "params.h"
|
||||
#include "randombytes.h"
|
||||
#include "wots.h"
|
||||
#include "xmss_commons.h"
|
||||
#include "xmss_core.h"
|
||||
|
||||
/**
|
||||
* Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash.
|
||||
@ -24,43 +24,44 @@ Public domain.
|
||||
*/
|
||||
static void treehash(unsigned char *node, uint32_t index, const unsigned char *sk_seed, const unsigned char *pub_seed, const uint32_t addr[8])
|
||||
{
|
||||
uint32_t idx = index;
|
||||
// use three different addresses because at this point we use all three formats in parallel
|
||||
uint32_t ots_addr[8];
|
||||
uint32_t ltree_addr[8];
|
||||
uint32_t node_addr[8];
|
||||
// only copy layer and tree address parts
|
||||
memcpy(ots_addr, addr, 12);
|
||||
// type = ots
|
||||
setType(ots_addr, 0);
|
||||
memcpy(ltree_addr, addr, 12);
|
||||
setType(ltree_addr, 1);
|
||||
memcpy(node_addr, addr, 12);
|
||||
setType(node_addr, 2);
|
||||
uint32_t idx = index;
|
||||
// use three different addresses because at this point we use all three formats in parallel
|
||||
uint32_t ots_addr[8];
|
||||
uint32_t ltree_addr[8];
|
||||
uint32_t node_addr[8];
|
||||
// only copy layer and tree address parts
|
||||
memcpy(ots_addr, addr, 12);
|
||||
// type = ots
|
||||
set_type(ots_addr, 0);
|
||||
memcpy(ltree_addr, addr, 12);
|
||||
set_type(ltree_addr, 1);
|
||||
memcpy(node_addr, addr, 12);
|
||||
set_type(node_addr, 2);
|
||||
|
||||
uint32_t lastnode, i;
|
||||
unsigned char stack[(XMSS_TREEHEIGHT+1)*XMSS_N];
|
||||
uint16_t stacklevels[XMSS_TREEHEIGHT+1];
|
||||
unsigned int stackoffset=0;
|
||||
uint32_t lastnode, i;
|
||||
unsigned char stack[(XMSS_TREEHEIGHT+1)*XMSS_N];
|
||||
uint16_t stacklevels[XMSS_TREEHEIGHT+1];
|
||||
unsigned int stackoffset=0;
|
||||
|
||||
lastnode = idx+(1 << XMSS_TREEHEIGHT);
|
||||
lastnode = idx+(1 << XMSS_TREEHEIGHT);
|
||||
|
||||
for (; idx < lastnode; idx++) {
|
||||
setLtreeADRS(ltree_addr, idx);
|
||||
setOTSADRS(ots_addr, idx);
|
||||
gen_leaf_wots(stack+stackoffset*XMSS_N, sk_seed, pub_seed, ltree_addr, ots_addr);
|
||||
stacklevels[stackoffset] = 0;
|
||||
stackoffset++;
|
||||
while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) {
|
||||
setTreeHeight(node_addr, stacklevels[stackoffset-1]);
|
||||
setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1)));
|
||||
hash_h(stack+(stackoffset-2)*XMSS_N, stack+(stackoffset-2)*XMSS_N, pub_seed, node_addr);
|
||||
stacklevels[stackoffset-2]++;
|
||||
stackoffset--;
|
||||
for (; idx < lastnode; idx++) {
|
||||
set_ltree_addr(ltree_addr, idx);
|
||||
set_ots_addr(ots_addr, idx);
|
||||
gen_leaf_wots(stack+stackoffset*XMSS_N, sk_seed, pub_seed, ltree_addr, ots_addr);
|
||||
stacklevels[stackoffset] = 0;
|
||||
stackoffset++;
|
||||
while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) {
|
||||
set_tree_height(node_addr, stacklevels[stackoffset-1]);
|
||||
set_tree_index(node_addr, (idx >> (stacklevels[stackoffset-1]+1)));
|
||||
hash_h(stack+(stackoffset-2)*XMSS_N, stack+(stackoffset-2)*XMSS_N, pub_seed, node_addr);
|
||||
stacklevels[stackoffset-2]++;
|
||||
stackoffset--;
|
