xmss-KAT-generator/xmss_core_fast.c
Joost Rijneveld 6a8571d880
Revert to using runtime-only parameter struct
Using global defines for parameters (as seems to be typical in
academic crypto code) does not play nice with multithreading at all.
2017-10-16 12:09:07 +02:00

712 lines
25 KiB
C

/*
xmss_fast.c version 20160722
Andreas Hülsing
Joost Rijneveld
Public domain.
*/
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "hash.h"
#include "hash_address.h"
#include "params.h"
#include "randombytes.h"
#include "wots.h"
#include "xmss_commons.h"
#include "xmss_core_fast.h"
/**
* Initialize BDS state struct
* parameter names are the same as used in the description of the BDS traversal
*/
void xmss_set_bds_state(bds_state *state, unsigned char *stack,
int stackoffset, unsigned char *stacklevels,
unsigned char *auth, unsigned char *keep,
treehash_inst *treehash, unsigned char *retain,
int next_leaf)
{
state->stack = stack;
state->stackoffset = stackoffset;
state->stacklevels = stacklevels;
state->auth = auth;
state->keep = keep;
state->treehash = treehash;
state->retain = retain;
state->next_leaf = next_leaf;
}
static int treehash_minheight_on_stack(const xmss_params *params,
bds_state* state,
const treehash_inst *treehash)
{
unsigned int r = params->tree_height, i;
for (i = 0; i < treehash->stackusage; i++) {
if (state->stacklevels[state->stackoffset - i - 1] < r) {
r = state->stacklevels[state->stackoffset - i - 1];
}
}
return r;
}
/**
* Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash.
* Currently only used for key generation.
*
*/
static void treehash_init(const xmss_params *params,
unsigned char *node, int height, int index,
bds_state *state, const unsigned char *sk_seed,
const unsigned char *pub_seed, const uint32_t addr[8])
{
unsigned int idx = index;
// use three different addresses because at this point we use all three formats in parallel
uint32_t ots_addr[8];
uint32_t ltree_addr[8];
uint32_t node_addr[8];
// only copy layer and tree address parts
memcpy(ots_addr, addr, 12);
// type = ots
set_type(ots_addr, 0);
memcpy(ltree_addr, addr, 12);
set_type(ltree_addr, 1);
memcpy(node_addr, addr, 12);
set_type(node_addr, 2);
uint32_t lastnode, i;
unsigned char stack[(height+1)*params->n];
unsigned int stacklevels[height+1];
unsigned int stackoffset=0;
unsigned int nodeh;
lastnode = idx+(1<<height);
for (i = 0; i < params->tree_height-params->bds_k; i++) {
state->treehash[i].h = i;
state->treehash[i].completed = 1;
state->treehash[i].stackusage = 0;
}
i = 0;
for (; idx < lastnode; idx++) {
set_ltree_addr(ltree_addr, idx);
set_ots_addr(ots_addr, idx);
gen_leaf_wots(params, stack+stackoffset*params->n, sk_seed, pub_seed, ltree_addr, ots_addr);
stacklevels[stackoffset] = 0;
stackoffset++;
if (params->tree_height - params->bds_k > 0 && i == 3) {
memcpy(state->treehash[0].node, stack+stackoffset*params->n, params->n);
}
while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) {
nodeh = stacklevels[stackoffset-1];
if (i >> nodeh == 1) {
memcpy(state->auth + nodeh*params->n, stack+(stackoffset-1)*params->n, params->n);
}
else {
if (nodeh < params->tree_height - params->bds_k && i >> nodeh == 3) {
memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*params->n, params->n);
}
else if (nodeh >= params->tree_height - params->bds_k) {
memcpy(state->retain + ((1 << (params->tree_height - 1 - nodeh)) + nodeh - params->tree_height + (((i >> nodeh) - 3) >> 1)) * params->n, stack+(stackoffset-1)*params->n, params->n);
}
}
set_tree_height(node_addr, stacklevels[stackoffset-1]);
set_tree_index(node_addr, (idx >> (stacklevels[stackoffset-1]+1)));
