/* xmss_commons.c 20160722 Andreas Hülsing Joost Rijneveld Public domain. */ #include "xmss_commons.h" #include #include #include #include "wots.h" #include "hash.h" #include "hash_address.h" #include "params.h" void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes) { int32_t i; for (i = bytes-1; i >= 0; i--) { out[i] = in & 0xff; in = in >> 8; } } /** * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. */ void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) { unsigned char seed[XMSS_N]; unsigned char pk[XMSS_WOTS_KEYSIZE]; get_seed(seed, sk_seed, ots_addr); wots_pkgen(pk, seed, pub_seed, ots_addr); l_tree(leaf, pk, pub_seed, ltree_addr); } /** * Used for pseudorandom keygeneration, * generates the seed for the WOTS keypair at address addr * * takes XMSS_N byte sk_seed and returns XMSS_N byte seed using 32 byte address addr. */ void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]) { unsigned char bytes[32]; // Make sure that chain addr, hash addr, and key bit are 0! setChainADRS(addr, 0); setHashADRS(addr, 0); setKeyAndMask(addr, 0); // Generate pseudorandom value addr_to_byte(bytes, addr); prf(seed, bytes, sk_seed, XMSS_N); } /** * Computes a leaf from a WOTS public key using an L-tree. */ void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]) { unsigned int l = XMSS_WOTS_LEN; uint32_t i = 0; uint32_t height = 0; uint32_t bound; //ADRS.setTreeHeight(0); setTreeHeight(addr, height); while (l > 1) { bound = l >> 1; //floor(l / 2); for (i = 0; i < bound; i++) { //ADRS.setTreeIndex(i); setTreeIndex(addr, i); //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); hash_h(wots_pk+i*XMSS_N, wots_pk+i*2*XMSS_N, pub_seed, addr); } //if ( l % 2 == 1 ) { if (l & 1) { //pk[floor(l / 2) + 1] = pk[l]; memcpy(wots_pk+(l>>1)*XMSS_N, wots_pk+(l-1)*XMSS_N, XMSS_N); //l = ceil(l / 2); l=(l>>1)+1; } else { //l = ceil(l / 2); l=(l>>1); } //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); height++; setTreeHeight(addr, height); } //return pk[0]; memcpy(leaf, wots_pk, XMSS_N); } /** * Computes a root node given a leaf and an authapth */ static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const unsigned char *pub_seed, uint32_t addr[8]) { uint32_t i, j; unsigned char buffer[2*XMSS_N]; // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. // Otherwise, it is the other way around if (leafidx & 1) { for (j = 0; j < XMSS_N; j++) buffer[XMSS_N+j] = leaf[j]; for (j = 0; j < XMSS_N; j++) buffer[j] = authpath[j]; } else { for (j = 0; j < XMSS_N; j++) buffer[j] = leaf[j]; for (j = 0; j < XMSS_N; j++) buffer[XMSS_N+j] = authpath[j]; } authpath += XMSS_N; for (i = 0; i < XMSS_TREEHEIGHT-1; i++) { setTreeHeight(addr, i); leafidx >>= 1; setTreeIndex(addr, leafidx); if (leafidx&1) { hash_h(buffer+XMSS_N, buffer, pub_seed, addr); for (j = 0; j < XMSS_N; j++) buffer[j] = authpath[j]; } else { hash_h(buffer, buffer, pub_seed, addr); for (j = 0; j < XMSS_N; j++) buffer[j+XMSS_N] = authpath[j]; } authpath += XMSS_N; } setTreeHeight(addr, (XMSS_TREEHEIGHT-1)); leafidx >>= 1; setTreeIndex(addr, leafidx); hash_h(root, buffer, pub_seed, addr); } /** * Verifies a given message signature pair under a given public key. */ int xmss_sign_open(unsigned char *m, unsigned long long *mlen, const unsigned char *sm, unsigned long long smlen, const unsigned char *pk) { unsigned long long i, m_len; unsigned long idx=0; unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; unsigned char pkhash[XMSS_N]; unsigned char root[XMSS_N]; unsigned char msg_h[XMSS_N]; unsigned char hash_key[3*XMSS_N]; unsigned char pub_seed[XMSS_N]; memcpy(pub_seed, pk+XMSS_N, XMSS_N); // Init addresses uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; setType(ots_addr, 0); setType(ltree_addr, 1); setType(node_addr, 2); // Extract index idx = ((unsigned long)sm[0] << 24) | ((unsigned long)sm[1] << 16) | ((unsigned long)sm[2] << 8) | sm[3]; // Generate hash key (R || root || idx) memcpy(hash_key, sm+4,XMSS_N); memcpy(hash_key+XMSS_N, pk, XMSS_N); to_byte(hash_key+2*XMSS_N, idx, XMSS_N); sm += (XMSS_N+4); smlen -= (XMSS_N+4); // hash message unsigned long long tmp_sig_len = XMSS_WOTS_KEYSIZE+XMSS_TREEHEIGHT*XMSS_N; m_len = smlen - tmp_sig_len; h_msg(msg_h, sm + tmp_sig_len, m_len, hash_key, 3*XMSS_N); //----------------------- // Verify signature //----------------------- // Prepare Address setOTSADRS(ots_addr, idx); // Check WOTS signature wots_pkFromSig(wots_pk, sm, msg_h, pub_seed, ots_addr); sm += XMSS_WOTS_KEYSIZE; smlen -= XMSS_WOTS_KEYSIZE; // Compute Ltree setLtreeADRS(ltree_addr, idx); l_tree(pkhash, wots_pk, pub_seed, ltree_addr); // Compute root validate_authpath(root, pkhash, idx, sm, pub_seed, node_addr); sm += XMSS_TREEHEIGHT*XMSS_N; smlen -= XMSS_TREEHEIGHT*XMSS_N; for (i = 0; i < XMSS_N; i++) if (root[i] != pk[i]) goto fail; *mlen = smlen; for (i = 0; i < *mlen; i++) m[i] = sm[i]; return 0; fail: *mlen = smlen; for (i = 0; i < *mlen; i++) m[i] = 0; *mlen = -1; return -1; } /** * Verifies a given message signature pair under a given public key. */ int xmssmt_sign_open(unsigned char *m, unsigned long long *mlen, const unsigned char *sm, unsigned long long smlen, const unsigned char *pk) { uint64_t idx_tree; uint32_t idx_leaf; unsigned long long i, m_len; unsigned long long idx=0; unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; unsigned char pkhash[XMSS_N]; unsigned char root[XMSS_N]; unsigned char msg_h[XMSS_N]; unsigned char hash_key[3*XMSS_N]; unsigned char pub_seed[XMSS_N]; memcpy(pub_seed, pk+XMSS_N, XMSS_N); // Init addresses uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; // Extract index for (i = 0; i < XMSS_INDEX_LEN; i++) { idx |= ((unsigned long long)sm[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); } sm += XMSS_INDEX_LEN; smlen -= XMSS_INDEX_LEN; // Generate hash key (R || root || idx) memcpy(hash_key, sm,XMSS_N); memcpy(hash_key+XMSS_N, pk, XMSS_N); to_byte(hash_key+2*XMSS_N, idx, XMSS_N); sm += XMSS_N; smlen -= XMSS_N; // hash message unsigned long long tmp_sig_len = (XMSS_D * XMSS_WOTS_KEYSIZE) + (XMSS_FULLHEIGHT * XMSS_N); m_len = smlen - tmp_sig_len; h_msg(msg_h, sm + tmp_sig_len, m_len, hash_key, 3*XMSS_N); //----------------------- // Verify signature //----------------------- // Prepare Address idx_tree = idx >> XMSS_TREEHEIGHT; idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); setLayerADRS(ots_addr, 0); setTreeADRS(ots_addr, idx_tree); setType(ots_addr, 0); memcpy(ltree_addr, ots_addr, 12); setType(ltree_addr, 1); memcpy(node_addr, ltree_addr, 12); setType(node_addr, 2); setOTSADRS(ots_addr, idx_leaf); // Check WOTS signature wots_pkFromSig(wots_pk, sm, msg_h, pub_seed, ots_addr); sm += XMSS_WOTS_KEYSIZE; smlen -= XMSS_WOTS_KEYSIZE; // Compute Ltree setLtreeADRS(ltree_addr, idx_leaf); l_tree(pkhash, wots_pk, pub_seed, ltree_addr); // Compute root validate_authpath(root, pkhash, idx_leaf, sm, pub_seed, node_addr); sm += XMSS_TREEHEIGHT*XMSS_N; smlen -= XMSS_TREEHEIGHT*XMSS_N; for (i = 1; i < XMSS_D; i++) { // Prepare Address idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); idx_tree = idx_tree >> XMSS_TREEHEIGHT; setLayerADRS(ots_addr, i); setTreeADRS(ots_addr, idx_tree); setType(ots_addr, 0); memcpy(ltree_addr, ots_addr, 12); setType(ltree_addr, 1); memcpy(node_addr, ltree_addr, 12); setType(node_addr, 2); setOTSADRS(ots_addr, idx_leaf); // Check WOTS signature wots_pkFromSig(wots_pk, sm, root, pub_seed, ots_addr); sm += XMSS_WOTS_KEYSIZE; smlen -= XMSS_WOTS_KEYSIZE; // Compute Ltree setLtreeADRS(ltree_addr, idx_leaf); l_tree(pkhash, wots_pk, pub_seed, ltree_addr); // Compute root validate_authpath(root, pkhash, idx_leaf, sm, pub_seed, node_addr); sm += XMSS_TREEHEIGHT*XMSS_N; smlen -= XMSS_TREEHEIGHT*XMSS_N; } for (i = 0; i < XMSS_N; i++) if (root[i] != pk[i]) goto fail; *mlen = smlen; for (i = 0; i < *mlen; i++) m[i] = sm[i]; return 0; fail: *mlen = smlen; for (i = 0; i < *mlen; i++) m[i] = 0; *mlen = -1; return -1; }