||||
}
|
||||
}
|
||||
for (i = 0; i < XMSS_N; i++) {
|
||||
node[i] = stack[i];
|
||||
}
|
||||
}
|
||||
for (i = 0; i < XMSS_N; i++)
|
||||
node[i] = stack[i];
|
||||
}
|
||||
|
||||
/**
|
||||
@ -70,48 +71,49 @@ static void treehash(unsigned char *node, uint32_t index, const unsigned char *s
|
||||
*/
|
||||
static void compute_authpath_wots(unsigned char *root, unsigned char *authpath, unsigned long leaf_idx, const unsigned char *sk_seed, unsigned char *pub_seed, uint32_t addr[8])
|
||||
{
|
||||
uint32_t i, j, level;
|
||||
uint32_t i, j, level;
|
||||
|
||||
unsigned char tree[2*(1<<XMSS_TREEHEIGHT)*XMSS_N];
|
||||
unsigned char tree[2*(1<<XMSS_TREEHEIGHT)*XMSS_N];
|
||||
|
||||
uint32_t ots_addr[8];
|
||||
uint32_t ltree_addr[8];
|
||||
uint32_t node_addr[8];
|
||||
uint32_t ots_addr[8];
|
||||
uint32_t ltree_addr[8];
|
||||
uint32_t node_addr[8];
|
||||
|
||||
memcpy(ots_addr, addr, 12);
|
||||
setType(ots_addr, 0);
|
||||
memcpy(ltree_addr, addr, 12);
|
||||
setType(ltree_addr, 1);
|
||||
memcpy(node_addr, addr, 12);
|
||||
setType(node_addr, 2);
|
||||
memcpy(ots_addr, addr, 12);
|
||||
set_type(ots_addr, 0);
|
||||
memcpy(ltree_addr, addr, 12);
|
||||
set_type(ltree_addr, 1);
|
||||
memcpy(node_addr, addr, 12);
|
||||
set_type(node_addr, 2);
|
||||
|
||||
// Compute all leaves
|
||||
for (i = 0; i < (1U << XMSS_TREEHEIGHT); i++) {
|
||||
setLtreeADRS(ltree_addr, i);
|
||||
setOTSADRS(ots_addr, i);
|
||||
gen_leaf_wots(tree+((1<<XMSS_TREEHEIGHT)*XMSS_N + i*XMSS_N), sk_seed, pub_seed, ltree_addr, ots_addr);
|
||||
}
|
||||
|
||||
|
||||
level = 0;
|
||||
// Compute tree:
|
||||
// Outer loop: For each inner layer
|
||||
for (i = (1<<XMSS_TREEHEIGHT); i > 1; i>>=1) {
|
||||
setTreeHeight(node_addr, level);
|
||||
// Inner loop: for each pair of sibling nodes
|
||||
for (j = 0; j < i; j+=2) {
|
||||
setTreeIndex(node_addr, j>>1);
|
||||
hash_h(tree + (i>>1)*XMSS_N + (j>>1) * XMSS_N, tree + i*XMSS_N + j*XMSS_N, pub_seed, node_addr);
|
||||
// Compute all leaves
|
||||
for (i = 0; i < (1U << XMSS_TREEHEIGHT); i++) {
|
||||
set_ltree_addr(ltree_addr, i);
|
||||
set_ots_addr(ots_addr, i);
|
||||
gen_leaf_wots(tree+((1<<XMSS_TREEHEIGHT)*XMSS_N + i*XMSS_N), sk_seed, pub_seed, ltree_addr, ots_addr);
|
||||
}
|
||||
level++;
|
||||
}
|
||||
|
||||
// copy authpath
|
||||
for (i = 0; i < XMSS_TREEHEIGHT; i++)
|
||||
memcpy(authpath + i*XMSS_N, tree + ((1<<XMSS_TREEHEIGHT)>>i)*XMSS_N + ((leaf_idx >> i) ^ 1) * XMSS_N, XMSS_N);
|
||||
|
||||
// copy root
|
||||
memcpy(root, tree+XMSS_N, XMSS_N);
|
||||
level = 0;
|
||||
// Compute tree:
|
||||
// Outer loop: For each inner layer
|
||||
for (i = (1<<XMSS_TREEHEIGHT); i > 1; i>>=1) {
|
||||
set_tree_height(node_addr, level);
|
||||
// Inner loop: for each pair of sibling nodes
|
||||
for (j = 0; j < i; j+=2) {
|
||||
set_tree_index(node_addr, j>>1);
|
||||
hash_h(tree + (i>>1)*XMSS_N + (j>>1) * XMSS_N, tree + i*XMSS_N + j*XMSS_N, pub_seed, node_addr);
|
||||
}
|
||||
level++;
|
||||
}
|
||||
|
||||
// copy authpath
|
||||
for (i = 0; i < XMSS_TREEHEIGHT; i++) {
|
||||