hash_h(params, stack+(stackoffset-2)*params->n, stack+(stackoffset-2)*params->n, pub_seed, node_addr);
stacklevels[stackoffset-2]++;
stackoffset--;
}
i++;
}
for (i = 0; i < params->n; i++) {
node[i] = stack[i];
}
}
static void treehash_update(const xmss_params *params,
treehash_inst *treehash, bds_state *state,
const unsigned char *sk_seed,
const unsigned char *pub_seed,
const uint32_t addr[8])
{
uint32_t ots_addr[8];
uint32_t ltree_addr[8];
uint32_t node_addr[8];
// only copy layer and tree address parts
memcpy(ots_addr, addr, 12);
// type = ots
set_type(ots_addr, 0);
memcpy(ltree_addr, addr, 12);
set_type(ltree_addr, 1);
memcpy(node_addr, addr, 12);
set_type(node_addr, 2);
set_ltree_addr(ltree_addr, treehash->next_idx);
set_ots_addr(ots_addr, treehash->next_idx);
unsigned char nodebuffer[2 * params->n];
unsigned int nodeheight = 0;
gen_leaf_wots(params, nodebuffer, sk_seed, pub_seed, ltree_addr, ots_addr);
while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) {
memcpy(nodebuffer + params->n, nodebuffer, params->n);
memcpy(nodebuffer, state->stack + (state->stackoffset-1)*params->n, params->n);
set_tree_height(node_addr, nodeheight);
set_tree_index(node_addr, (treehash->next_idx >> (nodeheight+1)));
hash_h(params, nodebuffer, nodebuffer, pub_seed, node_addr);
nodeheight++;
treehash->stackusage--;
state->stackoffset--;
}
if (nodeheight == treehash->h) { // this also implies stackusage == 0
memcpy(treehash->node, nodebuffer, params->n);
treehash->completed = 1;
}
else {
memcpy(state->stack + state->stackoffset*params->n, nodebuffer, params->n);
treehash->stackusage++;
state->stacklevels[state->stackoffset] = nodeheight;
state->stackoffset++;
treehash->next_idx++;
}
}
/**
* Performs one treehash update on the instance that needs it the most.
* Returns 1 if such an instance was not found
**/
static char bds_treehash_update(const xmss_params *params,
bds_state *state, unsigned int updates,
const unsigned char *sk_seed,
unsigned char *pub_seed,
const uint32_t addr[8])
{
uint32_t i, j;
unsigned int level, l_min, low;
unsigned int used = 0;
for (j = 0; j < updates; j++) {
l_min = params->tree_height;
level = params->tree_height - params->bds_k;
for (i = 0; i < params->tree_height - params->bds_k; i++) {
if (state->treehash[i].completed) {
low = params->tree_height;
}
else if (state->treehash[i].stackusage == 0) {
low = i;
}
else {
low = treehash_minheight_on_stack(params, state, &(state->treehash[i]));
}
if (low < l_min) {
level = i;
l_min = low;
}
}
if (level == params->tree_height - params->bds_k) {
break;
}
treehash_update(params, &(state->treehash[level]), state, sk_seed, pub_seed, addr);
used++;
}
return updates - used;
}
/**
* Updates the state (typically NEXT_i) by adding a leaf and updating the stack
* Returns 1 if all leaf nodes have already been processed
**/
static char bds_state_update(const xmss_params *params,
bds_state *state, const unsigned char *sk_seed,
const unsigned char *pub_seed,
const uint32_t addr[8])
{
uint32_t ltree_addr[8];
uint32_t node_addr[8];
uint32_t ots_addr[8];
int nodeh;
int idx = state->next_leaf;
if (idx == 1 << params->tree_height) {
return 1;
}
// only copy layer and tree address parts
memcpy(ots_addr, addr, 12);
// type = ots
set_type(ots_addr, 0);
memcpy(ltree_addr, addr, 12);
set_type(ltree_addr, 1);
memcpy(node_addr, addr, 12);
set_type(node_addr, 2);
set_ots_addr(ots_addr, idx);
set_ltree_addr(ltree_addr, idx);
gen_leaf_wots(params, state->stack+state->stackoffset*params->n, sk_seed, pub_seed, ltree_addr, ots_addr);
state->stacklevels[state->stackoffset] = 0;