memcpy(authpath + i*XMSS_N, tree + ((1<<XMSS_TREEHEIGHT)>>i)*XMSS_N + ((leaf_idx >> i) ^ 1) * XMSS_N, XMSS_N);
|
||||
}
|
||||
|
||||
// copy root
|
||||
memcpy(root, tree+XMSS_N, XMSS_N);
|
||||
}
|
||||
|
||||
|
||||
@ -122,22 +124,22 @@ static void compute_authpath_wots(unsigned char *root, unsigned char *authpath,
|
||||
*/
|
||||
int xmss_core_keypair(unsigned char *pk, unsigned char *sk)
|
||||
{
|
||||
// Set idx = 0
|
||||
sk[0] = 0;
|
||||
sk[1] = 0;
|
||||
sk[2] = 0;
|
||||
sk[3] = 0;
|
||||
// Init SK_SEED (XMSS_N byte), SK_PRF (XMSS_N byte), and PUB_SEED (XMSS_N byte)
|
||||
randombytes(sk+4, 3*XMSS_N);
|
||||
// Copy PUB_SEED to public key
|
||||
memcpy(pk+XMSS_N, sk+4+2*XMSS_N, XMSS_N);
|
||||
// Set idx = 0
|
||||
sk[0] = 0;
|
||||
sk[1] = 0;
|
||||
sk[2] = 0;
|
||||
sk[3] = 0;
|
||||
// Init SK_SEED (XMSS_N byte), SK_PRF (XMSS_N byte), and PUB_SEED (XMSS_N byte)
|
||||
randombytes(sk+4, 3*XMSS_N);
|
||||
// Copy PUB_SEED to public key
|
||||
memcpy(pk+XMSS_N, sk+4+2*XMSS_N, XMSS_N);
|
||||
|
||||
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
// Compute root
|
||||
treehash(pk, 0, sk+4, sk+4+2*XMSS_N, addr);
|
||||
// copy root to sk
|
||||
memcpy(sk+4+3*XMSS_N, pk, XMSS_N);
|
||||
return 0;
|
||||
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
// Compute root
|
||||
treehash(pk, 0, sk+4, sk+4+2*XMSS_N, addr);
|
||||
// copy root to sk
|
||||
memcpy(sk+4+3*XMSS_N, pk, XMSS_N);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -149,96 +151,96 @@ int xmss_core_keypair(unsigned char *pk, unsigned char *sk)
|
||||
*/
|
||||
int xmss_core_sign(unsigned char *sk, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen)
|
||||
{
|
||||
uint16_t i = 0;
|
||||
uint16_t i = 0;
|
||||
|
||||
// Extract SK
|
||||
uint32_t idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3];
|
||||
unsigned char sk_seed[XMSS_N];
|
||||
unsigned char sk_prf[XMSS_N];
|
||||
unsigned char pub_seed[XMSS_N];
|
||||
unsigned char hash_key[3*XMSS_N];
|
||||
// Extract SK
|
||||
uint32_t idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3];
|
||||
unsigned char sk_seed[XMSS_N];
|
||||
unsigned char sk_prf[XMSS_N];
|
||||
unsigned char pub_seed[XMSS_N];
|
||||
unsigned char hash_key[3*XMSS_N];
|
||||
|
||||
// index as 32 bytes string
|
||||
unsigned char idx_bytes_32[32];
|
||||
to_byte(idx_bytes_32, idx, 32);
|
||||
// index as 32 bytes string
|
||||
unsigned char idx_bytes_32[32];
|
||||
to_byte(idx_bytes_32, idx, 32);
|
||||
|
||||
memcpy(sk_seed, sk+4, XMSS_N);
|
||||
memcpy(sk_prf, sk+4+XMSS_N, XMSS_N);
|
||||
memcpy(pub_seed, sk+4+2*XMSS_N, XMSS_N);
|
||||
memcpy(sk_seed, sk+4, XMSS_N);
|
||||
memcpy(sk_prf, sk+4+XMSS_N, XMSS_N);
|
||||
memcpy(pub_seed, sk+4+2*XMSS_N, XMSS_N);
|
||||
|
||||
// Update SK
|
||||
sk[0] = ((idx + 1) >> 24) & 255;
|
||||
sk[1] = ((idx + 1) >> 16) & 255;
|
||||
sk[2] = ((idx + 1) >> 8) & 255;
|
||||
sk[3] = (idx + 1) & 255;
|
||||
// -- Secret key for this non-forward-secure version is now updated.
|
||||
// -- A productive implementation should use a file handle instead and write the updated secret key at this point!
|
||||
// Update SK
|
||||
sk[0] = ((idx + 1) >> 24) & 255;
|
||||
sk[1] = ((idx + 1) >> 16) & 255;
|
||||
sk[2] = ((idx + 1) >> 8) & 255;
|
||||
sk[3] = (idx + 1) & 255;
|
||||
// -- Secret key for this non-forward-secure version is now updated.
|
||||
// -- A productive implementation should use a file handle instead and write the updated secret key at this point!
|
||||
|
||||
// Init working params
|
||||
unsigned char R[XMSS_N];
|
||||
unsigned char msg_h[XMSS_N];
|
||||
unsigned char root[XMSS_N];
|
||||
unsigned char ots_seed[XMSS_N];
|
||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
// Init working params
|
||||
unsigned char R[XMSS_N];
|
||||
unsigned char msg_h[XMSS_N];
|
||||
unsigned char root[XMSS_N];
|
||||
unsigned char ots_seed[XMSS_N];
|
||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
|
||||
// ---------------------------------
|
||||
// Message Hashing
|
||||
// ---------------------------------
|
||||
// ---------------------------------
|
||||
// Message Hashing
|
||||
// ---------------------------------
|
||||
|
||||
// Message Hash:
|
||||
// First compute pseudorandom value
|
||||
prf(R, idx_bytes_32, sk_prf, XMSS_N);
|
||||
// Generate hash key (R || root || idx)
|
||||
memcpy(hash_key, R, XMSS_N);
|
||||
memcpy(hash_key+XMSS_N, sk+4+3*XMSS_N, XMSS_N);
|
||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N);
|
||||
// Then use it for message digest
|
||||
h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N);
|
||||
// Message Hash:
|
||||
// First compute pseudorandom value
|
||||
prf(R, idx_bytes_32, sk_prf, XMSS_N);
|
||||
// Generate hash key (R || root || idx)
|
||||
memcpy(hash_key, R, XMSS_N);
|
||||
memcpy(hash_key+XMSS_N, sk+4+3*XMSS_N, XMSS_N);
|
||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N);
|
||||
// Then use it for message digest
|
||||
h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N);
|
||||
|
||||
// Start collecting signature
|
||||
*smlen = 0;
|
||||
// Start collecting signature
|
||||
*smlen = 0;
|
||||
|
||||
// Copy index to signature
|
||||
sm[0] = (idx >> 24) & 255;
|
||||
sm[1] = (idx >> 16) & 255;
|
||||
sm[2] = (idx >> 8) & 255;
|
||||
sm[3] = idx & 255;
|
||||
// Copy index to signature
|
||||
sm[0] = (idx >> 24) & 255;
|
||||
sm[1] = (idx >> 16) & 255;
|
||||
sm[2] = (idx >> 8) & 255;
|
||||
sm[3] = idx & 255;
|
||||
|
||||
sm += 4;
|
||||
*smlen += 4;
|
||||
sm += 4;
|
||||
*smlen += 4;
|
||||
|
||||
// Copy R to signature
|
||||
for (i = 0; i < XMSS_N; i++)
|
||||
// Copy R to signature
|
||||
for (i = 0; i < XMSS_N; i++)
|
||||
sm[i] = R[i];
|
||||
|
||||
sm += XMSS_N;
|
||||
*smlen += XMSS_N;
|
||||
sm += XMSS_N;
|
||||
*smlen += XMSS_N;
|
||||
|
||||
// ----------------------------------
|
||||
// Now we start to "really sign"
|
||||
// ----------------------------------
|
||||
// ----------------------------------
|
||||
// Now we start to "really sign"
|
||||
// ----------------------------------
|
||||
|
||||
// Prepare Address
|
||||
setType(ots_addr, 0);
|
||||
setOTSADRS(ots_addr, idx);
|
||||
// Prepare Address
|
||||
set_type(ots_addr, 0);
|
||||
set_ots_addr(ots_addr, idx);
|
||||
|
||||
// Compute seed for OTS key pair
|
||||
get_seed(ots_seed, sk_seed, ots_addr);
|
||||
// Compute seed for OTS key pair
|
||||
get_seed(ots_seed, sk_seed, ots_addr);
|
||||
|
||||
// Compute WOTS signature
|
||||
wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr);
|
||||
// Compute WOTS signature
|
||||
wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr);
|
||||
|
||||
sm += XMSS_WOTS_KEYSIZE;
|
||||
*smlen += XMSS_WOTS_KEYSIZE;
|
||||
sm += XMSS_WOTS_KEYSIZE;
|
||||
*smlen += XMSS_WOTS_KEYSIZE;
|
||||
|
||||
compute_authpath_wots(root, sm, idx, sk_seed, pub_seed, ots_addr);
|
||||
sm += XMSS_TREEHEIGHT*XMSS_N;
|
||||
*smlen += XMSS_TREEHEIGHT*XMSS_N;
|
||||
compute_authpath_wots(root, sm, idx, sk_seed, pub_seed, ots_addr);
|
||||
sm += XMSS_TREEHEIGHT*XMSS_N;
|
||||
*smlen += XMSS_TREEHEIGHT*XMSS_N;