state->stackoffset++;
if (params->tree_height - params->bds_k > 0 && idx == 3) {
memcpy(state->treehash[0].node, state->stack+state->stackoffset*params->n, params->n);
}
while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) {
nodeh = state->stacklevels[state->stackoffset-1];
if (idx >> nodeh == 1) {
memcpy(state->auth + nodeh*params->n, state->stack+(state->stackoffset-1)*params->n, params->n);
}
else {
if (nodeh < params->tree_height - params->bds_k && idx >> nodeh == 3) {
memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*params->n, params->n);
}
else if (nodeh >= params->tree_height - params->bds_k) {
memcpy(state->retain + ((1 << (params->tree_height - 1 - nodeh)) + nodeh - params->tree_height + (((idx >> nodeh) - 3) >> 1)) * params->n, state->stack+(state->stackoffset-1)*params->n, params->n);
}
}
set_tree_height(node_addr, state->stacklevels[state->stackoffset-1]);
set_tree_index(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1)));
hash_h(params, state->stack+(state->stackoffset-2)*params->n, state->stack+(state->stackoffset-2)*params->n, pub_seed, node_addr);
state->stacklevels[state->stackoffset-2]++;
state->stackoffset--;
}
state->next_leaf++;
return 0;
}
/**
* Returns the auth path for node leaf_idx and computes the auth path for the
* next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo
* in "Post Quantum Cryptography", Springer 2009.
*/
static void bds_round(const xmss_params *params,
bds_state *state, const unsigned long leaf_idx,
const unsigned char *sk_seed,
const unsigned char *pub_seed, uint32_t addr[8])
{
unsigned int i;
unsigned int tau = params->tree_height;
unsigned int startidx;
unsigned int offset, rowidx;
unsigned char buf[2 * params->n];
uint32_t ots_addr[8];
uint32_t ltree_addr[8];
uint32_t node_addr[8];
// only copy layer and tree address parts
memcpy(ots_addr, addr, 12);
// type = ots
set_type(ots_addr, 0);
memcpy(ltree_addr, addr, 12);
set_type(ltree_addr, 1);
memcpy(node_addr, addr, 12);
set_type(node_addr, 2);
for (i = 0; i < params->tree_height; i++) {
if (! ((leaf_idx >> i) & 1)) {
tau = i;
break;
}
}
if (tau > 0) {
memcpy(buf, state->auth + (tau-1) * params->n, params->n);
// we need to do this before refreshing state->keep to prevent overwriting
memcpy(buf + params->n, state->keep + ((tau-1) >> 1) * params->n, params->n);
}
if (!((leaf_idx >> (tau + 1)) & 1) && (tau < params->tree_height - 1)) {
memcpy(state->keep + (tau >> 1)*params->n, state->auth + tau*params->n, params->n);
}
if (tau == 0) {
set_ltree_addr(ltree_addr, leaf_idx);
set_ots_addr(ots_addr, leaf_idx);
gen_leaf_wots(params, state->auth, sk_seed, pub_seed, ltree_addr, ots_addr);
}
else {
set_tree_height(node_addr, (tau-1));
set_tree_index(node_addr, leaf_idx >> tau);
hash_h(params, state->auth + tau * params->n, buf, pub_seed, node_addr);
for (i = 0; i < tau; i++) {
if (i < params->tree_height - params->bds_k) {
memcpy(state->auth + i * params->n, state->treehash[i].node, params->n);
}
else {
offset = (1 << (params->tree_height - 1 - i)) + i - params->tree_height;
rowidx = ((leaf_idx >> i) - 1) >> 1;
memcpy(state->auth + i * params->n, state->retain + (offset + rowidx) * params->n, params->n);
}
}
for (i = 0; i < ((tau < params->tree_height - params->bds_k) ? tau : (params->tree_height - params->bds_k)); i++) {
startidx = leaf_idx + 1 + 3 * (1 << i);
if (startidx < 1U << params->tree_height) {
state->treehash[i].h = i;
state->treehash[i].next_idx = startidx;
state->treehash[i].completed = 0;
state->treehash[i].stackusage = 0;
}
}
}
}
/*
* Generates a XMSS key pair for a given parameter set.
* Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]
* Format pk: [root || PUB_SEED] omitting algo oid.
*/
int xmss_core_keypair(const xmss_params *params,
unsigned char *pk, unsigned char *sk, bds_state *state)
{
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
// Set idx = 0
sk[0] = 0;
sk[1] = 0;
sk[2] = 0;
sk[3] = 0;
// Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte)
randombytes(sk + params->index_len, 3*params->n);
// Copy PUB_SEED to public key
memcpy(pk + params->n, sk + params->index_len + 2*params->n, params->n);
// Compute root
treehash_init(params, pk, params->tree_height, 0, state, sk + params->index_len, sk + params->index_len + 2*params->n, addr);
// copy root o sk
memcpy(sk + params->index_len + 3*params->n, pk, params->n);
return 0;
}
/**
* Signs a message.
* Returns
* 1. an array containing the signature followed by the message AND
* 2. an updated secret key!
*
*/
int xmss_core_sign(const xmss_params *params,
unsigned char *sk, bds_state *state,
unsigned char *sm, unsigned long long *smlen,
const unsigned char *m, unsigned long long mlen)
{
uint16_t i = 0;
// Extract SK
unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3];
unsigned char sk_seed[params->n];
memcpy(sk_seed, sk + params->index_len, params->n);
unsigned char sk_prf[params->n];
memcpy(sk_prf, sk + params->index_len + params->n, params->n);
unsigned char pub_seed[params->n];
memcpy(pub_seed, sk + params->index_len + 2*params->n, params->n);
// index as 32 bytes string
unsigned char idx_bytes_32[32];
to_byte(idx_bytes_32, idx, 32);
unsigned char hash_key[3*params->n];
// Update SK
sk[0] = ((idx + 1) >> 24) & 255;
sk[1] = ((idx + 1) >> 16) & 255;
sk[2] = ((idx + 1) >> 8) & 255;
sk[3] = (idx + 1) & 255;
// -- Secret key for this non-forward-secure version is now updated.
// -- A productive implementation should use a file handle instead and write the updated secret key at this point!
// Init working params
unsigned char R[params->n];
unsigned char msg_h[params->n];
unsigned char ots_seed[params->n];
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
// ---------------------------------
// Message Hashing
// ---------------------------------
// Message Hash:
// First compute pseudorandom value
prf(params, R, idx_bytes_32, sk_prf, params->n);
// Generate hash key (R || root || idx)
memcpy(hash_key, R, params->n);
memcpy(hash_key+params->n, sk+4+3*params->n, params->n);
to_byte(hash_key+2*params->n, idx, params->n);
// Then use it for message digest
h_msg(params, msg_h, m, mlen, hash_key, 3*params->n);
// Start collecting signature
*smlen = 0;
// Copy index to signature
sm[0] = (idx >> 24) & 255;
sm[1] = (idx >> 16) & 255;
sm[2] = (idx >> 8) & 255;
sm[3] = idx & 255;
sm += 4;
*smlen += 4;
// Copy R to signature
for (i = 0; i < params->n; i++) {
sm[i] = R[i];
}
sm += params->n;
*smlen += params->n;
// ----------------------------------
// Now we start to "really sign"
// ----------------------------------
// Prepare Address
set_type(ots_addr, 0);
set_ots_addr(ots_addr, idx);
// Compute seed for OTS key pair
get_seed(params, ots_seed, sk_seed, ots_addr);
// Compute WOTS signature
wots_sign(params, sm, msg_h, ots_seed, pub_seed, ots_addr);
sm += params->wots_keysize;
*smlen += params->wots_keysize;
// the auth path was already computed during the previous round
memcpy(sm, state->auth, params->tree_height*params->n);
if (idx < (1U << params->tree_height) - 1) {
bds_round(params, state, idx, sk_seed, pub_seed, ots_addr);
bds_treehash_update(params, state, (params->tree_height - params->bds_k) >> 1, sk_seed, pub_seed, ots_addr);
}
sm += params->tree_height*params->n;
*smlen += params->tree_height*params->n;
memcpy(sm, m, mlen);
*smlen += mlen;
return 0;
}
/*
* Generates a XMSSMT key pair for a given parameter set.
* Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]
* Format pk: [root || PUB_SEED] omitting algo oid.
*/
int xmssmt_core_keypair(const xmss_params *params,
unsigned char *pk, unsigned char *sk,
bds_state *states, unsigned char *wots_sigs)
{
unsigned char ots_seed[params->n];
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int i;
// Set idx = 0
for (i = 0; i < params->index_len; i++) {
sk[i] = 0;
}
// Init SK_SEED (params->n byte), SK_PRF (params->n byte), and PUB_SEED (params->n byte)
randombytes(sk+params->index_len, 3*params->n);
// Copy PUB_SEED to public key
memcpy(pk+params->n, sk+params->index_len+2*params->n, params->n);
// Start with the bottom-most layer
set_layer_addr(addr, 0);
// Set up state and compute wots signatures for all but topmost tree root
for (i = 0; i < params->d - 1; i++) {
// Compute seed for OTS key pair
treehash_init(params, pk, params->tree_height, 0, states + i, sk+params->index_len, pk+params->n, addr);
set_layer_addr(addr, (i+1));
get_seed(params, ots_seed, sk + params->index_len, addr);
wots_sign(params, wots_sigs + i*params->wots_keysize, pk, ots_seed, pk+params->n, addr);
}
// Address now points to the single tree on layer d-1
treehash_init(params, pk, params->tree_height, 0, states + i, sk+params->index_len, pk+params->n, addr);
memcpy(sk + params->index_len + 3*params->n, pk, params->n);
return 0;
}
/**
* Signs a message.
* Returns
* 1. an array containing the signature followed by the message AND
* 2. an updated secret key!
*
*/
int xmssmt_core_sign(const xmss_params *params,
unsigned char *sk,
bds_state *states, unsigned char *wots_sigs,
unsigned char *sm, unsigned long long *smlen,
const unsigned char *m, unsigned long long mlen)
{
uint64_t idx_tree;
uint32_t idx_leaf;
uint64_t i, j;
int needswap_upto = -1;
unsigned int updates;
unsigned char sk_seed[params->n];
unsigned char sk_prf[params->n];
unsigned char pub_seed[params->n];
// Init working params
unsigned char R[params->n];
unsigned char msg_h[params->n];
unsigned char hash_key[3*params->n];
unsigned char ots_seed[params->n];
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
unsigned char idx_bytes_32[32];
bds_state tmp;
// Extract SK
unsigned long long idx = 0;
for (i = 0; i < params->index_len; i++) {
idx |= ((unsigned long long)sk[i]) << 8*(params->index_len - 1 - i);
}
memcpy(sk_seed, sk+params->index_len, params->n);
memcpy(sk_prf, sk+params->index_len+params->n, params->n);
memcpy(pub_seed, sk+params->index_len+2*params->n, params->n);
// Update SK
for (i = 0; i < params->index_len; i++) {
sk[i] = ((idx + 1) >> 8*(params->index_len - 1 - i)) & 255;
}
// -- Secret key for this non-forward-secure version is now updated.
// -- A productive implementation should use a file handle instead and write the updated secret key at this point!
// ---------------------------------
// Message Hashing
// ---------------------------------
// Message Hash:
// First compute pseudorandom value
to_byte(idx_bytes_32, idx, 32);
prf(params, R, idx_bytes_32, sk_prf, params->n);
// Generate hash key (R || root || idx)
memcpy(hash_key, R, params->n);
memcpy(hash_key+params->n, sk+params->index_len+3*params->n, params->n);
to_byte(hash_key+2*params->n, idx, params->n);
// Then use it for message digest
h_msg(params, msg_h, m, mlen, hash_key, 3*params->n);
// Start collecting signature
*smlen = 0;
// Copy index to signature
for (i = 0; i < params->index_len; i++) {
sm[i] = (idx >> 8*(params->index_len - 1 - i)) & 255;
}
sm += params->index_len;
*smlen += params->index_len;
// Copy R to signature
for (i = 0; i < params->n; i++) {
sm[i] = R[i];
}
sm += params->n;
*smlen += params->n;
// ----------------------------------
// Now we start to "really sign"
// ----------------------------------
// Handle lowest layer separately as it is slightly different...