|
||||
|
||||
memcpy(sm, m, mlen);
|
||||
*smlen += mlen;
|
||||
memcpy(sm, m, mlen);
|
||||
*smlen += mlen;
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -248,24 +250,24 @@ int xmss_core_sign(unsigned char *sk, unsigned char *sm, unsigned long long *sml
|
||||
*/
|
||||
int xmssmt_core_keypair(unsigned char *pk, unsigned char *sk)
|
||||
{
|
||||
uint16_t i;
|
||||
// Set idx = 0
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
sk[i] = 0;
|
||||
}
|
||||
// Init SK_SEED (XMSS_N byte), SK_PRF (XMSS_N byte), and PUB_SEED (XMSS_N byte)
|
||||
randombytes(sk+XMSS_INDEX_LEN, 3*XMSS_N);
|
||||
// Copy PUB_SEED to public key
|
||||
memcpy(pk+XMSS_N, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N);
|
||||
uint16_t i;
|
||||
// Set idx = 0
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
sk[i] = 0;
|
||||
}
|
||||
// Init SK_SEED (XMSS_N byte), SK_PRF (XMSS_N byte), and PUB_SEED (XMSS_N byte)
|
||||
randombytes(sk+XMSS_INDEX_LEN, 3*XMSS_N);
|
||||
// Copy PUB_SEED to public key
|
||||
memcpy(pk+XMSS_N, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N);
|
||||
|
||||
// Set address to point on the single tree on layer d-1
|
||||
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
setLayerADRS(addr, (XMSS_D-1));
|
||||
// Set address to point on the single tree on layer d-1
|
||||
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
set_layer_addr(addr, (XMSS_D-1));
|
||||
|
||||
// Compute root
|
||||
treehash(pk, 0, sk+XMSS_INDEX_LEN, pk+XMSS_N, addr);
|
||||
memcpy(sk+XMSS_INDEX_LEN+3*XMSS_N, pk, XMSS_N);
|
||||
return 0;
|
||||
// Compute root
|
||||
treehash(pk, 0, sk+XMSS_INDEX_LEN, pk+XMSS_N, addr);
|
||||
memcpy(sk+XMSS_INDEX_LEN+3*XMSS_N, pk, XMSS_N);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -277,116 +279,94 @@ int xmssmt_core_keypair(unsigned char *pk, unsigned char *sk)
|
||||
*/
|
||||
int xmssmt_core_sign(unsigned char *sk, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen)
|
||||
{
|
||||
uint64_t idx_tree;
|
||||
uint32_t idx_leaf;
|
||||
uint64_t i;
|
||||
uint64_t idx_tree;
|
||||
uint32_t idx_leaf;
|
||||
uint64_t i;
|
||||
|
||||
unsigned char sk_seed[XMSS_N];
|
||||
unsigned char sk_prf[XMSS_N];
|
||||
unsigned char pub_seed[XMSS_N];
|
||||
// Init working params
|
||||
unsigned char R[XMSS_N];
|
||||
unsigned char hash_key[3*XMSS_N];
|
||||
unsigned char msg_h[XMSS_N];
|
||||
unsigned char root[XMSS_N];
|
||||
unsigned char ots_seed[XMSS_N];
|
||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
unsigned char idx_bytes_32[32];
|
||||
unsigned char sk_seed[XMSS_N];
|
||||
unsigned char sk_prf[XMSS_N];
|
||||
unsigned char pub_seed[XMSS_N];
|
||||
// Init working params
|
||||
unsigned char R[XMSS_N];
|
||||
unsigned char hash_key[3*XMSS_N];
|
||||
unsigned char msg_h[XMSS_N];
|
||||
unsigned char root[XMSS_N];
|
||||
unsigned char ots_seed[XMSS_N];
|
||||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
unsigned char idx_bytes_32[32];
|
||||
|
||||
// Extract SK
|
||||
unsigned long long idx = 0;
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
idx |= ((unsigned long long)sk[i]) << 8*(XMSS_INDEX_LEN - 1 - i);
|
||||
}
|
||||
// Extract SK
|
||||
unsigned long long idx = 0;
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
idx |= ((unsigned long long)sk[i]) << 8*(XMSS_INDEX_LEN - 1 - i);
|
||||
}
|
||||
|
||||
memcpy(sk_seed, sk+XMSS_INDEX_LEN, XMSS_N);
|
||||
memcpy(sk_prf, sk+XMSS_INDEX_LEN+XMSS_N, XMSS_N);
|
||||
memcpy(pub_seed, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N);
|
||||
memcpy(sk_seed, sk+XMSS_INDEX_LEN, XMSS_N);
|
||||
memcpy(sk_prf, sk+XMSS_INDEX_LEN+XMSS_N, XMSS_N);
|
||||
memcpy(pub_seed, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N);
|
||||
|
||||
// Update SK
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
sk[i] = ((idx + 1) >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255;
|
||||
}
|
||||
// -- Secret key for this non-forward-secure version is now updated.
|
||||
// -- A productive implementation should use a file handle instead and write the updated secret key at this point!
|
||||
// Update SK
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
sk[i] = ((idx + 1) >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255;
|
||||
}
|
||||
// -- Secret key for this non-forward-secure version is now updated.
|
||||
// -- A productive implementation should use a file handle instead and write the updated secret key at this point!
|
||||
|
||||
|
||||
// ---------------------------------
|
||||
// Message Hashing
|
||||
// ---------------------------------
|
||||
// ---------------------------------
|
||||
// Message Hashing
|
||||
// ---------------------------------
|
||||
|
||||
// Message Hash:
|
||||
// First compute pseudorandom value
|
||||
to_byte(idx_bytes_32, idx, 32);
|
||||
prf(R, idx_bytes_32, sk_prf, XMSS_N);
|
||||
// Generate hash key (R || root || idx)
|
||||
memcpy(hash_key, R, XMSS_N);
|
||||
memcpy(hash_key+XMSS_N, sk+XMSS_INDEX_LEN+3*XMSS_N, XMSS_N);
|
||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N);
|
||||
// Message Hash:
|
||||
// First compute pseudorandom value
|
||||
to_byte(idx_bytes_32, idx, 32);
|
||||
prf(R, idx_bytes_32, sk_prf, XMSS_N);
|
||||
// Generate hash key (R || root || idx)
|
||||
memcpy(hash_key, R, XMSS_N);
|
||||
memcpy(hash_key+XMSS_N, sk+XMSS_INDEX_LEN+3*XMSS_N, XMSS_N);
|
||||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N);
|
||||
|
||||
// Then use it for message digest
|
||||
h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N);
|
||||
// Then use it for message digest
|
||||
h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N);
|
||||
|
||||
// Start collecting signature
|
||||
*smlen = 0;
|
||||
// Start collecting signature
|
||||
*smlen = 0;
|
||||
|
||||
// Copy index to signature
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
sm[i] = (idx >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255;
|
||||
}
|
||||
// Copy index to signature
|
||||
for (i = 0; i < XMSS_INDEX_LEN; i++) {
|
||||
sm[i] = (idx >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255;
|
||||
}
|
||||
|
||||
sm += XMSS_INDEX_LEN;
|
||||
*smlen += XMSS_INDEX_LEN;
|
||||
sm += XMSS_INDEX_LEN;
|
||||
*smlen += XMSS_INDEX_LEN;
|
||||
|
||||
// Copy R to signature
|
||||
for (i = 0; i < XMSS_N; i++)
|
||||
sm[i] = R[i];
|
||||
// Copy R to signature
|
||||
for (i = 0; i < XMSS_N; i++) {
|
||||
sm[i] = R[i];
|
||||
}
|
||||
|
||||
sm += XMSS_N;
|
||||
*smlen += XMSS_N;
|
||||
sm += XMSS_N;
|
||||
*smlen += XMSS_N;
|
||||
|
||||
// ----------------------------------
|
||||
// Now we start to "really sign"
|
||||
// ----------------------------------
|
||||
// ----------------------------------
|
||||
// Now we start to "really sign"
|
||||
// ----------------------------------
|
||||
|
||||
// Handle lowest layer separately as it is slightly different...
|
||||
// Handle lowest layer separately as it is slightly different...