// Prepare Address
set_type(ots_addr, 0);
idx_tree = idx >> params->tree_height;
idx_leaf = (idx & ((1 << params->tree_height)-1));
set_layer_addr(ots_addr, 0);
set_tree_addr(ots_addr, idx_tree);
set_ots_addr(ots_addr, idx_leaf);
// Compute seed for OTS key pair
get_seed(params, ots_seed, sk_seed, ots_addr);
// Compute WOTS signature
wots_sign(params, sm, msg_h, ots_seed, pub_seed, ots_addr);
sm += params->wots_keysize;
*smlen += params->wots_keysize;
memcpy(sm, states[0].auth, params->tree_height*params->n);
sm += params->tree_height*params->n;
*smlen += params->tree_height*params->n;
// prepare signature of remaining layers
for (i = 1; i < params->d; i++) {
// put WOTS signature in place
memcpy(sm, wots_sigs + (i-1)*params->wots_keysize, params->wots_keysize);
sm += params->wots_keysize;
*smlen += params->wots_keysize;
// put AUTH nodes in place
memcpy(sm, states[i].auth, params->tree_height*params->n);
sm += params->tree_height*params->n;
*smlen += params->tree_height*params->n;
}
updates = (params->tree_height - params->bds_k) >> 1;
set_tree_addr(addr, (idx_tree + 1));
// mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists
if ((1 + idx_tree) * (1 << params->tree_height) + idx_leaf < (1ULL << params->full_height)) {
bds_state_update(params, &states[params->d], sk_seed, pub_seed, addr);
}
for (i = 0; i < params->d; i++) {
// check if we're not at the end of a tree
if (! (((idx + 1) & ((1ULL << ((i+1)*params->tree_height)) - 1)) == 0)) {
idx_leaf = (idx >> (params->tree_height * i)) & ((1 << params->tree_height)-1);
idx_tree = (idx >> (params->tree_height * (i+1)));
set_layer_addr(addr, i);
set_tree_addr(addr, idx_tree);
if (i == (unsigned int) (needswap_upto + 1)) {
bds_round(params, &states[i], idx_leaf, sk_seed, pub_seed, addr);
}
updates = bds_treehash_update(params, &states[i], updates, sk_seed, pub_seed, addr);
set_tree_addr(addr, (idx_tree + 1));
// if a NEXT-tree exists for this level;
if ((1 + idx_tree) * (1 << params->tree_height) + idx_leaf < (1ULL << (params->full_height - params->tree_height * i))) {
if (i > 0 && updates > 0 && states[params->d + i].next_leaf < (1ULL << params->full_height)) {
bds_state_update(params, &states[params->d + i], sk_seed, pub_seed, addr);
updates--;
}
}
}
else if (idx < (1ULL << params->full_height) - 1) {
memcpy(&tmp, states+params->d + i, sizeof(bds_state));
memcpy(states+params->d + i, states + i, sizeof(bds_state));
memcpy(states + i, &tmp, sizeof(bds_state));
set_layer_addr(ots_addr, (i+1));
set_tree_addr(ots_addr, ((idx + 1) >> ((i+2) * params->tree_height)));
set_ots_addr(ots_addr, (((idx >> ((i+1) * params->tree_height)) + 1) & ((1 << params->tree_height)-1)));
get_seed(params, ots_seed, sk+params->index_len, ots_addr);
wots_sign(params, wots_sigs + i*params->wots_keysize, states[i].stack, ots_seed, pub_seed, ots_addr);
states[params->d + i].stackoffset = 0;
states[params->d + i].next_leaf = 0;
updates--; // WOTS-signing counts as one update
needswap_upto = i;
for (j = 0; j < params->tree_height-params->bds_k; j++) {
states[i].treehash[j].completed = 1;
}
}
}
memcpy(sm, m, mlen);
*smlen += mlen;
return 0;
}