|
||||
|
||||
// Prepare Address
|
||||
setType(ots_addr, 0);
|
||||
idx_tree = idx >> XMSS_TREEHEIGHT;
|
||||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1));
|
||||
setLayerADRS(ots_addr, 0);
|
||||
setTreeADRS(ots_addr, idx_tree);
|
||||
setOTSADRS(ots_addr, idx_leaf);
|
||||
|
||||
// Compute seed for OTS key pair
|
||||
get_seed(ots_seed, sk_seed, ots_addr);
|
||||
|
||||
// Compute WOTS signature
|
||||
wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr);
|
||||
|
||||
sm += XMSS_WOTS_KEYSIZE;
|
||||
*smlen += XMSS_WOTS_KEYSIZE;
|
||||
|
||||
compute_authpath_wots(root, sm, idx_leaf, sk_seed, pub_seed, ots_addr);
|
||||
sm += XMSS_TREEHEIGHT*XMSS_N;
|
||||
*smlen += XMSS_TREEHEIGHT*XMSS_N;
|
||||
|
||||
// Now loop over remaining layers...
|
||||
unsigned int j;
|
||||
for (j = 1; j < XMSS_D; j++) {
|
||||
// Prepare Address
|
||||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1));
|
||||
idx_tree = idx_tree >> XMSS_TREEHEIGHT;
|
||||
setLayerADRS(ots_addr, j);
|
||||
setTreeADRS(ots_addr, idx_tree);
|
||||
setOTSADRS(ots_addr, idx_leaf);
|
||||
set_type(ots_addr, 0);
|
||||
idx_tree = idx >> XMSS_TREEHEIGHT;
|
||||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1));
|
||||
set_layer_addr(ots_addr, 0);
|
||||
set_tree_addr(ots_addr, idx_tree);
|
||||
set_ots_addr(ots_addr, idx_leaf);
|
||||
|
||||
// Compute seed for OTS key pair
|
||||
get_seed(ots_seed, sk_seed, ots_addr);
|
||||
|
||||
// Compute WOTS signature
|
||||
wots_sign(sm, root, ots_seed, pub_seed, ots_addr);
|
||||
wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr);
|
||||
|
||||
sm += XMSS_WOTS_KEYSIZE;
|
||||
*smlen += XMSS_WOTS_KEYSIZE;
|
||||
@ -394,10 +374,33 @@ int xmssmt_core_sign(unsigned char *sk, unsigned char *sm, unsigned long long *s
|
||||
compute_authpath_wots(root, sm, idx_leaf, sk_seed, pub_seed, ots_addr);
|
||||
sm += XMSS_TREEHEIGHT*XMSS_N;
|
||||
*smlen += XMSS_TREEHEIGHT*XMSS_N;
|
||||
}
|
||||
|
||||
memcpy(sm, m, mlen);
|
||||
*smlen += mlen;
|
||||
// Now loop over remaining layers...
|
||||
unsigned int j;
|
||||
for (j = 1; j < XMSS_D; j++) {
|
||||
// Prepare Address
|
||||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1));
|
||||
idx_tree = idx_tree >> XMSS_TREEHEIGHT;
|
||||
set_layer_addr(ots_addr, j);
|
||||
set_tree_addr(ots_addr, idx_tree);
|
||||
set_ots_addr(ots_addr, idx_leaf);
|
||||
|
||||
return 0;
|
||||
// Compute seed for OTS key pair
|
||||
get_seed(ots_seed, sk_seed, ots_addr);
|
||||
|
||||
// Compute WOTS signature
|
||||
wots_sign(sm, root, ots_seed, pub_seed, ots_addr);
|
||||
|
||||
sm += XMSS_WOTS_KEYSIZE;
|
||||
*smlen += XMSS_WOTS_KEYSIZE;
|
||||
|
||||
compute_authpath_wots(root, sm, idx_leaf, sk_seed, pub_seed, ots_addr);
|
||||
sm += XMSS_TREEHEIGHT*XMSS_N;
|
||||
*smlen += XMSS_TREEHEIGHT*XMSS_N;
|
||||
}
|
||||
|
||||
memcpy(sm, m, mlen);
|
||||
*smlen += mlen;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
1042
xmss_core_fast.c
1042
xmss_core_fast.c
File diff soppresso perché troppo grande
Carica Diff
@ -5,35 +5,37 @@ Joost Rijneveld
|
||||
Public domain.
|
||||
*/
|
||||
|
||||
#include "wots.h"
|
||||
|
||||
#ifndef XMSS_CORE_H
|
||||
#define XMSS_CORE_H
|
||||
|
||||
typedef struct{
|
||||
unsigned int h;
|
||||
unsigned int next_idx;
|
||||
unsigned int stackusage;
|
||||
unsigned char completed;
|
||||
unsigned char *node;
|
||||
unsigned int h;
|
||||
unsigned int next_idx;
|
||||
unsigned int stackusage;
|
||||
unsigned char completed;
|
||||
unsigned char *node;
|
||||
} treehash_inst;
|
||||
|
||||
typedef struct {
|
||||
unsigned char *stack;
|
||||
unsigned int stackoffset;
|
||||
unsigned char *stacklevels;
|
||||
unsigned char *auth;
|
||||
unsigned char *keep;
|
||||
treehash_inst *treehash;
|
||||
unsigned char *retain;
|
||||
unsigned int next_leaf;
|
||||
unsigned char *stack;
|
||||
unsigned int stackoffset;
|
||||
unsigned char *stacklevels;
|
||||
unsigned char *auth;
|
||||
unsigned char *keep;
|
||||
treehash_inst *treehash;
|
||||
unsigned char *retain;
|
||||
unsigned int next_leaf;
|
||||
} bds_state;
|
||||
|
||||
/**
|
||||
* Initialize BDS state struct
|
||||
* parameter names are the same as used in the description of the BDS traversal
|
||||
*/
|
||||
void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf);
|
||||
void xmss_set_bds_state(bds_state *state, unsigned char *stack,
|
||||
int stackoffset, unsigned char *stacklevels,
|
||||
unsigned char *auth, unsigned char *keep,
|
||||
treehash_inst *treehash, unsigned char *retain,
|
||||
int next_leaf);
|
||||
/**
|
||||
* Generates a XMSS key pair for a given parameter set.
|
||||
* Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]
|
||||
@ -42,36 +44,45 @@ void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset,
|
||||
int xmss_core_keypair(unsigned char *pk, unsigned char *sk, bds_state *state);
|
||||
/**
|
||||
* Signs a message.
|
||||
* Returns
|
||||
* Returns
|
||||
* 1. an array containing the signature followed by the message AND
|
||||
* 2. an updated secret key!
|
||||
*
|
||||
*/
|
||||
int xmss_core_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg,unsigned long long msglen);
|
||||
int xmss_core_sign(unsigned char *sk, bds_state *state,
|
||||
unsigned char *sm, unsigned long long *smlen,
|
||||
const unsigned char *m, unsigned long long mlen);
|
||||
/**
|
||||
* Verifies a given message signature pair under a given public key.
|
||||
*
|
||||
* Note: msg and msglen are pure outputs which carry the message in case verification succeeds. The (input) message is assumed to be within sig_msg which has the form (sig||msg).
|
||||
*
|
||||
* Note: msg and mlen are pure outputs which carry the message in case verification succeeds. The (input) message is assumed to be within sm which has the form (sig||msg).
|
||||
*/
|
||||
int xmss_core_sign_open(unsigned char *msg,unsigned long long *msglen, const unsigned char *sig_msg,unsigned long long sig_msg_len, const unsigned char *pk);
|
||||
int xmss_core_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk);
|
||||
|
||||
/*
|
||||
* Generates a XMSSMT key pair for a given parameter set.
|
||||
* Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]
|
||||
* Format pk: [root || PUB_SEED] omitting algo oid.
|
||||
*/
|
||||
int xmssmt_core_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs);
|
||||
int xmssmt_core_keypair(unsigned char *pk, unsigned char *sk,
|
||||
bds_state *states, unsigned char *wots_sigs);
|
||||
|
||||
/**
|
||||
* Signs a message.
|
||||
* Returns
|
||||
* Returns
|
||||
* 1. an array containing the signature followed by the message AND
|
||||
* 2. an updated secret key!
|
||||
*
|
||||
*/
|
||||
int xmssmt_core_sign(unsigned char *sk, bds_state *state, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen);
|
||||
int xmssmt_core_sign(unsigned char *sk,
|
||||
bds_state *states, unsigned char *wots_sigs,
|
||||
unsigned char *sm, unsigned long long *smlen,
|
||||
const unsigned char *m, unsigned long long mlen);
|
||||
|
||||
/**
|
||||
* Verifies a given message signature pair under a given public key.
|
||||
*/
|
||||
int xmssmt_core_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk);
|
||||
int xmssmt_core_sign_open(unsigned char *m, unsigned long long *mlen,
|
||||
const unsigned char *sm, unsigned long long smlen,
|
||||
const unsigned char *pk);
|
||||
#endif
|
||||
|
||||
|
Caricamento…
Fai riferimento in un nuovo problema
Block a user